This invention relates to an armor module adapted to protect a body from an incoming projectile, in particular against explosively formed projectile charges (EFP).
When designing ballistic armor for protecting, for example, a vehicle, consideration must be given to the type of projectile against which the armor must protect.
An important consideration which must be taken into account when designing ballistic armor is the weight per coverage area of the armor. Theoretically, armor can be constructed to protect against almost any threat or combination of threats. However, the resulting weight of the minor needed for such protection should be practical for the intended use. For example, when designing armor for vehicles such as trucks, armored infantry fighting vehicles, or armored personnel carriers, heavy armor will negatively impact the maneuverability and fuel efficiency of the vehicle, and will be more difficult to replace when necessary. Heavy armor can exceed the gross vehicle weight (GVW) set by the vehicle manufacturer and therefore cannot be used for such vehicle.
One type of threat is referred to as an explosively formed projectile (EFP). An EFP has a metal liner in the shape of a shallow dish with an explosive material behind it. When the explosive material is detonated the force of the blast presses the liner plastically into any of a number of configurations, depending on how the plate is formed and how the explosive is detonated. For example, the liner may be molded into a narrow rod, a “fist”, a plate (dish), or segmented rod.
According to one aspect of the present invention, there is an armor module for protecting a surface against an explosively formed projectile (EFP) threat, the armor module being configured for mounting on the surface and comprising at least one armor assembly having:
It will be appreciated that hereafter in the specification and claims the terms “in front” and “behind” refer to directions with reference to the expected direction of the threat, with “in front” meaning closer to the expected direction of the threat, and “behind” meaning farther from the expected direction of the threat.
The specific weight of the catcher layer may be no more than 90%, and according to some examples no more than 85%, of that of the unidirectional fiber layer.
The fibers constituting the unidirectional fiber layer may constitute a portion of a laminate, the tensile strength of most of the fibers exceeding the force required to remove them from the laminate.
The unidirectional fiber layer may comprise aramid fibers.
The catcher layer may comprise a plurality of pressed fibers, which may be arranged unidirectionally, and which may be made from a material selected from the group comprising polypropylene and high density polyethylene. The catcher layer may comprise at least two times, and according to some example at least four times, as many fibers per unit thickness thereof than does the unidirectional fiber layer. In addition, the fibers of the catcher layer may be characterized by a specific tensile strength which is at least 10% greater than those of the unidirectional fiber layer.
The material of the catcher layer may be more sensitive to an elevated temperature of an impinging threat than is the material of the unidirectional fiber layer, i.e., the catcher layer may exhibit a reduced level of ballistic protection against a projectile having an elevated temperature associated with residuals of the EFP, the unidirectional fiber layer exhibiting a level of ballistic protection which remains essentially unchanged, or significantly less reduced as the catcher layer, at that temperature.
The hard layer may be provided with a backing layer, which may comprise an at least partially or fully woven aramid material, facing the catcher layer, each of the hard, backing, and catcher layers being characterized by a ballistic impedance such that the ballistic impedance of the backing layer is lower than that of the hard layer and higher than that of the catcher layer. It will be appreciated the ballistic impedance of a material is defined as the product between its specific density ρ and the speed of sound through the material.
The hard layer may comprise a material selected from the group comprising high-hardness steel and ballistic ceramic.
The armor assembly may further comprise a stand-off between the unidirectional fiber and catcher layers, the stand-off being free of material of the module.
The armor module may further comprise one of the armor assemblies disposed in front of another of the armor assemblies.
In order to understand the invention and to see how it may be carried out in practice, an embodiment will now be described, by way of a non-limiting example only, with reference to the accompanying drawings, in which:
As illustrated in
The armor module 10 comprises a primary armor assembly 14 in front of a secondary armor assembly 16. The layers of the armor module are designed such that the fragments exiting therefrom are within the level or protection of the hull 12, i.e., they can be defeated thereby.
The primary armor assembly 14 comprises a hard layer 22 constituting a strike face, which may be made of high-hardness steel, and is positioned so as to face the EFP 5, i.e., at the front-most position of the armor, when the armor module 10 is mounted to the hull 12. Alternatively, it may be made of ceramic pellets, or any other material configured to fragment an impinging EFP threat into residuals. An adhesive sub-layer 24, which may comprise a fiber-reinforced adhesive, is applied to the backside (i.e., non-threat-facing side) of the hard layer 22, and is used to attach a backing layer 26 thereto. The adhesive may comprise a thermoplastic and/or thermoset material, or any other appropriate material.
The backing layer 26 may be made of a woven aramid material, such as that sold under the trade name K3000 may be disposed behind the strike face 22. The ballistic impedance (which is defined as the product between a material's specific density ρ and the speed of sound through the material, and is useful for quantifying the propagation of a shockwave through a material, for example due to a ballistic impact) of the backing layer 26 may be closer to that of the hard layer 22 than any of the other layers of the primary armor assembly. This limits the damage to the hard layer 22 as the shockwave due to impact of a threat thereupon crosses between layers.
A unidirectional fiber layer 28 made of a material comprising unidirectional aramid fibers formed as part of a laminate, such as Gold Shield® made by Honeywell, is disposed behind the backing layer 26. The unidirectional fiber layer 28 is designed such that fibers thereof envelop a residual of the fragmented EFP 5 which pass therethrough, and remain enveloping it as it exits the layer. This may be accomplished, for example, by ensuring that the tensile strength of the fibers exceeds the force required to remove them from the laminate. With such a design, when fibers of the unidirectional fiber layer 28 are struck by a residual, they are removed from the laminate and remain on the residual before they undergo tensile failure. As the fibers remain enveloped around the residual, they serve to thermally insulate it as in enters the next later. The significance of this will be explained below.
The hard layer 22, backing layer 26, and unidirectional fiber layer 28 together constitute a strike layer, which functions to disrupt the EFP, e.g., by spreading its impact, and preventing secondary fragmentation thereof.
An optional primary standoff 30 may be provided behind the unidirectional fiber layer 28. The standoff gives allows space for the fragments of the disrupted EFP to disperse.
A catcher layer 31 is provided behind the unidirectional fiber layer 28 (behind the primary standoff 30 in a case where it is provided) It comprises one or more pressed polypropylene sub-layers 32. The polypropylene may be, for example, similar to that sold under the trade name Tegris™, sold by Milliken & Company. The polypropylene may be high-tenacity and it may be provided as unidirectional (UD) or plain weave of strips made of UD fibers. The catcher layer 31 constitutes an absorbing/diverting layer, which functions to absorb/divert fragments of the disrupted EFP from the previous layer.
Ideally, a single thick polypropylene sub-layer 32 is to be provided; however, due to current manufacturing limitations of high pressure pressing, several of such sub-layers may be provided in order to reach a desired thickness when combined. (It will be appreciated that if these limitations would be overcome, a single polypropylene sub-layer 32 may be provided.) When a unidirectional polypropylene is provided, the directions of adjacent layers may be parallel to one another or at an angle to one another. Although no adhesive is necessary between adjacent layers, a polypropylene resin may be provided between adjacent layers.
Alternatively, the catcher layer 31 comprises one or more high density polyethylene layers. In such a case, the thickness of the layer could be reduced without impacting the overall weight of the layer.
The design of the catcher layer 31 is based on that of the unidirectional fiber layer. For example:
The secondary armor assembly 16 comprises a secondary hard layer 18 comprising a segmented ceramic sub-layer 34, which may be similar to that sold under the trade name SMART™ by Plasan, and which is described, for example, in co-pending Israel patent applications IL149591, IL169230, IL190360, and IL182511, the contents of which are incorporated herein by reference. Ceramic pellets of the segmented ceramic sub-layer 34 may each have cylindrical, hexagonal, or any other desired cross-section, and they may be provided as capped or non-capped elements.
A secondary backing layer 36, for example made of a woven aramid material such as K3000, may be provided behind the secondary hard layer. In addition, other layers, such as a high-harness steel sub-layer 38, an additional secondary backing layer 40 made of a woven aramid material such as K3000, and a secondary unidirectional fiber layer 42 made of a unidirectional aramid material, such as Gold Shield®, may be provided.
The secondary armor assembly 16 comprises a polypropylene secondary catching layer 44, which may be similar to the polypropylene sub-layer 32 of the catcher layer 31 of the primary armor assembly 14.
Either of the catching layers 31, 44 may alternatively comprise one or more high density polyethylene layers instead of or in addition to a polypropylene layer. In such a case, the thickness of the layer could be reduced without impacting the overall weight thereof.
The hull 12 may comprise a high-hardness steel layer 46, with a spall liner 48, for example made of K3000 or UD aramid, high density polyethylene, a composite liner material, or a combination thereof, therebehind.
The armor module 10 may be mounted to the hull 12 by any appropriate means, for example with mounting rods 50. A mounting standoff 52 may be provided between the armor module 10 and the hull 12. This standoff accommodates a non-uniform hull profile, for example allowing the module 10 to be mounted to the hull 12 without being disturbed by members projecting therefrom, and further allows for fragments exiting the armor to disperse before impacting on the hull strike face. The mounting standoff 52 may be smaller or larger than the primary standoff 30.
A non-limiting example of an armor module 10 is summarized in Table 1 below, with reference numerals provided, which correspond to those used in the text:
It can be seen from Table 1 that the total weight of the armor module is 385.7 kg/m2. For comparison, conventional armor modules which offer the same level of ballistic protection against an EFP threat may have a weight which is significantly higher, such as approximately 1040 kg/m2 for a rolled homogeneous armor (RHA), or approximately 650 kg/m2 for a conventional layered metal technology.
Those skilled in the art to which this invention pertains will readily appreciate that numerous changes, variations and modifications can be made without departing from the scope of the invention mutatis mutandis. For example, additional standoffs may be provided between other layers, for example between the secondary strike layer 18 and the secondary absorbing/diverting layer 20, etc.
Number | Date | Country | Kind |
---|---|---|---|
196310 | Dec 2008 | IL | national |