The present application is a U.S. National Phase of PCT/IB2020/055448, filed Jun. 10, 2020, which claims priority pursuant to German Patent Application Number 102019116153.3, filed Jun. 13, 2019, each are incorporated herein by reference in their entireties.
The invention relates to an armor plate (so-called add-on armor), an armor plate composite and armor, with which objects, in particular vehicles and mobile units, can be protected against the effects of projectiles, grenades or the like.
A variety of approaches for increasing ballistic resistance are known from the state of the art. Known are, for example, additionally mountable armor plates consisting of ceramic. Armor plates made of a composite material are known as well.
One challenge when designing armors is the need to find a compromise between achievable protective effect, weight and costs. It is generally true that materials with higher weight allow a higher protective effect, but also involve significantly higher costs.
The protective effect of armors can be compared using standardized guidelines. The protection levels for occupants of logistics and light armored vehicles, for example, are regulated in the STANAG (Standardization Agreement) 4569.
Armor plates that consist of a material that contains tungsten heavy metal or tungsten carbide as an essential component are known from DE 10 2017 116 319. It has been shown, however, that the thickness of such armor plates has to be relatively large in order to achieve a sufficiently high protective effect.
The object of the invention is to provide an armor that has the lowest possible weight and the lowest possible production costs, and at the same time is easy to replace if necessary.
The object is achieved according to the invention by an armor plate having a thickness of at least 3 mm and an edge length of at least 20 mm, wherein the armor plate consists of a material made largely of a component selected from the group hard metal, cermet and/or combinations thereof.
Cermets and hard metals are characterized by high hardness and sufficiently high intrinsic weight. As a result, these materials are particularly well-suited for armors that have a very good protective effect and can also be produced at acceptable cost.
One aspect of the invention is based on the realization that cermets, despite their significantly lower density compared to hard metals, are also suitable for the production of armors. By at least partially or completely replacing the hard metal known from the state of the art, the total weight of armor can thus, if necessary, be reduced significantly.
The hard metal can comprise a hard material and a binder, wherein the binder is composed of the elements selected from the group cobalt, nickel, copper, iron and/or mixtures thereof, in particular selected from the group nickel, iron and/or mixtures thereof.
The binder of the hard metal can, aside from unavoidable impurities, accordingly consist only of cobalt, or of a mixture of cobalt, nickel, copper and/or iron or also only of nickel and/or iron.
All hard materials known to the skilled person from the state of the art can be used as a hard material; tungsten carbide in particular can be used.
The selected grain size of the hard material after sintering can be very fine, for example in the range 0.5 to 0.8 μm (corresponding to the classification “fine” according to DIN ISO 4499-2), to coarse, for example in the range of 2.5 to 6.0 μm (corresponding to the classification “coarse” according to DIN ISO 4499-2).
The hard metal can contain other carbides known in the state of the art, for example VC, Cr3C2, TiC, TaC, NbC, ZrC, HfC and/or mixtures thereof, in particular TiC, TaC, NbC, ZrC and/or mixtures thereof. The properties of the armor plates made of the hard metal can thus be adjusted in a targeted manner; in particular weight reductions can be achieved with at least partial replacement of tungsten carbide in the hard metal.
The hard metal can correspondingly comprise several carbides selected from the group consisting of tungsten carbide, VC, Cr3C2, TiC, TaC, NbC, ZrC, HfC and/or mixtures thereof, in particular from the group consisting of tungsten carbide, TiC, TaC, NbC, ZrC and/or mixtures thereof.
A further aspect of the invention is therefore based on the fact that a sufficiently stable armor plate can still be obtained if the known tungsten carbide as the hard material is partially replaced by other carbides in the hard metal.
The hard metal can furthermore also contain nitrides known from the state of the art as an additive. Such nitrides can be used to form edge zones. Such an edge zone can have a thickness of 20 to 50 μm.
A multicomponent alloy of the carbides, nitrides and/or carbonitrides of metals known to the skilled person can be used as the hard material of the cermet, for example titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, aluminum and/or combinations thereof, in particular TiCN.
The binders already discussed for the hard metal can be used as binders in the cermet. The binder can be composed of the elements selected from the group cobalt, nickel, copper, iron and/or mixtures thereof, for example, in particular selected from the group nickel, iron and/or mixtures thereof.
The binder of the cermet can, aside from unavoidable impurities, accordingly consist only of cobalt, or of a mixture of cobalt, nickel, copper and/or iron or also only of nickel and/or iron.
The armor plate preferably has a thickness greater than 3 mm, preferably greater than 5 mm and in particular greater than 10 mm.
The dimensions of a single armor plate are preferably comparatively small. Edge lengths in the range of 20 to 150 mm, in particular in the range of 20 to 50 mm, have proven to be an optimal compromise between good manufacturability on the one hand and a not unmanageable effort when attaching the individual plates on the other hand.
The armor plates can have any geometry that is suitable for completely covering an underlying surface with a plurality of armor plates arranged side by side, apart from joints between the adjacent armor plates.
The plates can in particular have a hexagonal, triangular, square or rectangular shape.
In one design variant, the armor plates have a square shape with an edge length in the order of 50 mm.
According to the invention, an armor plate composite comprising at least two layers of armor plates of the abovementioned type, which are connected to one another, is also provided to achieve the abovementioned object.
The layers of armor plates can comprise armor plates made of different or the same material. In this way, tailor-made armor plate composites can be realized in sandwich construction.
The armor plates of the layers can have the same or different thicknesses, edge lengths and/or cross-sections.
In one embodiment, the individual armor plates of the various layers are mounted congruently one above the other. This allows the armor plate composite as a whole to easily be replaced.
In an alternative embodiment, the armor plates of the layers are offset to one another. This ensures that there are no exposed, continuous joints between the armor plates in armor that is composed of the armor plate composites. This prevents the creation of less stable areas in armor comprising such an armor plate composite.
The individual layers of the armor plate composite can be connected to one another in particular by gluing, sintering, screwing and/or soldering. A silicone-based adhesive can be used as the adhesive. A hard solder should be used as the solder in order to ensure a sufficiently stable connection.
The object is further achieved according to the invention by an armor having a carrier, an armor layer and an adhesive layer, by means of which the armor layer is connected to the carrier, wherein the armor layer comprises a plurality of armor plates, in particular wherein the armor layer is made of armor plates and/or armor plate composites of the aforementioned type.
The armor layer can comprise armor plates and/or armor plate composites made of different materials.
The armor plates which are arranged next to one another and mounted on the carrier can thus be made of the same and/or of different materials.
The plurality of armor plate composites of the armor which are mounted on the carrier can likewise each consist of the same sequence of layers of armor plates, or comprise a different sequence of layers of armor plates made of different materials.
The gap widths of the joints between the armor plates and/or the armor plate composites can be in a range from 0.01 to 0.8 mm. With larger gap widths, the armor does not provide an adequate protective effect. An irregular gap width can also mean that the surface under the armor plates and/or the armor plate composites cannot be completely covered. Smaller gap widths, on the other hand, can only be achieved with much effort.
If necessary, the peripheral surfaces of the armor plates and/or armor plate composites can be smoothed prior to mounting on the carrier in order to compensate for the tolerances of the edge lengths resulting from manufacturing.
The adhesive layer serves as mechanical damping between the armor plates or the armor plate composites and the carrier, which increases the protective effect. At the same time, it is possible to replace the individual armor plates and armor plate composites separately, for example if one of them is damaged after receiving fire.
The adhesive layer is in particular a permanently elastic adhesive layer.
The adhesive layer preferably has a thickness of at least 3 mm and in particular a thickness in the range 3 to 3.5 mm. A thicker adhesive layer increases the ability of the armor to absorb energy when receiving fire. At the same time, however, as little adhesive as possible should be used in order to save costs, and to allow easy replacement of individual armor plates or armor plate composites when necessary.
The adhesive layer can be applied to the carrier as a continuous, flat layer.
According to one embodiment, the adhesive layer has a wavy profile when viewed in section, whereby air is trapped between adjacent wave crests. This increases the elasticity of the adhesive layer. The air can be on the side of the armor plates and/or the armor plate composites. In other words, the adhesive layer is applied to the carrier and the armor plates and/or the armor plate composites are then mounted on the adhesive layer. Such an embodiment can in particular be advantageous when mounting the armor during production, whereas a flat adhesive layer is available as a simple alternative for repairs.
The adhesive of the adhesive layer should ensure sufficient adhesion of the components of the armor attached by means of the adhesive layer in a temperature range from −50° C. to +80° C.
The adhesive layer is preferably a silicone-based adhesive. Said adhesive is characterized by good elasticity with a high adhesive effect and at the same time good resistance to aging while covering a wide temperature range.
The adhesive of the adhesive layer and the adhesive connecting the individual layers of the armor plate composite can be the same or different adhesives. The advantages and considerations regarding the adhesive of the adhesive layer apply analogously to the adhesive connecting the individual layers of the armor plate composite.
Likewise, the thickness of the adhesive layer between the carrier and the armor layer between the individual layers of the armor plate composite can be different or the same.
Alternatively, the adhesive layer can also be realized using a hard solder instead of an adhesive. The armor layer can also be attached to the carrier mechanically.
The carrier preferably consists of a material with which the carrier itself already provides a certain protective effect. The carrier can be composed of a material selected from the group high-strength steel, aluminum, aluminum alloys, titanium, titanium alloys, synthetic fiber composite materials and/or combinations thereof.
Armor steel can in particular be used as the high-strength steel. A suitable synthetic fiber composite material is in particular Kevlar.
In one embodiment, a fragment protection is applied to the side of the armor layer opposite to the adhesive layer. This prevents excessive spalling of the material of the armor layer when receiving fire.
The fragment protection can be glued directly to the armor layer.
The fragment protection can be made of steel, high-strength steel, titanium, titanium alloys, aluminum, aluminum alloys, and/or composite materials. In particular carbon- and/or plastic-based materials can be used as the composite material.
It is also possible to apply additional protection to the side of the carrier opposite to the adhesive layer. This serves to absorb smaller fragments of the carrier and/or the projectile that can occur when the armor receives fire.
In particular foils and/or mats made of in particular carbon- and/or plastic-based composite materials can be used as the additional protection.
The additional protection can likewise be attached to the carrier by gluing or via a mechanical connection.
In another embodiment, the carrier is the outer side of an object provided with the armor, in particular a vehicle or a mobile unit. Here and in the following, mobile unit refers in particular to temporary infrastructure, for example a container.
It is thus possible for armor according to the invention to be attached directly to the outer side of an already existing object, even retroactively. The present invention is thus also suitable for realizing additional armor in a simple manner.
In another embodiment, spacers connecting the carrier to the outer side of the object can be mounted between the carrier and the outer side of the object provided with the armor, in particular a vehicle or a mobile unit.
This makes it possible to also mount the armor according to the invention on objects, the outer surfaces of which do not allow the armor to be mounted directly. The spacing between the carrier and the outer side of the object also provides additional space to intercept smaller fragments of the carrier and/or the projectile so that they cannot damage the outer layer of the object.
Further advantages and characteristics of the invention will unfold from the following drawings. The figures show:
The same reference signs are used in all figures for the same components and the corresponding advantages and characteristics listed in relation to one embodiment apply analogously to the components having the same reference sign in different embodiments.
The thickness d is several millimeters and depends on the desired protective effect. The armor plate preferably has a thickness greater than 3 mm.
The thickness of the armor plate 10 is always selected such that the plate as such is inherently stable and is destroyed only when receiving fire.
The dimensions of the armor plate 10 are relatively small. The edge lengths a, b are in the order of 20 mm to 150 mm and preferably in the range 20 to 50 mm.
The armor plate 10 is a solid part of a material that is largely made of a component selected from the group hard metal, cermet and/or combinations thereof. The usual sintering processes generally known for these materials can be used for production.
The armor 11 shown in
In the shown embodiment, the carrier 12 consists of a steel alloy, in particular a high-strength steel alloy as used in the armoring of vehicles, for example armor steel.
In principle, however, a large number of other materials besides high-strength steel are suitable for the carrier 12, for example aluminum, aluminum alloys, titanium, titanium alloys, synthetic fiber composite materials and/or combinations thereof.
The armor plates 10 are glued to the carrier 12 by means of a first adhesive layer 14. The adhesive forming the first adhesive layer 14 is a silicone-based adhesive.
In principle, it is conceivable to use an adhesive layer with a constant thickness, so that a continuous, flat adhesive layer 14 is applied to the carrier 12.
The embodiment in
Such an adhesive layer 14 is more complex to produce, however, so that this embodiment is primarily suitable for the initial production of armor 11. On the other hand, if the armor 11 only needs to be repaired, or if the manufacturing process is to be further simplified, a flat adhesive layer 14 can be used as well.
The particular advantage of the armor 11 shown in
In deviation from the rectangular shape of the armor plates 10, in principle any shape can be used that is suitable for completely covering an underlying surface (apart from joints between the adjacent armor plates 10) with a plurality of armor plates arranged side by side. Different geometries of the armor plates 10 are therefore shown in
The joints between adjacent armor plates 10 should have a width in the range from 0.01 to a maximum of 0.08 mm so as to ensure a sufficiently good protective effect of the armor 11. If necessary, the individual armor plates 10 can be ground to the desired size after the manufacturing process in order to eliminate manufacturing-related tolerances and ensure sufficiently small joints.
The armor plate composite 18 is glued to the carrier 12 by means of a first adhesive layer 14. The first adhesive layer 14 is carried out with a constant thickness.
The armor plate composite 18 comprises a plurality of layers 20a and 20b, which are connected to one another by means of a second adhesive layer 22 (“sandwich construction”). In this case, the whole armor plate composite 18 forms the armor layer 13 of the armor 11a.
Each of the layers 20a and 20b comprises a plurality of armor plates 10a and 10b, whereby the material of which the armor plates 10a and 10b are made can differ between the layers 20a and 20b.
The armor plates 10a can be made of a cermet, for example, while the armor plates 10b are made of a hard metal. The armor plates can furthermore also differ within each layer 20a and 20b, so that different armor plates 10a and 10a′ or 10b and 10b′ are used, for example.
An optimal compromise between the protective effect, the cost and the weight of the armor 11 can thus be made via the selection of the materials of the armor plates 10a and 10b.
In this embodiment, there are overall two layers 20a and 20b made of armor plates 10a and 10b. Even so, the armor plate composite 18 can also consist of more than two layers. It is, however, advantageous to use as few layers as possible to achieve the desired protective effect, and in particular only one layer as shown in
The possible maximum usable total weight of the armor 11 is usually determined by the object that is to be provided with the armor 11.
Compared to the embodiment shown in
The first adhesive layer 14 and the second adhesive layer 22 can use the same or different adhesives. The second adhesive layer can also have “channels” 16 like the first adhesive layer 14, or a constant thickness as shown in
As is the case with the first adhesive layer 14, the layers 20a and 20b can also be connected to one another by means of sintering, screwing or soldering, in particular hard soldering, instead of via the second adhesive layer 22.
In the embodiment shown in
The armor plates 10a and 10b can alternatively also be arranged offset to one another, so that the joints between the individual armor plates 10a and 10b are not positioned exactly one above the other. Even if the protective effect of the armor 11 can theoretically be further increased in this way, in particular with respect to the event of repeated receiving of fire at the same location of the armor 11, the cost of a repair increases in such an embodiment.
Consequently, there has to be a trade-off between manufacturing costs, stability of the armor and the effort in the event of a repair.
The armor layer 13 can be constructed of individual armor plates 10 or armor plate composites 18 as in the embodiments shown above.
The fragment protection 24 is, for example, made of steel, high-strength steel, titanium, titanium alloys, aluminum, aluminum alloys, composite materials in particular carbon- and/or plastic-based, and/or combinations thereof.
The fragment protection 24 generally has a smaller thickness than the armor layer 13.
If a projectile hits the armor 11b, for example, the armor plates 10 of the armor layer 13 will fragment as a result of the impact. The fragment protection 24 ensures that these fragments cannot spall off the surface of the armor 11b to any significant degree. It has been shown that this can further increase the stability of the armor layer 13 as a whole and thus the protective effect of the armor 11b.
The armor 11b shown in
In particular foils and/or mats made of in particular carbon- and/or plastic-based composite materials can be used as the additional protection.
The additional protection 26 serves to absorb smaller fragments of the carrier 12 and/or the projectile that can occur when the armor receives fire.
The object is a vehicle or a mobile unit, for example. Mobile unit here refers in particular to temporary infrastructure, for example a container.
An already existing protective effect of the object, for example the armored outer layer of a vehicle, can thus be exploited and its protective effect merely supplemented by the additional components of the armor 11c. A retrofitting of already existing objects with the armor 11 is thus easily possible as well.
The additional protection 26 is in particular advantageous in an embodiment according to
Since the armor layer 13 and the carrier 12 absorb most of the force of the impact, the parts of the carrier 12 that spall off in the direction of the occupant hardly have any penetrating power, so that a thin foil and/or mat is sufficient as the additional protection 26.
Such an embodiment is suitable in particular when the carrier 12, the armor layer 13 and/or the adhesive layer 14 cannot be attached directly to the outer side 28 or the outer side 28 itself is not made of a sufficiently stable material, so that an embodiment according to
The spacers 30 additionally ensure that fragments or spellings of the carrier 12, for example, do not strike the outer side 28 directly when the armor 11d receives fire. Accordingly, no additional protection 26 is provided in the embodiment according to
The spacers 30 also make it easy to replace the armor 11d in the event of damage, because the armor only has to be detached from the spacers 30 and new armor 11d mounted at the damaged location.
Number | Date | Country | Kind |
---|---|---|---|
102019116153.3 | Jun 2019 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2020/055448 | 6/10/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/250147 | 12/17/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2723214 | Meyer | Nov 1955 | A |
3395067 | Lane, Jr. | Jul 1968 | A |
3867239 | Alesi et al. | Feb 1975 | A |
4824624 | Palicka et al. | Apr 1989 | A |
4826791 | Mehrotra et al. | May 1989 | A |
4969386 | Sandstrom et al. | Nov 1990 | A |
5196252 | Harpell | Mar 1993 | A |
5227346 | Hwang et al. | Jul 1993 | A |
5361678 | Roopchand et al. | Nov 1994 | A |
5371049 | Moffett et al. | Dec 1994 | A |
5443917 | Tarry | Aug 1995 | A |
5648042 | Miller, Jr. | Jul 1997 | A |
5686689 | Snedeker et al. | Nov 1997 | A |
5760331 | Lowden et al. | Jun 1998 | A |
5763813 | Cohen et al. | Jun 1998 | A |
5866839 | Ohayon | Feb 1999 | A |
5963776 | Lowden et al. | Oct 1999 | A |
6009789 | Lyons | Jan 2000 | A |
6010580 | Dandliker et al. | Jan 2000 | A |
6124225 | Tien et al. | Sep 2000 | A |
6135006 | Strasser et al. | Oct 2000 | A |
6139791 | Chen et al. | Oct 2000 | A |
6149705 | Lowden et al. | Nov 2000 | A |
6203908 | Cohen | Mar 2001 | B1 |
6248150 | Amick | Jun 2001 | B1 |
6314858 | Strasser et al. | Nov 2001 | B1 |
6389594 | Yavin | May 2002 | B1 |
6457417 | Beal | Oct 2002 | B1 |
6544913 | Kim et al. | Apr 2003 | B2 |
6575075 | Cohen | Jun 2003 | B2 |
6601497 | Ghiorse et al. | Aug 2003 | B2 |
6693054 | Yeckley | Feb 2004 | B1 |
6709736 | Gruber et al. | Mar 2004 | B2 |
6749802 | Amick | Jun 2004 | B2 |
6793875 | Shaw et al. | Sep 2004 | B1 |
6799518 | Williams | Oct 2004 | B1 |
6805034 | McCormick et al. | Oct 2004 | B1 |
6845719 | Spencer | Jan 2005 | B1 |
6912944 | Lucuta et al. | Jul 2005 | B2 |
6960319 | Kapoor | Nov 2005 | B1 |
6964933 | Yeckley | Nov 2005 | B2 |
7049256 | Yeckley | May 2006 | B2 |
7064095 | Mandal et al. | Jun 2006 | B2 |
7069836 | Palicka et al. | Jul 2006 | B1 |
7077048 | Anderson, Jr. et al. | Jul 2006 | B1 |
7077306 | Palicka et al. | Jul 2006 | B2 |
7094717 | Yeckley | Aug 2006 | B2 |
7104177 | Aghajanian et al. | Sep 2006 | B1 |
7117780 | Cohen | Oct 2006 | B2 |
7223709 | Yeckley | May 2007 | B2 |
7261036 | Bourne et al. | Aug 2007 | B2 |
7309673 | Yeckley | Dec 2007 | B2 |
7402541 | Cohen | Jul 2008 | B2 |
7478579 | Carberry et al. | Jan 2009 | B2 |
7514383 | Bitterlich et al. | Apr 2009 | B2 |
7562612 | Lucuta et al. | Jul 2009 | B2 |
7770521 | Williams et al. | Aug 2010 | B2 |
7855159 | Yeckley | Dec 2010 | B1 |
7866248 | Moore, III et al. | Jan 2011 | B2 |
7886666 | Williams et al. | Feb 2011 | B2 |
7992500 | Williams | Aug 2011 | B2 |
8281700 | Cohen | Oct 2012 | B2 |
8318622 | Yeckley | Nov 2012 | B2 |
8367576 | Yeckley | Feb 2013 | B2 |
9040160 | Carberry et al. | May 2015 | B2 |
9228805 | Littlestone et al. | Jan 2016 | B1 |
9650701 | Parsons | May 2017 | B2 |
10234243 | Ganor | Mar 2019 | B2 |
20020012768 | Cohen | Jan 2002 | A1 |
20020094406 | Cohen | Jul 2002 | A1 |
20040033883 | Yeckley | Feb 2004 | A1 |
20040067838 | Mandal et al. | Apr 2004 | A1 |
20040102305 | Yeckley | May 2004 | A1 |
20040237763 | Bhatnagar et al. | Dec 2004 | A1 |
20050189683 | Yeckley | Sep 2005 | A1 |
20060027632 | Akram | Feb 2006 | A1 |
20060048668 | Williams | Mar 2006 | A1 |
20060060077 | Lucuta et al. | Mar 2006 | A1 |
20060102276 | deWitt | May 2006 | A1 |
20060137517 | Palicka et al. | Jun 2006 | A1 |
20060144281 | Williams et al. | Jul 2006 | A1 |
20060178256 | Yeckley | Aug 2006 | A1 |
20060276324 | Cohen | Dec 2006 | A1 |
20060288855 | Cohen | Dec 2006 | A1 |
20060288897 | Williams et al. | Dec 2006 | A1 |
20090301337 | Wilson et al. | Dec 2009 | A1 |
20100212486 | Kurtz | Aug 2010 | A1 |
20100288151 | Williams et al. | Nov 2010 | A1 |
20110100245 | Williams et al. | May 2011 | A1 |
20110168049 | Williams et al. | Jul 2011 | A1 |
20110266719 | Shen et al. | Nov 2011 | A1 |
20120090451 | Joynt | Apr 2012 | A1 |
20120177941 | Peterson et al. | Jul 2012 | A1 |
20120291621 | Sayre et al. | Nov 2012 | A1 |
20130199360 | Schaupert et al. | Aug 2013 | A1 |
20130220107 | Gettle et al. | Aug 2013 | A1 |
20140076140 | Ravid et al. | Mar 2014 | A1 |
20170299345 | Waldrop | Oct 2017 | A1 |
20190017787 | Arlen | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
2282530 | Dec 1999 | CA |
103180685 | Jun 2013 | CN |
108981470 | Dec 2018 | CN |
102017116319 | Jan 2019 | DE |
WO9107633 | May 1991 | WO |
WO1994027110 | Nov 1994 | WO |
2008100654 | Aug 2008 | WO |
2019016750 | Jan 2019 | WO |
Entry |
---|
Jan. 20, 2022 EPO Notification R161(1) & R.162 EP App. No. 20822360.2 Translation. |
Sep. 29, 2021 Foreign—CN App. No. PCT/IB2018/055380. |
Sep. 17, 2020 Notice of Allowance—U.S. Appl. No. 16/631,724. |
Jun. 25, 2020 Non-Final OA—U.S. Appl. No. 16/631,724. |
Jan. 30, 2020 Search Report IPRP International Publication WO App. No. 2019016750. |
Nov. 28, 2018 International Search Report Transmitted. |
Dec. 1, 2022 Foreign Office Action United Kingdom Application No. GB2200122.6, 2 pp. |
International Search Report and Written Opinion corresponding to PCT/IB2020/055448, dated Oct. 7, 2020, 11 pages. |
Evans A.G., et al., “Fracture Toughness Determination by Indentation,” Journal American Ceramic Society, vol. 59, No's. 7-8, pp. 371-372. |
Extended European Search Report for European Application No. 08754822.8, dated Nov. 28, 2012, 12 Pages. |
International Preliminary Report on Patentability for International Application No. PCT/IB2020/055448, dated Dec. 23, 2021, 10 Pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/050461, dated Jul. 14, 2009, 6 Pages. |
International Search Report and Written Opinion for International Application No. PCT/US2008/050461, dated Aug. 27, 2008, 7 Pages. |
Mencik Z., et al., “Quantitative Phase Analysis of Synthetic Silicon Nitride by X-Ray Diffraction,” Advances in X-Ray Analysis, 1979, vol. 23, pp. 375-379. |
Jun. 27, 2022 Office Action (non-US) CN Application No. 110869693A. |
Feb. 11, 2023 Foreign Office Action Chinese Application No. CN202080042218.7, 23 Pages. |
Aug. 19, 2011 Non-Final Office Action U.S. Appl. No. 12/416,564, 11 Pages. |
Feb. 21, 2012 Notice of Allowance U.S. Appl. No. 12/416,564, 7 Pages. |
Nov. 3, 2022 Foreign Office Action Chinese Application No. 2018800454636.6, 14 pages. |
Mar. 15, 2022 Office Action (non-US) CN App. No. 110869693A. |
May 2, 2023 Foreign Office Action United Kingdom Application No. GB2200122.6, 2 Pages. |
Supplementary European Extended Search Report and the European Search Opinion: European Application No. 20822360.2 , dated May 23, 2023, 16 Pages. |
Aug. 18, 2023 Foreign Office Action Chinese Application No. CN202080042218.7, 14 Pages. |
Number | Date | Country | |
---|---|---|---|
20220252377 A1 | Aug 2022 | US |