This disclosure relates to an armor system and, more particularly, to an armor system having multiple ceramic layers and a method for manufacturing the armor system.
A variety of configurations of projectile resistant armor are known. Some are used on vehicles while others are specifically intended to protect an individual. Some materials or material combinations have proven useful for both applications. However, there is a continuing need to provide relatively lightweight armor systems and methods of manufacturing armor systems that are useful in a variety of different applications.
In disclosed embodiments, an armor system includes a ceramic armor layer and a ceramic composite layer adjacent the ceramic armor layer. The ceramic composite armor layer includes a ceramic matrix and unidirectionally oriented fibers disposed within the ceramic matrix.
The ceramic composite armor layer may include a plurality of sublayers each having a ceramic matrix and unidirectionally oriented fibers disposed within the ceramic matrix. At least one of the plurality of sublayers may have a different orientation than another of the sublayers relative to the unidirectionally oriented fibers.
An example method of manufacturing the armor system includes forming a ceramic composite armor layer on a prefabricated armor layer. For instance, pre-impregnated unidirectional tape may be used to form the ceramic composite armor layer.
The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawings that accompany the detailed description can be briefly described as follows.
The armor system 10 is a multilayer structure that includes a ceramic armor layer 12 and a ceramic composite armor layer 14. It is to be understood that the ceramic armor layer 12 and ceramic composite armor layer 14 may also be used in combination with other armor layers, depending upon a particular design and intended use. The ceramic armor layer 12 and ceramic composite armor layer 14 may be any desired thickness or shape for resisting a ballistic impact. For example, the ceramic armor layer 12 and ceramic composite armor layer 14 may be between several hundredths of an inch thick and several inches thick, depending upon a particular design and intended use of the armor system 10.
The ceramic armor layer 12 and the ceramic composite armor layer 14 are arranged relative to an expected projectile direction 16. The ceramic armor layer 12 includes a projectile strike face 18 for initially receiving a projectile. A back face 20 of the armor layer 12 is bonded to the ceramic composite armor layer 14. Thus, the ceramic armor layer 12 and the ceramic composite armor layer 14 are directly bonded to one another, as will be described below, and need not include any layers of adhesive that would add thickness and/or diminish the ballistic impact performance of the armor system 10.
Using ceramic materials for the ceramic armor layer 12 and the ceramic composite armor layer 14 provides a relatively close sound impedance match. Sound impedance refers to the speed of sound through the ceramic materials. For example, an impact between a projectile and the projectile strike face 18 of the ceramic armor layer 12 causes compressive stress waves to move through the ceramic armor layer 12 toward the back face 20. At least a portion of the compressive stress wave reflects off of a front face 22 of the ceramic composite armor layer 14 as a tensile stress wave. A second portion of the compressive stress wave travels through the ceramic composite armor layer 14 and reflects off of a rear face 24 of the ceramic composite armor layer 14. The tensile stress waves destructively interfere with the compressive stress waves, which reduces the total stress within at least the ceramic armor layer 12 to thereby facilitate energy absorption of the armor system 10.
The impedance of the ceramic material of the ceramic composite armor layer 14 facilitates efficient and quick reflection of the compressive stress waves. That is, the ceramic matrix material reflects relatively larger portions of the compressive stress waves over a relatively shorter period of time compared to polymeric-based materials. Depending on the ceramic materials selected, the impedance of each of the ceramic armor layer 12 and the ceramic composite armor layer 14 may be in the range of 10−40×106 kilograms per square meter seconds (kg-m−2-s−1). In a further example, the impedance may be in the range of about 25−35×106 kg-m−2-s−1.
In the disclosed embodiment, the ceramic armor layer 12 is a monolithic ceramic material and the ceramic composite armor layer 14 is a composite.
The monolithic ceramic material of the ceramic armor layer 12 initially receives a ballistic projectile and absorbs a portion of the energy associated with the ballistic projectile through fracture and stress wave cancellation as described above. The composite of the ceramic composite armor layer 14 reflects a portion of the stress waves as discussed above and absorbs a portion of the energy associated with the ballistic projectile through fiber debinding and pullout, as well as shear failure. The composite also facilitates reduction in the degree of fragmentation of the monolithic ceramic material compared to conventional backing materials.
In the disclosed examples, the unidirectionally oriented fibers 36 facilitate energy absorption and reflection of stress waves due to the ballistic impact. For example, during a ballistic event, interwoven fibers that are bent around each other must first straighten out prior to stiffening and absorbing energy. The time that it takes for the bent fibers to straighten may increase the reaction time in a ballistic event. However, the unidirectionally oriented fibers 36 are already straight and therefore do not require additional time for straightening as do interwoven fibers. Thus, using the unidirectionally oriented fibers 36 facilitates reduction of the reaction time of the ceramic armor composite layer 14 or in a ballistic event.
As will now be described, the monolithic ceramic material of the ceramic armor layer 12 and the ceramic matrix 34 and unidirectionally oriented fibers 36 of the ceramic composite armor layer 14 may include a variety of different types of materials, which may be selected depending on a particular intended use. The monolithic ceramic material may be, for example only, silicon nitride, silicon aluminum oxynitride, silicon carbide, silicon oxynitride, aluminum nitride, aluminum oxide, hafnium oxide, zirconia, siliconized silicon carbide, or boron carbide. The term “monolithic” as used in this disclosure refers to a single material; however, the single material may include impurities that do not affect the properties of the material, elements that are unmeasured or undetectable in the material, or additives (e.g., processing agents). However, in other examples, the monolithic material may be pure and free of impurities. Given this description, one of ordinary skill in the art will understand that other oxides, carbides, nitrides, or other types of ceramics may be used to suit a particular need.
Likewise, the ceramic matrix 34 and unidirectionally oriented fibers 36 may be selected from a variety of different types of materials. For example only, the unidirectionally oriented fibers 36 may be silicon carbide fibers, silicon nitride fibers, silicon-oxygen-carbon fibers, silicon-nitrogen-oxygen-carbon fibers, aluminum oxide fibers, silicon aluminum oxynitride fibers, aluminum nitride fibers, or carbon fibers. In some examples, the unidirectionally reinforced fibers 36 include fibers of NICALON®, SYLRAMIC®, TYRANNO®, HPZ™, pitch derived carbon, or polyacronitrile derived carbon, fibers.
The ceramic matrix 34 may include a silicate glass material, such as magnesium aluminum silicate, magnesium barium silicate, lithium aluminum silicate, borosilicate, or barium aluminum silicate. Given this description, one of ordinary skill in the art will understand that other types of fibers and matrix materials may be used to suit a particular need.
As can be appreciated, the ceramic composite armor layer 14 of
Each of the sublayers 38 may have an associated orientation relative to the unidirectionally oriented fibers 36′ of the respective sublayer 38. In this regard, the unidirectionally oriented fibers 36′ of the sublayers 38 may be arranged with different orientations to facilitate uniform energy absorption and reflection, for example. For instance, for illustrative purposes only,
In the disclosed example, six of the sublayers 38 are used; however, fewer or more sublayers 38 may be used. In the disclosed example, the combination of the six sublayers 38 oriented 0°/90°/0°/90°/0°/90° is capable of facilitating stopping an armor piercing ballistic with a measured velocity of 2884 feet per second (879 meters per second) when packaged with a front spall shield of three layers of carbon reinforced epoxy and a backing layer of 0.3 inch (0.76 cm) of a unidirectionally aligned compressed polyethyelene fiber layer.
As can be appreciated, other orientations among the sublayers 38 may be used.
Referring to
Referring to
The pre-impregnated unidirectionally oriented tape includes unidirectionally oriented fibers 36 or 36′ that are disposed within a ceramic matrix 34 or 34′ before consolidation. That is, the ceramic matrix 34 or 34′ includes ceramic particles of the material selected for use as the ceramic matrix 34 or 34′ suspended in a binder, such as a polymeric binder.
The tape may be prepared from a slurry of the ceramic particles in a carrier fluid, such as a solvent, and infiltrated into a fiber tow of the unidirectionally oriented fibers 36 or 36′. The infiltrated unidirectionally oriented fibers 36 or 36′ may then be dried to remove the carrier fluid from the slurry and thereby produce the pre-impregnated unidirectionally oriented tape.
Subsequently, the tape may be cut into sections and, in lay-up action 80, stacked with a desired orientation of the unidirectionally oriented fibers 36′. For the ceramic composite armor layer 14 that utilizes only a single layer, only a single ply of the tape would be used. In a removal action 82, the binder is removed from the ceramic particles, such as by heating the tape at predetermined temperatures for predetermined amounts of time. The remaining green state composite is then consolidated in a consolidation action 84 at a predetermined temperature for a predetermined amount of time to produce the ceramic composite armor layer 14 or 14′.
In the disclosed embodiment, the ceramic composite armor layer 14 or 14′ is consolidated or otherwise formed directly on the ceramic armor layer 12, which is pre-fabricated in a prior process. Forming the ceramic composite armor layer 14 or 14′ directly on the ceramic armor layer 12 facilitates providing a strong bond between the ceramic armor layer 12 and the matrix 34 or 34′ of the ceramic composite armor layer 14 or 14′. The relatively strong bonding may facilitate reflection of the stress waves and absorption of energy as discussed above. For example, the ceramic matrix 34 or 34′ may chemically bond to the ceramic monolithic material of the ceramic armor layer 12. However, it is to be understood that any chemical bonding that may occur is not fully understood and may also comprise other reactions or mechanical interactions between the ceramic materials. In some examples, the consolidation action 84 of the example manufacturing method 78 may include other actions as disclosed in co-pending application Ser. No. 12/039,851.
Although a combination of features is shown in the illustrated examples, not all of them need to be combined to realize the benefits of various embodiments of this disclosure. In other words, a system designed according to an embodiment of this disclosure will not necessarily include all of the features shown in any one of the Figures or all of the portions schematically shown in the Figures. Moreover, selected features of one example embodiment may be combined with selected features of other example embodiments.
The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this disclosure. The scope of legal protection given to this disclosure can only be determined by studying the following claims.
This application is a continuation-in-part of U.S. application Ser. No. 11/682,390, filed Mar. 6, 2007, claiming priority to U.S. Provisional Application No. 60/794,276, filed Apr. 20, 2006.
Number | Name | Date | Kind |
---|---|---|---|
3828699 | Bowen | Aug 1974 | A |
4719151 | Chyung et al. | Jan 1988 | A |
6575075 | Cohen | Jun 2003 | B2 |
7238414 | Benitsch et al. | Jul 2007 | B2 |
Number | Date | Country |
---|---|---|
1538417 | Jun 2005 | EP |
2723193 | Feb 1996 | FR |
Entry |
---|
WO 030010484, Feb. 2003, Ace-Ram Technologies. |
European Search Report for European Patent Application No. 09005121.0 completed Apr. 23, 2013. |
Number | Date | Country | |
---|---|---|---|
20120174751 A1 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
60794276 | Apr 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11682390 | Mar 2007 | US |
Child | 12100528 | US |