The invention relates to a superconducting winding having at least one HTS conductor which is at least largely in the form of a strip and is subjected to a predetermined winding tension in individual turns of the winding and which, on its outside, has an associated armoring strip composed of a material whose tensile strength is higher than that of the HTS conductor. The invention also relates to a method for production of a superconducting winding such as this. A corresponding winding and a method for its production are disclosed in JP10 92630 A.
Coil windings composed of superconductors have been provided for a very long time in the field of superconducting technology, in particular the field of high-energy and particle physics or electrical machines. In this case, in general, the conductors that are used have a traditional, metallic superconducting material with a low critical temperature Tc, so-called low-Tc superconductor material (LTS material for short). The main representatives of this material type are NbTi and Nb3Sn.
Since oxidic superconductor materials with a high critical temperature Tc have become known, the so-called high-Tc superconductor material (HTS material for short), attempts have been made to produce corresponding windings using conductors composed of these materials as well. A corresponding proposal can be found in the initially cited JP 10 92630 A. The winding which is disclosed in this document is created using HTS conductors whose HTS material is of the Bi-cuprate type, for example (Bi, Pb)2Sr2Ca2Cu3Ox or of the Y-cuprate type, for example YBa2Cu3Oy. The conductors are in this case of the so-called monocore type or multifilament type, with one or more superconducting conductor cores composed of the HTS material being embedded in a silver matrix. In order to form the winding, an initial product of the HTS conductor, in which the superconducting phase and the corresponding structure have not yet been completely formed, is wound around a winding core, together with an armoring strip composed of a silver alloy. The material of the armoring strip in this case has a greater tensile strength than that of the HTS conductor. Once the structure has been created, it is subjected to an annealing process in which the superconducting phase and the structure are formed and a metallurgical joint is created between the matrix material of the HTS conductor and the armoring strip on the common touching surface. The construction of the winding is correspondingly complex because of the requirement for an annealing process.
It is known from “Industries Atomiques”, volume 5/6, 1970, pages 33 to 46 for an armoring strip to be wound in parallel to form an NbTi superconductor in the form of a strip in order to form large magnets composed of superconducting windings using traditional (metallic) LTS material, for example for the European bubble chamber at CERN. The armoring strip may be composed of stainless steel. The superconductor that is used is in this case composed of a plurality of individual conductors, each having NbTi conductor cores embedded in a copper matrix, which are joined together by soldering to form a rigid conductor structure (cf. also DE 1 765 917 C).
Particularly for relatively large windings, for example of relatively large magnets or electrical machines, it is also intended to use HTS conductors with a higher current carrying capacity, which are of the so-called transposed-conductor type. Corresponding conductors may comprise individual conductors which are largely in the form of strips and are transposed with one another, and which are each either of the so-called monocore type or multifilament type. These are known, for example, from WO 01/59909 A1. HTS transposed conductors can also be formed using individual conductors, in the form of strips, of the coated conductor type according to WO 03/100875 A.
If one wishes to create windings using HTS transposed conductors such as these, then it is necessary to remember that, taking account of the radial thickness of the transposed conductor, the individual conductor positions have different winding radii and therefore different circumferential lengths per turn. This results in the individual conductor positions having a specific conductor length requirement. Those individual conductor positions which face the inside of a winding former therefore have a reduced conductor requirement, in comparison to the outside. During winding, this leads to compensation movements of the individual conductors, which are evident in the transposed-conductor assembly composed of the HTS individual conductors spreading out. This results in the following problems for use:
Taking these problems into account, when producing windings using HTS transposed conductors such as these, the contact between the conductor and the winding former can be ensured by visual inspection. However, the spreading out which occurs on the winding former must be smoothed by hand. The individual conductor lengths are compensated for after processing of a transposition length, that is to say after one complete change in the individual conductor positions. A corresponding production technique with manual actions is correspondingly complex.
The object of the present invention is therefore to specify a configuration of a superconducting winding with the features mentioned initially, which allows manufacture by machine without the problems that have been mentioned occurring. A further aim is to provide a suitable method for construction of a winding such as this.
According to one aspect of the invention, the object is achieved by a superconducting winding having at least one HTS conductor (4) which is at least largely in the form of a strip and is subjected to a predetermined winding tension in individual turns (w1 to w3) of the winding and which, on its outside, has an associated armoring strip (5) composed of a material whose tensile strength is higher than that of the HTS conductor, wherein the HTS conductor is of the transposed-conductor type with individual HTS conductors which are transposed with one another and are at least largely in the form of strips, and in that the armoring strip which is not metallurgically connected to the prefabricated end product of the HTS conductor is also wound in the individual conductor turns with a higher winding tension than that of the HTS conductor.
In particular, this refinement of the winding results in the following advantages:
Advantageous refinements of the superconducting winding according to the invention are specified in the dependent claims, whereby any combinations are possible. The winding according to the invention may accordingly also have the following features:
According to another aspect of the invention, the object is achieved by a method for production of a winding, wherein the HTS conductor is of the transposed-conductor type and wound together with the armoring strip, with the armoring strip being subjected to a greater winding tension than that of the HTS conductor. These measures are based on the fact that a uniform distribution of the winding tension is virtually impossible to achieve on the individual conductors of an HTS transposed conductor by means of a winding tension which acts solely on one HTS transposed conductor (without using an armoring strip). This results in the HTS transposed conductor and its individual conductors being spread out on a winding former. In contrast, this problem is solved by additionally winding an armoring strip on the outside, with a high winding tension. A complete transposed conductor and armoring strip in this case enter at the same point on the winding former. This prevents spreading out of the individual conductors on the winding former, resulting in the transposed conductor resting completely on the winding former. The armoring strip can advantageously remain in the winding after manufacture and can thus absorb forces which occur, for example, during operation of the winding. One example of forces such as these is centrifugal forces during operation of rotating electrical machines.
Advantageous refinements of the method for production of the superconducting winding are disclosed in the dependent claims, whereby any combination is possible. Accordingly, the method may additionally also have the following features:
In order to explain the invention further, the following text refers to the drawing, on the basis of which one preferred exemplary embodiment of production according to the invention of a superconducting winding will be described in more detail. In this case, illustrated highly schematically:
A side view, shown in
According to the invention, the armoring strip 5 is wound using a winding tension which is greater by at least 1.5 times, and preferably by at least 3 times, than that of the HTS transposed conductor tangentially around the winding former 3. The different winding tensions WZ1 and WZ2 of the HTS transposed conductor 4 and armoring strip 5, respectively, are intended to be indicated by arrows of different length in the Figure. The winding tension WZ1 is intended to be below the critical tensile stress of the HTS transposed conductor, which in general is below 200 MPa, and preferably below 150 MPa. For example, known HTS transposed conductors using Bi-2223-cuprate material have critical tensile stresses of between 110 and 150 MPa. Suitable tensile stresses WZ1 are between 10 MPa and 100 MPa, in particular between 20 and 50 MPa. The tensile stress WZ2 for the armoring strip 5 is then, for example, 150 MPa. Virtually any material which allows a sufficiently high winding tension in the stated order of magnitude may be used for the armoring strip 5, whose width should advantageously correspond to that of the HTS transposed conductor 4. Examples are stainless-steel strips or strips composed of copper alloy. Appropriately high-tension plastic materials are also suitable, and may be fiber-reinforced. The armoring strip may in this case be in the form of a woven material, with the woven parts being metallic or being composed of plastic.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 041 459 | Sep 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/058557 | 8/17/2007 | WO | 00 | 3/3/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/028789 | 3/13/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5914647 | Aized et al. | Jun 1999 | A |
6194985 | Tanaka et al. | Feb 2001 | B1 |
6725071 | Albrecht et al. | Apr 2004 | B2 |
20050227873 | Leghissa | Oct 2005 | A1 |
Number | Date | Country |
---|---|---|
1765917 | Oct 1971 | DE |
4418050 | Jan 1995 | DE |
69612166 | Sep 2001 | DE |
69520939 | Nov 2001 | DE |
0644601 | Mar 1995 | EP |
1092630 | Apr 1989 | JP |
10-092630 | Apr 1998 | JP |
10092630 | Apr 1998 | JP |
WO 0159909 | Aug 2001 | WO |
WO 03100875 | Dec 2003 | WO |
WO 2006018402 | Feb 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090206968 A1 | Aug 2009 | US |