The invention relates generally to the alkylation of aromatic compounds and catalysts used for such reactions.
Para-xylene is a valuable substituted aromatic compound because of its great demand for its oxidation to terephthalic acid, a major component in forming polyester fibers and resins. It can be commercially produced from hydrotreating of naphtha (catalytic reforming), steam cracking of naphtha or gas oil, and toluene disproportionation.
Alkylation of toluene with methanol, which is also known as toluene methylation, has been used in laboratory studies to produce para-xylene. Toluene methylation has been known to occur over acidic catalyst, particularly over zeolite or zeolite-type catalyst. In particular, ZSM-5-type zeolite, zeolite Beta and silicaaluminophosphate (SAPO) catalysts have been used for this process. Generally, a thermodynamic equilibrium mixture of ortho (o)-, meta (m)- and para (p)-xylenes can be formed from the methylation of toluene, as is illustrated by the reaction below.
Thermodynamic equilibrium compositions of o-, m-, and p-xylenes may be around 25, 50 and 25 mole %, respectively, at a reaction temperature of about 500° C. Such toluene methylation may occur over a wide range of temperatures, however. Para-xylene can be separated from mixed xylenes by a cycle of adsorption and isomerization. Byproducts such as C9+ and other aromatic products can be produced by secondary alkylation of the xylene product.
A significantly higher amount of p-xylene can be obtained in toluene methylation reaction if the catalyst has shape selective properties. Shape selective properties can be obtained in modified zeolite catalysts by narrowing zeolite pore opening size, inactivation of the external surface of the zeolite or controlling zeolite acidity. Toluene methylation may occur over modified ZSM-5 or ZSM-5-type zeolite catalyst giving xylene products containing significantly greater amounts of p-xylene than the thermodynamic concentration.
Unfortunately, there are a number of technical hurdles for toluene methylation to be commercially successful. These include fast catalyst deactivation, low methanol selectivity, and so on. Most of the catalysts, if not all, for toluene methylation show fast catalyst deactivation. Typically, toluene conversion declines with time on stream due to rapid coke formation on the catalyst. The catalyst deactivation is one of the most difficult technical hurdles to overcome for commercial use of toluene methylation.
The present invention describes a catalyst and a method for its activation for catalyst stability for toluene methylation. The catalyst described here produces mixed xylene with isomers of thermodynamic concentrations from toluene methylation reaction, and the catalyst shows improved stability for toluene conversion. The invention has application to other aromatic alkylation reactions, as well.
For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying figures, in which:
It has been found that by combining a hydrogenating-metal, such as nickel, with a zeolite catalyst that is useful in aromatic alkylation reactions, and which may be pretreated prior to feed introduction, deactivation of the catalyst can be significantly reduced. Such aromatic alkylation reactions may include toluene alkylation with an alkylating agent such as methanol, light alkane or their combinations. Such zeolite catalysts are typically acid catalysts having a SiO2/Al2O3 molar ratio of from about 10 to about 1000. In particular, the zeolite catalysts may have a pore size of from about 5.0 Å to about 7.0 Å. The zeolite may include ZSM-5 zeolites, Omega or mordenite.
The hydrogenating metal may be any of the group VIIIA transition metals and may include nickel, palladium and platinum, as well as other metals. The hydrogenating metal may be present in an amount of from about 0.1 to about 5.0 wt %, more particularly, from about 0.2 to about 3.0 wt % of the zeolite catalyst. The hydrogenating metal may be combined with the zeolite catalyst by impregnating the catalyst with the hydrogenating metal by a wet incipient method using compounds containing the desired hydrogenating metal, or by an ion-exchange technique using a hydrogenating-metal salt. The impregnation or ion-exchange techniques for combining the metal in the zeolite catalyst are well known in the art.
The catalyst may be a bound or unbound catalyst. Suitable binders may include alumina, clay, and silica. Techniques used for preparing the bound catalyst are well known in the art. The catalyst, bound or unbound, may be calcined at a temperature between 400° C. and 570° C. in an environment containing oxygen, typically air. The hydrogenating metal in the catalyst after such calcinations may be present in the oxide form, for example, Ni as NiO. Also, NH4-ZSM-5 will transform to HZSM-5 after calcinations.
The hydrogenating metal loaded zeolite catalyst may be further pretreated prior to use in alkylation reactions to reduce or to lower oxidation state of the hydrogenating metal in a reducing environment. Such treatment includes contacting the catalyst with a reducing gas at an elevated temperature. The reducing gas may be hydrogen (H2) or hydrogen-containing gas such as a mixture of hydrogen and nitrogen (N2) or light alkane(s). The catalyst is contacted with the reducing gas, which may be mixed with an inert carrier gas, such as nitrogen at an initial starting temperature. The temperature may be slowly ramped up during the pretreatment, with the initial starting temperature being from about 100 to about 200° C., and which is increased at a rate of from about 0.2 to about 10.0° C./min to the final pretreatment temperature. The final pretreatment temperature may be from about 400 to about 500° C., more particularly from about 410 to about 450° C. The pretreatment may be carried out from about 0.5 to 10 hours or more, more particularly from 1 to 9 hours, and still more particularly from about 2 to 7 hours.
Based on temperature programmed reduction profile data on NiO or the Ni2+ containing zeolite catalyst, it is believed that the above described catalyst pretreatment may cause reduction of Ni2+ to Ni+ and Ni0. The pre-reduction of hydrogenating metal ions to an oxidation state of between +1 and 0 was useful in retarding the coke formation during the alkylation reactions, and thus increasing the catalyst stability.
After pretreatment, the catalyst may be contacted with an appropriate feed under alkylation reaction conditions to carry out the aromatic alkylation. Examples of alkylation reactions for which the invention has application include toluene alkylation with an alkylating agent such as methanol. Other examples may include gas phase toluene disproportionation in the presence of hydrogen producing benzene and mixed xylenes.
While the invention has application to many aromatic alkylation reactions, it is particularly well suited for toluene methylation using ZSM-5-type zeolite catalysts. The ZSM-5 catalyst may or may not possess shape selective properties. Although much of the description herein may be directed to such toluene methylation, it will be readily understood by those skilled in the art that it is not solely limited to such.
As used herein, the expression “ZSM-5-type” is meant to refer to those zeolites that are isostructurally the same as ZSM-5 zeolites. Additionally, the expressions “ZSM-5” and “ZSM-5-type” may also be used herein interchangeably to encompass one another and should not be construed in a limiting sense. The ZSM-5 zeolite catalysts and their preparation are described in U.S. Pat. No. 3,702,886, which is herein incorporated by reference. In the present invention, the ZSM-5 zeolite catalyst may include those having a SiO2/Al2O3 molar ratio of from 10 to 1000, more particularly from about 30 to about 500. The ZSM-5 catalyst is a medium pore-size zeolite with a pore diameter of from about 5.1 to about 5.6 Å.
As used herein, catalytic activity can be expressed as the % moles of toluene converted with respect to the moles of toluene fed and can be defined as:
Mole % Toluene Conversion=[(Ti−To)/Ti)]×100 (2)
where, Ti is the number of moles of toluene fed and To is the number of moles toluene unreacted. As used herein, selectivity for total xylenes may be expressed as:
Mole % Total Xylene Selectivity=[(Xtx/(Ti−To)]×100 (3)
where, Xtx is the number of moles of total (o-, m- or p-) xylenes in the product.
The reactor pressure for toluene methylation or other aromatic alkylation may vary, but typically ranges from about 10 to about 1000 psig.
The reaction may be carried in a variety of different reactors that are commonly used for carrying out aromatic alkylation reactions. Single or multi reactors in series and/or parallel are suitable for carrying out the toluene methylation or other aromatic alkylation reactions.
The following examples better serve to illustrate the invention.
Catalyst Preparation
Catalyst A
The starting material was an NH4-ZSM-5 zeolite powder having a SiO2/Al2O3 mole ratio of 80. Ni was added in the zeolite by an ion-exchange procedure. The nickel salt used for the ion exchange of ZSM-5 was nickel (II) nitrate hexahydrate. In the ion-exchange procedure, 2.91 g of nickel (II) nitrate hexahydrate was dissolved in 200 ml of deionized water. A bout 60 g of NH4-ZSM-5 zeolite powder was added to 500 ml of deionized water in a beaker and was made into zeolite slurry by stirring using a magnetic stirrer. This slurry was heated to approximately 90° C. To this zeolite slurry, the nickel salt solution was added and the ion-exchange was continued for 3–4 hours. Under these conditions, a nickel loading of 1 wt. % of the zeolite is expected. After the ion exchange, the zeolite was filtered, washed with deionized water and dried at 90° C. overnight. The zeolite powder was then bound with alumina (20% by weight) to form the catalyst and the catalyst was calcined at 530° C. in air for 10 h and was sized between 20 and 40 mesh.
Catalyst B
The starting material was an NH4-ZSM-5 zeolite powder having a SiO2/Al2O3 mole ratio of 280. A hydrogenating metal, nickel, was impregnated in the zeolite by using the following method: For 1.0 wt % Ni loading, 1.47 g nickel salt, nickel (II) nitrate hexahydrate, was dissolved in 100 ml of deionized water. About 30 g of NH4-ZSM-5 zeolite powder was added to 400 ml of deionized water in a beaker and was made into zeolite slurry by stirring using a magnetic stirrer. The Ni-salt solution was then added to the zeolite slurry and heated to evaporate all liquid, and the zeolite was then dried at 90° C. overnight. The Ni-impregnated zeolite powder was then bound with a lumina as a binder (20% by wt.) to form the catalyst. The catalyst was then calcined at temperature of 530° C. for 10 hours and was sized to between 20 and 40 mesh.
Catalyst C
The starting material was an NH4-ZSM-5 zeolite powder having a SiO2/Al2O3 mole ratio of 280. A hydrogenating metal as nickel was impregnated on the zeolite using the following method: For 1.5 wt % Ni loading, 2.24 g nickel salt, nickel (II) nitrate hexahydrate, was dissolved in 100 ml of deionized water. About 30 g of NH4-ZSM-5 zeolite powder was added to 400 ml of deionized water in a beaker and was made into a zeolite slurry by stirring using a magnetic stirrer. The Ni-salt solution was then added to the zeolite slurry and heated to evaporate all liquid, and the zeolite was then dried at 90° C. overnight. The Ni-impregnated zeolite powder was then bound with a lumina as a binder (20% by wt.) to form the catalyst. The catalyst was then calcined at temperature of 530° C. for 10 hours and was sized to between 20 and 40 mesh.
Catalyst D
The starting material was an NH4-ZSM-5 zeolite powder having a SiO2/Al2O3 mole ratio of 280. The NH4-ZSM-5 zeolite powder was bound with alumina as a binder (20% by wt.) to form the catalyst. The catalyst was then calcined at temperature of 530° C. for 10 hours and was sized to between 20 and 40 mesh.
Hereafter, catalysts A through C containing Ni either ion-exchanged or impregnated in NH4-ZSM-5, bound with alumina, and calcined will be termed as Ni-HZSM-5. Similarly, catalysts D will be termed as HZSM-5.
A Ni-HZSM-5 zeolite catalyst (catalyst A) was used in this example. About 2.9 ml of catalyst A was loaded into a fixed, continuous flow type reactor. The catalyst was dried by slowly raising the catalyst bed temperature (about 5° C./min) to 150° C. under hydrogen (H2) flow for one hour. The catalyst was further treated by slowly increasing (ramp rate of about 3° C./min) the catalyst bed temperature to 350° C. under hydrogen flow for about 3 hr. Premixed toluene and methanol feed (molar ratio 2.0) was added to the reactor at 350° C. and maintained a liquid hourly space velocity (LHSV) about 1.5 hr−1 and cofeed of H2 gas was fed and maintained to provide a H2/HC molar ratio of about 2.0 (where HC=toluene+methanol). The reactor pressure was 20 psig. Catalyst bed inlet temperature was raised to obtain an initial toluene conversion of around 30%, which was maintained by adjusting the catalyst bed temperature. The results are presented in Table 1 below and in
As shown in Table 1 and in
As in Example 1, catalyst A was used. The catalyst was pretreated differently, however, prior to feed introduction. A fresh load of catalyst A (5.4 ml) was loaded into a fixed, continuous flow type reactor. The catalyst was dried by slowly raising the catalyst bed temperature (about 5° C./min) to 150° C. under hydrogen (H2) flow for one hour. The catalyst was further treated by slowly (ramp rate of about 3° C./min) increasing the catalyst bed temperature to 430° C. under hydrogen flow for about 3 hr. Toluene and methanol premixed feed (molar ratio 2/1) was added to the reactor after lowering the catalyst bed temperature to 350° C. The liquid hourly space velocity (LHSV) was maintained at about 1.6 hr−1 and cofeed H2 gas was fed to maintain a H2/HC molar ratio of about 2.0. The reactor pressure was 20 psig. The catalyst bed temperature was raised to about 450° C. Under these conditions toluene conversion was about 30%. The results are presented in Table 2 below and in
By comparing initial activity or toluene conversions from Examples 1 and 2, it appears that about the same toluene conversion was obtained at 60–80° C. lower when pretreating the catalyst A at 430° C. instead of at 350° C., as described above. Obtaining the same conversion at a lower temperature reflects an increased catalyst activity. That is, in Example 2, a 60–80° C. higher initial activity was obtained for the catalyst treated at 350° C. compared to the pretreated catalyst A at 430° C., as described above. After an initial period, a stable toluene conversion was maintained without requiring a reactor temperature increase, at least for 190 hours shown in Example 2.
A Ni-HZSM-5 zeolite catalyst (catalyst B) was tested after pretreating with H2 at 430° C. A fresh load (4.9 ml) of catalyst B was loaded into a fixed, continuous flow type reactor. The catalyst was dried by slowly raising the catalyst bed temperature (about 5° C./min) to 150° C. under hydrogen (H2) flow for one hour. The catalyst was further treated by slowly increasing the catalyst bed temperature (ramp rate of about 2° C./min) to 430° C. under hydrogen flow for about 3 hr. Toluene and methanol premixed feed (molar ratio 3/1) was added to the reactor after lowering the reactor temperature to 300° C. A liquid hourly space velocity (LHSV) of about 2.0 hr−1 was maintained and a cofeed H2 gas was fed and maintained to provide a H2/HC molar ratio of about 1.9. The reactor pressure was about 20 psig. The catalyst bed temperature was slowly raised to about 430° C. Under these conditions toluene conversion was about 20%. The results are presented in Table 3 below and in
Data shown in Table 3 and
A Ni-HZSM-5 zeolite catalyst (catalyst B) was used in this example. The catalyst pretreatment and start-up conditions used in examples 3 and 4 were almost the same, except the toluene methanol ratios were different. A fresh load of catalyst B (7.2 ml) was loaded into fixed, continuous flow type reactor. The catalyst was dried by slowly raising the catalyst bed temperature (about 5° C./min) to 150° C. under hydrogen (H2) flow for one hour. The catalyst was further treated by slowly (ramp rate of about 3° C./min) increasing the catalyst bed temperature to 430° C. under hydrogen flow for about 3 hr. Toluene and methanol premixed feed (molar ratio 2/1) was added to the reactor. A liquid hourly space velocity (LHSV) of about 2.0 hr−1 was maintained and cofeed H2 gas was fed and maintained at a H2/HC molar ratio of about 1.8. The reactor pressure was about 20 psig. The catalyst bed temperature was raised to about 430° C. Under these conditions toluene conversion was about 30%. The results are presented in Table 4 below and in
A Ni-HZSM-5 zeolite catalyst (catalyst C) was tested after pretreating with H2 at 430° C. A fresh load of catalyst C (6.0 ml) was loaded into a fixed, continuous flow type reactor. The catalyst was dried in each case by slowly raising the catalyst bed temperature (about 5° C./min) to 150° C. under hydrogen (H2) flow for one hour. The catalyst was further treated by slowly (ramp rate of about 2° C./min) increasing the catalyst bed temperature to 430° C. under hydrogen flow for about 3 hr. Toluene and methanol premixed feed (molar ratio 3/1) was added to reactor after lowering the catalyst bed temperature to 350° C. A liquid hourly space velocity (LHSV) about 2.0 hr−1 was maintained and a cofeed of H2 gas was fed into the reactor to maintain a H2/HC molar ratio of about 2.0. The reactor pressure was 20 psig. The catalyst bed temperature was raised slowly to around 430° C. Under these conditions toluene conversion was about 20%. The results are presented in Table 5 below and in
For comparison, a HZSM-5 catalyst (catalyst D) was tested. A fresh load of catalyst D (3.1 ml) was loaded into a fixed, continuous flow type reactor. The catalyst was dried in each case by slowly raising the catalyst bed temperature (about 5° C./min) to 350° C. under hydrogen (H2) flow for at least 1 h prior to feed introduction. Toluene and methanol premixed feed (molar ratio 2/1) was added to the reactor after lowering the catalyst bed temperature to 300° C., and maintained a liquid hourly space velocity (LHSV) of about 1.5 hr−1 and a cofeed of H2 gas was fed to maintain a H2/HC molar ratio of about 2.0. The reactor pressure was about 20 psig. The catalyst bed temperature was raised to about 450° C. Under these conditions toluene conversion was about 30%. The results are presented in Table 6 below and in
As shown in
While the invention has been shown in only some of its forms, it should be apparent to those skilled in the art that it is not so limited, but is susceptible to various changes and modifications without departing from the scope of the invention. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3562345 | Mitsche | Feb 1971 | A |
4025606 | Acres | May 1977 | A |
4548914 | Chu | Oct 1985 | A |
4590321 | Chu | May 1986 | A |
4623530 | Cullo et al. | Nov 1986 | A |
4623533 | Broecker et al. | Nov 1986 | A |
4638106 | Pieters et al. | Jan 1987 | A |
4665251 | Chu | May 1987 | A |
4670616 | De Simone et al. | Jun 1987 | A |
4673767 | Nimry et al. | Jun 1987 | A |
4694114 | Chu et al. | Sep 1987 | A |
4695666 | Chao et al. | Sep 1987 | A |
4695667 | Sumitani et al. | Sep 1987 | A |
4704495 | Dessau | Nov 1987 | A |
4716135 | Chen | Dec 1987 | A |
4721827 | Cullo et al. | Jan 1988 | A |
4727209 | Chao | Feb 1988 | A |
4746763 | Kocal | May 1988 | A |
4758328 | Young | Jul 1988 | A |
4761513 | Steacy | Aug 1988 | A |
4847223 | Le Van Mao et al. | Jul 1989 | A |
4861930 | Cottrell et al. | Aug 1989 | A |
4873067 | Valyocsik et al. | Oct 1989 | A |
4891197 | Derouane et al. | Jan 1990 | A |
4891467 | Sikkenga | Jan 1990 | A |
4902406 | Valyocsik | Feb 1990 | A |
4912073 | Chu | Mar 1990 | A |
4914067 | Pellet et al. | Apr 1990 | A |
4935574 | D'Amore et al. | Jun 1990 | A |
4962255 | Fraenkel et al. | Oct 1990 | A |
4973781 | Valyocsik et al. | Nov 1990 | A |
5041402 | Casci et al. | Aug 1991 | A |
5043502 | Martindale et al. | Aug 1991 | A |
5047141 | Chu | Sep 1991 | A |
5068483 | Barthomeuf et al. | Nov 1991 | A |
5094995 | Butt et al. | Mar 1992 | A |
5105047 | Waller | Apr 1992 | A |
5108579 | Casci | Apr 1992 | A |
5110776 | Chitnis et al. | May 1992 | A |
5124299 | Waller | Jun 1992 | A |
5171921 | Gaffney et al. | Dec 1992 | A |
5173461 | Absil et al. | Dec 1992 | A |
5178748 | Casci et al. | Jan 1993 | A |
5231064 | Absil et al. | Jul 1993 | A |
5233102 | Butt et al. | Aug 1993 | A |
5246688 | Faust et al. | Sep 1993 | A |
5248841 | Young | Sep 1993 | A |
5254767 | Dwyer | Oct 1993 | A |
5254770 | Olson et al. | Oct 1993 | A |
5294578 | Ho et al. | Mar 1994 | A |
5315033 | Butt et al. | May 1994 | A |
5318696 | Kowalski | Jun 1994 | A |
5321183 | Chang et al. | Jun 1994 | A |
5330732 | Ishibashi et al. | Jul 1994 | A |
5336478 | Dwyer et al. | Aug 1994 | A |
5345021 | Casci et al. | Sep 1994 | A |
5348643 | Absil et al. | Sep 1994 | A |
5349113 | Chang et al. | Sep 1994 | A |
5365003 | Chang et al. | Nov 1994 | A |
5366948 | Absil et al. | Nov 1994 | A |
5367100 | Gongwei et al. | Nov 1994 | A |
5371307 | Guth et al. | Dec 1994 | A |
5378670 | Kumar | Jan 1995 | A |
5380690 | Zhicheng et al. | Jan 1995 | A |
5385718 | Casci et al. | Jan 1995 | A |
5399336 | Guth et al. | Mar 1995 | A |
5430212 | Butt et al. | Jul 1995 | A |
5430213 | Hendriksen et al. | Jul 1995 | A |
5446234 | Casci et al. | Aug 1995 | A |
5455213 | Chang et al. | Oct 1995 | A |
5456821 | Absil et al. | Oct 1995 | A |
5464799 | Casci et al. | Nov 1995 | A |
5475179 | Chang et al. | Dec 1995 | A |
5498814 | Chang et al. | Mar 1996 | A |
5503818 | Nicolaides | Apr 1996 | A |
5512260 | Kiliany et al. | Apr 1996 | A |
5516736 | Chang et al. | May 1996 | A |
5523510 | Pellet et al. | Jun 1996 | A |
5529964 | Weitkamp et al. | Jun 1996 | A |
5534239 | Fajula et al. | Jul 1996 | A |
5536894 | Degnan et al. | Jul 1996 | A |
5541146 | Chang et al. | Jul 1996 | A |
5561095 | Chen et al. | Oct 1996 | A |
5563310 | Chang et al. | Oct 1996 | A |
5569805 | Beck et al. | Oct 1996 | A |
5571768 | Chang et al. | Nov 1996 | A |
5573746 | Chen | Nov 1996 | A |
5576256 | Monque et al. | Nov 1996 | A |
5607888 | Chang et al. | Mar 1997 | A |
5607890 | Chen et al. | Mar 1997 | A |
5646314 | Crocco et al. | Jul 1997 | A |
5648580 | Chen et al. | Jul 1997 | A |
5658454 | Absil et al. | Aug 1997 | A |
5675047 | Beck et al. | Oct 1997 | A |
5689024 | Schmitt | Nov 1997 | A |
5698756 | Beck et al. | Dec 1997 | A |
5780563 | Chen et al. | Jul 1998 | A |
5789335 | Chen et al. | Aug 1998 | A |
5811613 | Bhat et al. | Sep 1998 | A |
5833840 | Absil et al. | Nov 1998 | A |
5902919 | Chen et al. | May 1999 | A |
5905051 | Wu et al. | May 1999 | A |
5922922 | Harris et al. | Jul 1999 | A |
5925586 | Sun | Jul 1999 | A |
5939597 | Dessau et al. | Aug 1999 | A |
5951963 | He et al. | Sep 1999 | A |
5955641 | Chen et al. | Sep 1999 | A |
5968463 | Shelef et al. | Oct 1999 | A |
5994603 | Mohr et al. | Nov 1999 | A |
6034283 | Ban et al. | Mar 2000 | A |
6040257 | Drake et al. | Mar 2000 | A |
6040259 | Mohr et al. | Mar 2000 | A |
6046128 | Kisen et al. | Apr 2000 | A |
6047544 | Yamamoto et al. | Apr 2000 | A |
6048816 | Brown et al. | Apr 2000 | A |
6060633 | Chen et al. | May 2000 | A |
6074975 | Yao et al. | Jun 2000 | A |
6080303 | Cao et al. | Jun 2000 | A |
6080698 | Zhang et al. | Jun 2000 | A |
6083865 | Drake et al. | Jul 2000 | A |
6090274 | Wu et al. | Jul 2000 | A |
6100437 | Koehl et al. | Aug 2000 | A |
6124227 | Yao et al. | Sep 2000 | A |
6150293 | Verduijn et al. | Nov 2000 | A |
6156949 | Brown et al. | Dec 2000 | A |
6160191 | Smith et al. | Dec 2000 | A |
6187982 | Beck et al. | Feb 2001 | B1 |
6211104 | Shi et al. | Apr 2001 | B1 |
6217748 | Hatanaka et al. | Apr 2001 | B1 |
6251263 | Hatanaka et al. | Jun 2001 | B1 |
6294493 | Strohmaier et al. | Sep 2001 | B1 |
6299530 | Chen et al. | Oct 2001 | B1 |
6300535 | van den Berge et al. | Oct 2001 | B1 |
6306790 | Rodriguez et al. | Oct 2001 | B1 |
6319484 | Shore et al. | Nov 2001 | B1 |
6342153 | Guan et al. | Jan 2002 | B1 |
6388156 | Ou et al. | May 2002 | B1 |
6395664 | Boehner et al. | May 2002 | B1 |
6417421 | Yao | Jul 2002 | B1 |
6423879 | Brown et al. | Jul 2002 | B1 |
6444610 | Yamamoto | Sep 2002 | B1 |
6459006 | Ou et al. | Oct 2002 | B1 |
6469095 | Gareiss et al. | Oct 2002 | B1 |
6503862 | Yamamoto | Jan 2003 | B1 |
6504072 | Brown et al. | Jan 2003 | B1 |
6504074 | Verduijn et al. | Jan 2003 | B1 |
6506954 | Brown et al. | Jan 2003 | B1 |
6518213 | Yamamoto et al. | Feb 2003 | B1 |
6548725 | Froment et al. | Apr 2003 | B1 |
6566293 | Vogt et al. | May 2003 | B1 |
6589901 | Yamamoto | Jul 2003 | B1 |
6613708 | Ou et al. | Sep 2003 | B1 |
6613951 | Brown et al. | Sep 2003 | B1 |
6642426 | Johnson et al. | Nov 2003 | B1 |
6689929 | Williams et al. | Feb 2004 | B1 |
6699811 | Mohr et al. | Mar 2004 | B1 |
6723297 | Chen et al. | Apr 2004 | B1 |
6726834 | Quesada et al. | Apr 2004 | B1 |
6770251 | Yoshikawa | Aug 2004 | B1 |
6773694 | Lesch et al. | Aug 2004 | B1 |
6799089 | Toulhoat | Sep 2004 | B1 |
6811684 | Mohr et al. | Nov 2004 | B1 |
6812181 | van der Berge et al. | Nov 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20050154242 A1 | Jul 2005 | US |