The present invention relates to an arrangement for supplying electric power to a load through a filter bus, in which the arrangement comprises at least two Voltage Source Converters connected in parallel to said filter bus through an inductor each and configured to share said load, as well as a method for supplying electric power to a load through such an arrangement.
The invention is not restricted to any particular levels of voltage on a said filter bus or powers transferrable to a said load, but 1 kV-32 kV and 100 kW-several MW's, respectively, may be mentioned as examples.
Parallel operation of electric power generators, to which said Voltage Source Converters are connected, is used to share a load connected to said filter bus in common to the converters. One such application is centralized frequency conversion shore to ship power supply, in which said load may be one or several ships connected to said filter bus. An application of such paralleling of converters may also be one or several micro-grids.
There are some advantages of paralleling a plurality of electric power supply units for feeding electric power to said load. One of them is that an increased power rating can be met by using a plurality of lower electric power supply units connected in parallel to a said filter bus instead of using one single high electric power supply unit. This means that maintenance of one such electric power supply unit may be carried out without having to completely shut down the supply of electric power to a said load, since the other electric power supply units may then temporarily take over the part of the load from the unit stopped for maintenance. The redundancy obtained by paralleling several electric power supply units also increases the availability of electric power to a said load, since electric power may be fed thereto as long as a sufficient number of electric power supply units are in operation.
Appended
The use of frequency versus real power and voltage versus reactive power droop schemes for load sharing of independently controlled generators and Voltage Source Converters is well known. However, the converters connected in parallel to a common filter bus through interface inductors and employing such droop schemes operate as voltage sources. Even if they actively regulate the filter bus voltage, they do not have underlying current control loops that regulate and limit their output currents dynamically.
In order to achieve dynamic current control and current limiting capability each converter in
U.S. Pat. No. 7,567,064 discloses an arrangement for supplying electric power of the type defined in the introduction with independent control of each converter.
The object of the present invention is to provide an arrangement and a method of the type disclosed above advising an advantageous alternative way of obtaining independent control of each converter of a plurality of voltage source converters connected in parallel to a filter bus through an inductor each and sharing a common load.
This object is according to the invention obtained by providing an arrangement according to the preamble of appended claim 1 with the further feature that said control unit for each converter also comprises fifth means configured to multiply each current vector or current reference vector with a droop coefficient cornmon to all current vectors or current reference vectors and send the result of this multiplication to said third means for subtracting this result from the respective filter bus voltage reference vector.
Drooping the voltage reference vector components ensures that the control units will not fight with one another when controlling the respective converter and the converters may share a common real and reactive load while being independently controlled.
According to an embodiment of the invention each said control unit for the respective said converter further comprises sixth means configured to receive an unlimited current reference vector for each said filter bus voltage vector from said regulator and to limit the magnitude of each said unlimited current reference vector and send a limited current reference vector to said fourth means. This means that the magnitude of each current reference vector may be limited to not exceed a level that damages the converter.
According to another embodiment of the invention each said control unit for the respective converter further comprises seventh means configured to send a feed-forward signal representing the load current to eighth means configured to sum an output signal from said regulator so as to produce said current reference vector for each said filter bus voltage vector. Such a use of a load current feed-forward signal enhances the speed of response of the current control in the control of the respective converter during load changes.
According to other embodiments of the invention each said first means is configured to produce said filter bus voltage vectors according to the d-q frame or the α-β frame, and each said fourth means include a d-q current controller and an α-β current controller, respectively.
According to another embodiment of the invention the arrangement comprises a filter arranged between said first means and said third means for smoothing out said filter bus voltage vectors before reaching said third means.
A method for supplying electric power to a load through a filter bus by means of at least two Voltage Source Converters connected in parallel to said filter bus through an inductor each and configured to share said load enabling independent control of said converters is according to the invention defined in the appended independent method claim. Advantages and advantageous features of such a method and of the embodiments thereof defined in the dependent method claims appear clearly from the above discussion of the arrangement according to the present invention.
The invention also relates to a computer program product and a computer readable medium associated with a method according to the present invention.
Further advantages as well as advantageous features of the invention will appear from the following description.
With reference to the appended drawings, below follows a specific description of an embodiment of the invention cited as an example.
In the drawings:
An arrangement according to an embodiment of the invention for supplying electric power to a load of the type shown in
These filter bus voltage reference vectors may be set by an operator, which is then comprised in said second means, if the arrangement has one group of converters or higher level controls if the arrangement comprises several converter groups. The arrangement also comprises third means 13 configured to sum each said filter bus voltage vector vfx, vfy and the filter bus voltage reference vector v*fx, v*fy, associated therewith. The control unit also comprises, for each of the two perpendicularly-intersecting vectors, a regulator 14 connected to receive the result of the summing of said third means to ensure that the filter bus voltage vector tracks its reference without any steady state error in principle.
Furthermore, the control unit comprises seventh means 19 configured to send a feed-forward signal representing the load current to eighth means 20 configured to sum an output signal from the regulator so as to produce an unlimited current reference vector i*kx-Unlim, i*ky-Unlim. This use of a load current feed-forward signal enhances the speed of response of the controller of the control unit controlling the converter during load changes. It may also be used to cancel the effect of coupling between said perpendicularly-intersecting vectors of the arrangement.
The control unit also comprises six means 21 in the form of a current limiter block configured to receive said unlimited current reference vector for each said filter bus voltage vector from the means 20 and to limit the magnitude of said unlimited current reference vector and send a limited current reference vector i*kx, i*ky to fourth means 15 configured to involve current control in the control of the converter based on said current reference vectors for obtaining two vectors ikx, iky of the current from said converter perpendicularly-intersecting each other.
It is shown in
Assuming no limiter action, the inputs of the regulators in
In a converter bank as shown in
In addition to the above description of the control unit 10 shown in
The invention is of course not in any way restricted to the embodiment described above, but many possibilities to modifications thereof would be apparent to a person with ordinary skill in the art without departing from the scope of the invention as defined in the appended claims.
The limited current reference vectors i*kx, i*ky of the kth converter may be multiplied with a common droop coefficient instead of the current reference vectors ikx, iky if the current controller included in said fourth means is slow.
Number | Date | Country | Kind |
---|---|---|---|
11175099.8 | Jul 2011 | EP | regional |