The present invention relates to the field of connecting tube elements and similar components in ventilation duct systems.
During the recent decades, designers of ventilation duct systems have tried to find effective methods of connecting tube elements and similar components included in such systems.
In a widely used method, an inner tube is inserted into an outer tube and fastening means (screws or rivets) are driven through the overlapping tube wail section. Normally, the tubes are helically-wound lock-seam tubes of sheet metal. Often, the installer or fitter has to drill holes through the tube was for the fastening means. This tube connection is cumbersome, time-consuming and requires special tools, as electric drills, screw drivers, riveting machines, etc. Furthermore, the fastening means project into the duct which may disturb the air flow and also cause air leakage, undesired accumulation of dust, etc. There is also a risk that the projections into the duct interfere with and damage cleaning equipment, such as brushes, which is pushed through the duct.
In other tube connecting methods, the tube ends are provided with beads which are disposed end-to-end and clamped by means of special external clamping devices (see for instance U.S. Pat. No. 3,030,005 and WO-A-05/001323). In certain applications, these methods work well but a disadvantage is that the fitter has to handle separate parts, such as clamping devices, coupling rings, etc.
Still another known tube connecting method is known from CH-A-496,927 which, however, also requires a separate and structurally complicated coupling member between the tube ends.
EP-A-797,038 discloses a tube connecting method were both tube was are provided with a plurality of interlocking cuts which are cut through the material. The close hook-like cuts have the disadvantage of weakening the tube walls. The intermittent cuts constitute kerfs which may cause undesired longitudinal slots in the thin tube wall. It is also hard to provide precise cuts in the thin tube wall for establishing the locking effect. Furthermore, it is difficult to bring the cuts into matching positions since t tubes have to be precisely orientated. In practice, the cut portions do not flex back after insertion which means that the aimed-at engagement by the cuts is not achieved. Another drawback is that the risk of air leakage at the cuts is relatively high.
A similar prior art tube connection is known from the Swedish patent application SE 0402011-1 which discloses an outer tube provided with hook like cuts cut through the tube wall. The cuts are intended to engage shoulders on the outside of an inner tube inserted in the outer tube. The cuts are cut at the free end of the outer tube thereby weakening the same, and the engagement between the cuts and the shoulders is spaced from the free rid of the inner tube. This prior-art tube connection has basically the same disadvantages as the tube connection of EP-A-797,038.
Hence there is need for a new type of tube connection for ventilation duct systems.
An object of the present invention is to provide an improved technique for connecting tube elements in a ventilation duct system.
This and other objects of the invention, which will appear from the following description, have now been achieved by an arrangement, a meth use and ventilation components as defined in the appended independent claims. Preferred embodiments and variants of the invention are defined in the appended subclaims.
in the arrangement of the invention, the inner tube element is provided with first coupling means for engaging corresponding second coupling means on the inside of the cuter tube element, wherein at least one of the first and second coupling is continuous about substantially the entire circumference of the associated tube element. Thereby, a quick and easy connection of the tube elements can be achieved. No extra tools or separate parts are required, and the fitter does not have to bring complicated cuts into specific positions for connection.
Furthermore, the first coupling means is provided in an end portion of the inner tube element which facilitates insertion and connection. The engagement between the tube elements—by means of the coupling means is established at a distance from the free end of the outer tube where the stiffness of the same enhances the stability of the connection.
Preferably, the first coupling means is continuous about the circumference of the inner tube element. Such a coupling means is easy to form on a tube element and thereby advantageous with respect to effective manufacturing. Furthermore, it is easy to establish engagement with the matching coupling means of the outer tube element, irrespective of the shape of the matching coupling means. Thanks to the continuous first coupling means, the inner tube element can be rotated to any desired angular position without jeopardizing the engagement and the connection.
According to a preferred embodiment, the free end of the end portion of the inner tube element is bent outwards and backwards for forming the first abutment, wherein the bent end preferably is continuous around the circumference of the end portion. By this structure, an abutment of the first coupling means of the inner tube element is achieved in a very simple and effective manner. The bent free end provides a sharp engagement edge and also an advantageous reinforcement of the end of the inner tube element thereby enhancing the stiffness and stability of the connection.
Preferably, the second coupling means of the outer tube element comprises depressions formed in the tube wall and angularly spaced with respect to the circumference of the outer tube element. During insertion, these depressions ride over the bent free end of the inner tube element and thereby deform the tube wall of the outer tube element to a non-circular cross-section. This deformation in the engagement between the depressions and the bent free end enhances smooth insertion and secure snap connection of the tube elements.
In an embodiment, the inner tube coupling means has at least one first abutment which is substantially perpendicular to the direction of insertion, and the outer tube coupling means has at least one second abutment which is substantially perpendicular to the direction of insertion. Such co-operating abutments provide a secure connection which prevents the inner tube element from being pulled out of the outer tube element after connection and vice versa.
In another embodiment, the coupling means of the outer tube element comprises a number of abutment edges which are angularly spaced with respect to the circumference of the outer tube element. Alternatively, a continuous recess is formed around the circumference of the outer tube element. Abutments of this kind are easy to provide in manufacture which is an advantage.
The abutment of the outer tube element may comprise a recess whit engages with the abutment of the inner tube element formed on a circumferential shoulder in the end portion of the tube element. This type of abutments enhance secure engagement and are convenient to form on the tube walls.
Preferably, the inner tube element comprises a circumferential groove in which is mounted a circumferential sealing ring for sealing against the inside of the outer tube element. This enables a favourable sealing of the joint between the two tub elements is secured.
In an embodiment, the sealing ring is mounted in a groove by clamping a bent end of the inner tube element on a portion of the sealing ring, said bent end comprising said first coupling means. This constitutes a favourable fastening of the sealing ring which suits the connection concept well.
The tube connection method of the invention comprises the steps of partially inserting the inner tube element into the outer tube element to a close fit, and establishing engagement between coupling means of the inner and outer tube elements, respectively, for providing connection of the tube elements. Preferably, a bent free end of the inner Ube element is snapped into engagement with matching coupling means on the inside of the outer tube element it is also preferred that depressions of we outer tube element—during insertion—ride over the bent free end of the inner tube element and thereby deform the tube wall of the outer tube element to a non-circular cross-section. By these steps performed during insertion, a secure connection of the tube elements is achieved with a close fit. The tube elements are “clicked” in place.
Further advantages of the invention and its embodiments will appear it the following description.
The invention will now be described further with reference to the accompanying drawings which show non-limiting embodiments and variants.
With reference to
In each end portion (a), the connector 3 has a two-lip sealing ring 4 of rubber which preferably is of the type “LindabSafe®” marketed by the applicant Lindab AB. The sealing ring 4 is mounted in a circumferential groove 5 of the connector 3 and tightened by a circumferential strap 6 (see
As is shown in FIGS. 1 and 7-10, the tubes 2 are connected by the connector 3. Hence, a connection or joint is provided at each overlapping interface between the connector 3 and the tubes 1, 2. The inner tube element the connector 3) is partially inserted with a close fit into the outer tubes 1, 2.
For obtaining a secure connection between the connector 3 and each tube, the tubes 1, 2 and the connector 3 are provided with matching coupling means for mutual engagement.
Thus, each end portion of the connector 3 has an abutment 7 formed the free end 20 of the connector 3 which is bent outwards and backwards. The abutment 7 has an abutment surface or edge which is substantially perpendicular to the axial direction of insertion (arrow I in
The outer tube 1 has at least one abutment 8 formed in the tube wall for engagement with the abutment 7 of the connector 3. In the basic embodiment, the abutment is formed by a number of spaced depressions or recesses 9 in the tube wall about the circumference of the tube 1. The recesses 9 do not go through the tube wall, so there is no risk of air leakage. The abutment 8 has an abutment surface or edge which is substantially perpendicular to the axial direction of insertion I and to the centre axis C of the tube 1. The abutment 8 forms the coupling means of the outer tube 1.
For connection, the connector 3 is inserted into the tube 1 and the mutual coupling and engagement means 7 and 8 are operable to secure the connection. As can be seen in
An outer circumferential bead 11 of the connector 3 provides an external abutment or stop for the free ends of the two tubes 1, 2 to be connected with the connector 3. Hence, the bead 11 determines the partial insertion of the connector 3 in the tubes 1 and 2 (see
The mutual engagement between the abutments and 8 is established in a plane P which is perpendicular to the direction of insertion I (
The number of depressions 9 or 12 is not crucial as long as they form adequate abutments 8 for engagement with the continuous abutment 7 of the of the inner tube, that is the connector 3.
In
The abutment 7 of the inner tube or connector 3 does not have to be entirely continuous, but it can also comprise abutments edge portions 7a which form arcs of a circle and which are distributed about the circumference of the connector 3. Such an embodiment is disclosed in
An advantage with this embodiment is that the tube elements can be dismounted by rotation of the connector 3, so that the depressions 9 are aligned with the “closed” edge portions 7b, enabling the filler to pull the connector 3 out of the tube 1.
A further embodiment is shown in
The embodiment of
In still another embodiment shown in
An embodiment without a sealing ring is shown in
A variant of the basic version of
An embodiment with two axially spaced coupling portions is illustrated in
The connector coupling means 22 are provided at a distance (d from the free end 20 of the connector 3. Preferably, either of these coupling means 22, 23 comprise spaced depressions which co-operate with a continuous abutment forming the matching coupling means. This embodiment is in particular suitable for large-diameter ventilation ducts which may ‘flex’ in the over connection. The combined coupling effect in two axially spaced engagement portions provides a secure tube connection which reduces the “flexing” in the joint between the tubes.
Practical tests with the embodiments of
The schematic embodiment of
Although this description only has discussed tube elements of circular cross section, it should be mentioned that the inventive concept is applicable also to tubes and ventilation ducts of different cross sections, such as flat-oval, rectangular, etc. The coupling means of the tubes are designed in a corresponding manner. A common feature of all embodiments of the invention is that the tube coupling means and abutments are configured in such a way that no open cuts or apertures are left in the tube walls which could lead to air leakage.
It should be emphasised that the inventive concept is not limited to the embodiments described here, and that modifications are feasible without departing from the scope of the invention defined in the appended claims. For instance, the number of abutment edges can vary. Furthermore, the inner tube can be other than a connector, for instance a bend, a T-piece, a silencer, etc.
Number | Date | Country | Kind |
---|---|---|---|
0601856-8 | Sep 2006 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/059423 | 9/7/2007 | WO | 00 | 12/1/2009 |
Number | Date | Country | |
---|---|---|---|
60843208 | Sep 2006 | US |