The invention relates to a method for controlling percussive rock drilling, the method comprising: controlling a percussion device in a rock drilling machine that gives impact pulses to a tool connected to the rock drilling machine during the drilling; controlling a rotating device in the rock drilling machine, the tool being rotated around its longitudinal axis during the drilling; controlling a feed device feeding the rock drilling machine during the drilling towards the rock to be drilled and correspondingly backwards; determining, during the drilling, at least rotation resistance, and registering a first moment of time when the rotation resistance exceeds a predetermined reference limit for the rotation resistance; and decreasing the feed to control the rotation resistance towards the predetermined reference limit for the rotation resistance.
The invention further relates to a software product for controlling percussive rock drilling, the execution of the software product in a control unit controlling the rock drilling being arranged to provide at least the following actions: to control, in a rock drilling machine, a percussion device for giving impact pulses to a tool connected to the rock drilling machine during the drilling, a rotating device for rotating the tool around its longitudinal axis during the drilling, and a feed device for feeding the rock drilling machine during the drilling towards the rock to be drilled and correspondingly backwards; and further, to determine, during the drilling, at least rotation resistance, and to register a first moment of time when the rotation resistance exceeds a predetermined reference limit for the rotation resistance; and to decrease the feed to control the rotation resistance towards the predetermined reference limit for the rotation resistance.
Still further, the invention relates to a rock drilling rig comprising: a carrier; at least one feed beam; at least one rock drilling machine movably arranged on the feed beam; a feed device for feeding the rock drilling machine towards the rock to be drilled and correspondingly backwards; the rock drilling machine comprising a percussion device for generating impact pulses for a tool connected to the rock drilling machine, and a rotating device for rotating the tool around its longitudinal axis; at least one control unit for controlling the functions of at least the feed device, percussion device and rotating device in accordance with a control strategy in the control unit; and means for determining at least rotation resistance; and the control unit being arranged to register a first moment of time when the rotation resistance exceeds a predetermined reference limit for the rotation resistance, and to decrease the feed for controlling the rotation resistance towards the predetermined reference limit for the rotation resistance.
In percussive rock drilling it is known to use what is called torque control, which aims at keeping the rotating pressure of the rotation motor of the rock drilling machine constant by adjusting the feed device of the rock drilling machine. When the rotation torque increases, the feed is decreased so as to re-obtain desired rotation torque. If, despite the decrease in the feed, the rotation torque does not get lower, the result may be drilling with underfeeding. In addition, the result may be that the drill bit gets stuck. As generally known, one problem with drilling with underfeeding is that the contact between the drill bit and the rock is reduced, which leads to a reduction in the drilling power. Further, underfeeding may result in tensile stress in the drilling equipment, which loads the joints between the drilling rods.
An object with this invention is to provide a novel and an improved method and arrangement for controlling rock drilling.
The method according to the invention is characterized by determining at least a first limit and a second limit for the control, at least one of the limits being a time limit; carrying out at least one control action for adjusting the rotation resistance at the moment of time corresponding to each limit; setting the time difference between the starting moments of successive control actions according to the time limit; and further, decreasing the percussion power if the rotation resistance is greater than the reference limit for the rotation resistance at the second moment of time corresponding to the first limit; and stopping the feed if the rotation resistance is greater than the reference limit for the rotation resistance at the third moment of time corresponding to the second limit.
The software product according to the invention is characterized in that the execution of the software product in the control unit is further arranged: to determine at least a first limit and a second limit for the control, at least one of the limits being a time limit; to carry out at least one control action for adjusting the rotation resistance at the moment of time corresponding to each limit; to set the time difference between the starting moments of successive control actions according to the time limit; to decrease the percussion power if the rotation resistance is greater than the reference limit for the rotation resistance at the second moment of time corresponding to the first limit; and to stop the feed if the rotation resistance is greater than the reference limit for the rotation resistance at the third moment of time corresponding to the second limit.
The rock drilling rig according to the invention is characterized in that the control unit is arranged to determine at least a first limit and a second limit for the control, at least one of the limits being a time limit; to carry out at least one control action for adjusting the rotation resistance at the moment of time corresponding to each limit; to set the time difference between the starting moments of successive control actions according to the time limit; to decrease the percussion power if the rotation resistance is greater than the reference limit for the rotation resistance at the second moment of time corresponding to the first limit; and to stop the feed if the rotation resistance is greater than the reference limit for the rotation resistance at the third moment of time corresponding to the second limit.
A second rock drilling rig according to the invention is characterized in that the control unit is arranged to determine, for the control, at least one time limit that is monitored from the first moment of time onwards; and that the control unit is arranged to carry out at least one control action for adjusting the rotation resistance at the second moment of time corresponding to the time limit.
An essential idea of the invention is to determine drilling resistance in percussive rock drilling and to maintain the drilling resistance at a desired drilling resistance reference value. If the drilling resistance exceeds the reference value, the feed is decreased in accordance with the control strategy. If decreasing the feed does not decrease the rotation resistance by the time the first limit is reached, the percussion power is subsequently decreased in accordance with the control strategy. Further, if decreasing the percussion power does not decrease the rotation resistance by the time the second limit is reached, the feed is subsequently stopped. The first limit and the second limit may be physical magnitudes, such as pressure, torque, force, voltage or power. Further, the first limit and the second limit may be limits expressing time. What is essential in the invention is that at least one of these limits is always a time limit. The time limit determines the time difference between the starting times of two successive control actions.
An essential idea of the control system of the second rock drilling machine of the invention is also to maintain the drilling resistance at a desired drilling resistance reference value. If the drilling resistance exceeds the reference value and stays greater than the reference value for a predetermined time despite the decreasing of the feed, the control system of the rock drilling rig carries out one or more control actions to adjust the rotation resistance at the second moment of time corresponding to the set time limit.
An advantage of the invention is that rock drilling can be controlled in a more versatile manner than before because not only maximum pressure limits or the like but also time-based limits can be defined for the control system. Thus, the control system is capable of controlling the drilling in advance in such a way that approaching an undesirable physical maximum limit, for instance the maximum pressure limit, can be avoided.
An essential idea of an embodiment of the invention is that a first time limit and a second time limit have been determined for the control system. The first time limit has been arranged to determine the moment of time when the decreasing of the percussion power is started. The second time limit, in turn, is arranged to determine the moment of time when the feed is stopped.
An essential idea of an embodiment of the invention is that at least one time limit is a predetermined fixed limit. The time limit may be set at the control unit rock-drilling-machine-specifically, or it may be set case-specifically before the drilling is started.
An essential idea of an embodiment of the invention is that the control unit is arranged to adjust at least one time limit in relation to the determined rotation resistance. In adjusting the time limit, the growth rate of the rotation resistance can be taken into consideration. On the other hand, when the time limit is adjusted, it can be taken into account how long a time the rotation resistance is greater than the reference value of the rotation resistance corresponding to normal drilling. Also a combination of the above aspects can be taken into account when the time limit is adjusted.
An essential idea of an embodiment of the invention is that a minimum limit has been set for the percussion power. If decreasing the percussion power has not resulted in a decrease in the rotation resistance by the time the percussion power reaches the minimum limit, the feed is stopped. In this way, it can be ensured that sufficient percussion power is always used. On the other hand, when the minimum limit for the percussion power has been obtained, it may be concluded that decreasing the rotation resistance further will not contribute to reducing the rotation resistance any longer but that another control action is needed in this situation.
An essential idea of an embodiment of the invention is that a maximum limit is set for the rotation resistance. At the moment of time when the rotation resistance exceeds this maximum limit, decreasing the percussion power is started. In addition to the maximum limit for the rotation resistance, there is a time limit in the control. If decreasing the percussion power has not, by the moment of time determined by the time limit, caused the rotation resistance to fall below the reference value of the rotation resistance, the feed is stopped.
An essential idea of an embodiment of the invention is that the percussion power is decreased in a linear manner.
An essential idea of an embodiment of the invention is that the percussion power is decreased in a non-linear manner, for instance stepwise or according to a mathematical function.
An essential idea of an embodiment of the invention is that the feed force is decreased in a linear manner.
An essential idea of an embodiment of the invention is that the feed force is decreased in a non-linear manner, for instance stepwise or according to a mathematical function.
An essential idea of an embodiment of the invention is that the direction of feed is reversed in relation to normal drilling if decreasing the percussion power and stopping the feed have not resulted in a decrease in the rotation resistance. The drilling resistance decreases at the latest when the drill bit is pulled out of the rock.
The invention will now be described in greater detail in the attached drawings, in which
For the sake of clarity, some embodiments of the invention are shown simplified in the figures. Similar parts and aspects are denoted with the same reference numerals.
It is to be noted that after the decreasing of the percussion power (Per) has been started at the moment of time t2, the decreasing of the feed (Feed) can still be continued. The decreasing can be continued substantially evenly between the moments of time t1 and t3, or the decreasing can vary between t1 to t2 and t2 to t3. If the feed (Feed) has been decreased sufficiently, it is also possible to keep the feed (Feed) constant at t2 to t3 or part of this time, as shown later in
In the control strategy described above, there are thus three control actions to be used, i.e. decreasing the feed, decreasing the percussion power and stopping the feed. The control strategy may further comprise reversing the direction of feed after the stopping. Further, implementing the control strategy requires at least measurement or other determination of the rotation resistance (Rot). In contrast, decreasing the percussion power, feed velocity and feed force can be carried out in accordance with an algorithm without the percussion power, feed velocity and feed force being measured.
In practice, changing the direction of feed from the ordinary direction to the opposite one always comprises the stopping of the feed. After the feed has been stopped, the direction of feed can be reversed substantially immediately or after a predetermined delay.
The rotation resistance (Rot) can be determined by measuring the pressure of the pressure medium, fed to the rotating device 11, or the pressure difference between the inlet channel and the outlet channel of the rotating device 11. Further, the rotation resistance (Rot) may be measured directly from the tool with appropriate sensors. The percussion power (Per) may be determined on the basis of the percussion pressure, flow and percussion frequency used, or it may be measured directly from the tool.
The method according to the invention may be carried out by running a computer program in a processor of one or more computers belonging to the control unit 12. A software product implementing the method of the invention may be stored in the memory of the control unit 12, or the software product may be loaded to a computer from a memory means, such as a CD-ROM disc. Further, the software product may be loaded from another computer, for instance via a data network, to a device belonging to the control system of a mining vehicle.
Adjusting the feed force, feed velocity and percussion power can be carried out in accordance with a desired control strategy. The feed force, feed velocity and percussion power can be decreased stepwise, linearly or in a suitable proportion in accordance with an appropriate mathematical function, for example. Adjusting the feed and the percussion power may thus be carried out with one or more adjustment steps of a predetermined size. The percussion pressure, for example, may be lowered with one adjustment step to predetermined half power. Further, the adjustment of the percussion pressure may be carried out in a suitable proportion to the feed pressure. It is also to be noted that instead of pressures, the object of consideration may be electric magnitudes, forces, powers, or other measurable or determinable magnitudes with which rotation resistance, percussion and feed can be determined.
It is yet to be noted that different combinations and modifications of the above adjustment strategies may be utilized in adjusting the drilling.
The drawings and the related specification are only intended to illustrate the idea of the invention. The details of the invention may vary within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
20045352 | Sep 2004 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI05/50325 | 9/22/2005 | WO | 3/23/2007 |