This application claims priority to European application 13188150.0 filed Oct. 10, 2013, the contents of which are hereby incorporated in its entirety.
The present invention relates to the field of gas turbines, in particular to a cooled stator component in the hot gas path of a gas turbine. Such components, e.g. stator heat shields, have to be properly cooled in order to avoid thermal damages of these components and to ensure a sufficient lifetime.
The cooling of a stator heat shield is a challenging task. The heat shields are exposed to the hot and aggressive gases of the hot gas path in the gas turbine. Film cooling of the hot gas exposed surface of the heat shield is not possible at least at those areas of the surface that are arranged opposite to the rotating blade tips. This is for two reasons. Firstly, the complex flow field in the gap between the heat shield and the blade tip does not allow the formation of a cooling film over the surface of this component. Secondly, in case of rubbing events the cooling hole openings are often closed by this event thus preventing the exit of sufficient cooling medium for a reliable film formation with the consequence of overheating the heat shield element. In order to mitigate this risk the clearance between the blade tip and the heat shield must be increased. Currently impingement cooling methods with cooling air ejected at the side faces of the component are a widely-used solution for cooling stator heat shields. WO 2010/009997 discloses a gas turbine with stator heat shields that are cooled by means of impingement cooling in which a cooling medium under pressure, especially cooling air, from an outer annular cavity flows via perforated impingement cooling plates into impingement cooling cavities of the heat shield segment and cools the hot gas path limiting wall of the heat shield. Through ejection holes at the side faces of the heat shield the used cooling medium is ejected into the hot gas path.
According to the patent application CA 2644099 an impingement cooling structure comprises a plurality of heat shield elements connected to each other in the circumferential direction so as to form a ring-shaped shroud surrounding the hot gas path and a shroud cover installed on the radially outer surface to form a hollow cavity therebetween. Said cover has impingement holes that communicate with the cavity and perform impingement cooling of the radially inner wall of the heat shield by jetting cooling air onto its surface inside the cavity. Holed fins divide the cavity into sub-cavities. The cooling air flows through cooling holes in the fins through the fins from a first sub-cavity into a second sub-cavity. Increasing hot gas temperatures require to go down with the wall thickness of the hot gas exposed components to bring down the metal temperatures to acceptable levels. Furthermore, efficiency requirements of modern gas turbines require small clearances between the tips of the rotating blades and the heat shield. However this requirement compromises the design of these elements and their manufacturing that becomes more and more sophisticated and consequently more expensive, and the requirements of rub resistance of the hot gas exposed surfaces, because thin walls increase the risk of damages in case of a rub event.
Patent application WO 2004/035992 discloses a cooled component of the hot gas path of a gas turbine, e.g. a wall segment. The wall segment comprises a plurality of parallel cooling channels for a cooling medium. The inner surfaces of the cooling channels are equipped with projecting elements of specific shapes and dimensions to generate a turbulent flow next to the wall with the effect of an increased heat transfer.
Document DE 4443864 teaches a cooled wall part of a gas turbine having a plurality of separate convectively cooled longitudinal cooling ducts running near the inner wall and parallel thereto, adjacent longitudinal cooling ducts being connected to one another in each case via intermediate ribs. There is provided at the downstream end of the longitudinal cooling ducts a deflecting device which is connected to at least one backflow cooling duct which is arranged near the outer wall in the wall part and from which a plurality of small tubes extend to the inner wall of the cooled wall part and are arranged in the intermediate ribs branch off. By means of this wall part, the cooling medium can be put to multiple use for cooling (convective, effusion, film cooling).
DE 69601029 discloses a heat shield segment for a gas turbine, said segment including a first surface, a back side disposed opposite of the first surface, a pair of axial edges defining a leading edge and a trailing edge, first retaining means adjacent the leading edge and extending from the back side, second retaining means adjacent the trailing edge and extending from the back side, and a serpentine channel including an outer passage extending along one of the edges and outward of the retaining means extending adjacent that edge, an inner passage being inward of the outer passage and a bend passage which extends between the outer passage and the inner passage to place the inner passage in fluid communication with the outer passage, a purge hole which extends from the bend passage to the exterior of the shroud segment to discharge cooling fluid from the bend passage, and a duct extending to the inner passage from a location inward of the adjacent retaining means, the duct permitting fluid communication between the back side of the shroud segment and the serpentine channel such that a portion of the cooling fluid injected onto the back side flows through the serpentine channel, wherein cooling fluid drawn toward the purge hole under operative conditions blocks separation of the cooling fluid in the bend passage.
EP 1517008 relates to cooling arrangement for a coated wall in the hot gas path of a gas turbine based on a network of cooling channels. A gas turbine wall includes a metal substrate having front and back surfaces. A thermal barrier coating is bonded atop the front surface. A network of flow channels is laminated between the substrate and the coating for carrying an air coolant therebetween for cooling the thermal barrier coating.
To ensure sufficient emergency lifetime of the heat shield either the hot gas exposed wall must be designed with a sufficient thickness or the clearance between the blade tips and the stator heat shield must be increased in a way that rubbing contacts during transient operation conditions are excluded. However, this compromises the cooling efficiency in a negative manner.
It is an object of the invention to improve the cooling efficiency of a wall segment in the hot gas path of a gas turbine, particularly of a stator heat shield. It is another object of the invention to provide a cooling arrangement for a wall segment in the hot gas path of a gas turbine, particularly of a stator heat shield that increases its emergency lifetime in case of a damage of its surface due to a rubbing event or a crack.
This object is achieved by a wall segment, e.g. a stator heat shield, according to the independent claim.
The wall segment for the hot gas path of a gas turbine according to the invention, particularly a stator heat shield, comprises at least a first surface, exposed to a medium of relatively high temperature, a second surface, exposed to a medium of relatively low temperature and side surfaces connecting said first and said second surface and defining a height of the wall segment, at least one cooling channel for a flow-through of a cooling medium extends through the wall segment, whereby the at least one cooling channel comprises (in the direction of flow of the cooling medium) an inlet section, a first heat transfer section extending essentially parallel to the said first surface of the wall segment in a first distance to the first surface, a transition section with a direction vector towards the first surface, a second heat transfer section extending essentially parallel to the first surface in a second distance to the first surface, and an outlet for the cooling medium, whereby said second distance is lower than said first distance. According to a first embodiment the inlet is arranged on the second surface exposed to the medium of relatively low temperature.
According to another embodiment the first heat transfer section of the cooling channel, running in a first distance to the first, i.e. hot surface and the second heat transfer section, running in a second distance to the first surface run parallel to each other.
Preferably the two parallel heat transfer sections are arranged with an opposite flow direction of the cooling medium.
According to a preferred embodiment of the invention the wall segment comprises a plurality of cooling channels (i.e. at least two), whereby in each case two cooling channels are arranged laterally reversed to each other.
The cooling channels have preferably a rectangular cross-section or a trapezoidal cross-section, whereby the trapeze basis is directed to the surface exposed to the medium with the relatively high temperature.
According to an alternative embodiment the cross-sectional shape of at least one cooling channel is changing over the length.
It is an essential feature of the wall segment according to the present invention that the cooling channels comprise two (or more) different heat transfer sections, whereby these different heat transfer sections are positioned in different planes within the wall segment, i.e. with different distances to the surface, exposed to the hot gas path of the gas turbine. The second cooling section runs closer to the hot surface than the first one. This section is configured to optimally cool the heat shield. The first section is further away and contributes less to the cooling of the wall segment.
As a consequence of a rub event or abnormal wear due to continuing overstraining the surface of the wall segment, especially a stator heat shield, might be destroyed and the cooling channel damaged, e.g. leaky. After such an event the first intact section of the cooling channel, arranged further away from the damaged area will take over the cooling function to a certain degree. By this measure the emergency lifetime of the heat shield may be significantly extended.
The present invention is now explained more closely by means of different embodiments and with reference to the attached drawings.
The parallel heat transfer sections 18 and 22 of the cooling channel 14 may be arranged in a vertical line or staggered, as described later in more detail shown in
Usually a stator heat shield is equipped with two or more cooling channels 14. According to a preferred embodiment in each case two cooling channels 14′, 14″ are laterally reversed arranged, as sketched in
The sketches of
According to an alternative embodiment the cross-sectional shape of the cooling channels 14 may change over the length, e.g. from a trapezoidal cross-section to a rectangular cross-section (
Number | Date | Country | Kind |
---|---|---|---|
13188150 | Oct 2013 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
5538393 | Thompson | Jul 1996 | A |
7740161 | Boman | Jun 2010 | B2 |
8727704 | Lee | May 2014 | B2 |
8915701 | Black | Dec 2014 | B2 |
20110255989 | Koyabu | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
2 644 099 | Sep 2007 | CA |
44 43 864 | Jun 1996 | DE |
1 249 591 | Oct 2002 | EP |
1 517 008 | Mar 2005 | EP |
2 369 135 | Sep 2011 | EP |
2004035992 | Apr 2004 | WO |
2008100306 | Aug 2008 | WO |
2010009997 | Jan 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20150110612 A1 | Apr 2015 | US |