The instant application should be granted the priority dates of Nov. 19, 2009, the filing date of the corresponding European patent application 09014442.9, as well as Nov. 18, 2010, the filing date of the International patent application PCT/EP2010/007014.
The present invention relates to an arrangement for influencing the flow of an exhaust gas of a gas turbine in a channel that preferably leads to a waste-heat exchanger or boiler.
The exhaust gas stream of a gas turbine is typically not supplied to the exhaust gas system as a flow that is uniformly distributed over the entire cross-section of the channel and that has a uniform velocity of the exhaust gas. Depending upon the manufacture and type of gas turbine, or also depending upon loading, a varying velocity distribution exists. The non-uniformly distributed flow can lead to mechanical loading of the unit components disposed in the exhaust gas section. These unit components must have a complicated and/or expensive design, for example with regard to the thickness of the walls, if other measures cannot be made available.
EP 1 146 285 B1 discloses a waste-heat boiler that is supplied with exhaust gas from a gas turbine, with a diverter having a pivotable flap being disposed between the boiler and the gas turbine. In order with this arrangement to achieve an evening-out of the distribution of the local gas stratification over the flow cross-section of the waste-heat boiler, a guide mechanism is disposed downstream of the pivotable flap. The baffles of this guide mechanism are pivotable between a deflection position during the conveyance to the waste-heat boiler, and a position that does not influence the gas flow.
It is an object of the present application to provide an arrangement to protect the waste-heat boiler of a gas turbine unit and/or components that might be disposed in the channel that conveys exhaust gas from damage caused by flow forces from flows having locally increased velocities.
This object is inventively realized for an arrangement of the aforementioned general type by disposing a flow grating transversely in the channel at an end of the channel that faces the pas turbine, wherein the flow crating partially obstructs the cross-sectional area of the channel, and wherein the flow grating is provided with passages.
The flow grating of the present application is partially gas impermeable, and is embodied in such a way that the flow is altered in an intentional or defined manner. The exhaust gas stratification having increased velocity is slowed down, and the flow velocity is evened out over the cross-sectional area of the channel. The flow grating is installed in the channel of the exhaust gas system in such a way that the evening out of the velocity is effected to an adequate extent, even before the gas stream encounters the downstream components of the unit.
A number of exemplary embodiments of the invention, which will be explained in greater detail subsequently, are illustrated in the drawing, in which:
Pursuant to
When the flow A2 flows about the free edge 6a of the pivotable closure means 6, local stratification is formed that under certain circumstances is reinforced by the swirling imparted by the gas turbine. The stratification formation in the flow A2 leads to a non-uniform supply of heat to the cross-sectional area of the channel 4, and hence of the waste-heat boiler.
Disposed in the inlet end of the channel 4 is a guide mechanism 8, which is provided with adjustable baffles 9 that are disposed in a vertical cross-sectional plane. A support 10 can additionally be disposed in the channel 4 for the central mounting of the baffles 9. As can be seen in
The gas stream A2, for example upon bringing the waste-heat boiler into place, is distributed more uniformly over the cross-sectional area of the channel 4. At the conclusion of the process of bringing the boiler into place, the pivotable closure means 6 blocks the bypass channel 5, and the baffles 9 assume a position in which the gas stream A that is supplied from the gas turbine flows to the waste-heat boiler without deflection in the guide mechanism 8. In this position, the guide mechanism produces no notable pressure loss.
Disposed in the bypass channel 5 is a guide mechanism 11, which is comparable to the guide mechanism 8, and which is provided with baffles 12 that can improve, for example, the flow to a muffler or sound absorber disposed in the bypass channel 5 or the downstream bypass flue. The baffles 12 can be adjustable.
The previously described measures prevent a non-uniform distribution of flow in the channel 4 downstream of the pivotable closure means 6, which results from the inclined position of the closure means. The exhaust gas that leaves the gas turbine, however, already enters the channel 1 with a non-uniform flow distribution over the cross-sectional area of the channel. In this connection, depending upon the type of gas turbine, streams having a higher velocity can occur, for example in the central region of the channel 1.
A flow grating or grid 14, which will be described in detail subsequently, serves to make the flow within the channel 1 that is connected to the gas turbine more uniform, and of reducing the higher velocities. The flow grating can be disposed in conjunction with the guide mechanisms 8 and/or 11; however, it can also be utilized without the guide mechanisms.
The flow grating 14, which is indicated only schematically in
The flow grating 14 is a plate or panel-like, partially gas-impermeable structure that partially obstructs the cross-sectional area of the channel and is provided with openings or passages for the exhaust gas. The flow grating 14 can, as shown in
The tubes 15 can be comprised of a heat-resistant or refractory material, and can represent a purely mechanical installation. However, the tubes 15 can also be embodied as internally-cooled elements.
The tubes 15 of the flow grating 14 are held in a support structure 16. The support structure 16 can be supported on the inner or outer hull or jacket of the channel 1, so that the forces generated by the flow of the exhaust gas can be absorbed. Similarly, the expansions of the material that occur due to the operating temperatures are compensated for by the support structure 16.
In conformity with
The inner wall of the channel 1, as well as the passage region of the support pipes 17, are provided with an insulation 23. The sealing of the support pipe 17 relative to the hot exhaust gases within the channel 1 is effected on the outer side of the channel 1 via compensators 24. With this embodiment, the supports can be inspected from the outside, and can be adjusted during operation of the facility.
Instead of the support structure shown by way of example in
With the embodiments of
Instead of tubes 15, rods or similar elongated elements can be used for the flow grating 14. Pursuant to
The flow grating 14 that has been described serves to protect the components that are disposed in the channel 1, such as the pivotable closure means 6 of the diverter 3 shown in
As previously explained, the flow grating is subjected to a permanent mechanical loading from a turbine gas or some other exhaust gas. The loading can be derived from the pressure head of the exhaust gas stream or of some other stream that results from the flow velocity. Furthermore, an induction of vibrations is customarily applied to components within the channel by the exhaust gas stream or some other flow due to cyclical fluctuations in pressure. In this connection, the induction of vibrations has a greatly differing characteristic depending upon the load condition of the unit. To this extent, it is desirable that an arrangement be available for an operationally reliable function for influencing an exhaust gas stream or some other flow without any additional cooling. Finally, an additionally required cooling can be viewed as a source of error, which could lead to breakdown of the entire unit, or would reduce the effectiveness of a downstream utilization of heat. If cooling of the arrangement is provided, at the same time heat must be drawn off, which then can no longer be expediently utilized from a process standpoint.
With regard to the described requirements, a further exemplary embodiment shown in
In
By means of at least one upper connecting element 28a on one side of the channel 1, the flow grating 28 is fixed on a bearing means 32 that is disposed in the support structure 29 so as to be non-displaceable in all directions. On the opposite side of the channel 1, the at least one upper connecting element 28a is supported in a bearing means 33 that is disposed in the support structure and that compensates against thermal expansion in the horizontal direction by displacement of the at least one upper connecting element. The mounting of the at least one lower connecting element 28b of the flow grating 28 is realized in a bearing means 35 disposed in the support structure on one side of the channel 1, and in a bearing means 36 disposed in the support structure on the opposite side of the channel. The bearing means 35 and 36 absorb a thermal expansion in the vertical direction by rotation of a swivel arm 38, which is disposed in the support structure, about a pivot point 37 (
Supporting the flow grating 28 in a support structure 29 that is disposed externally of the channel 1 enables the use of vibration dampeners 30 as well as the use of additional constant suspensions 31 to assist the support structure 29, which permits a design without additional cooling of the flow grating.
The specification incorporates by reference the disclosure of European application 09014442.9 filed Nov. 19, 2009, as well as International application PCT/EP2010/007014, filed Nov. 18, 2010.
The present invention is, of course, in no way restricted to the specific disclosure of the specification and drawings, but also encompasses any modifications within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
09014442 | Nov 2009 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/007014 | 11/18/2010 | WO | 00 | 7/11/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/060935 | 5/26/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2230221 | Fitch | Feb 1941 | A |
3442324 | Clay, Jr. | May 1969 | A |
4427058 | Bell, Sr. | Jan 1984 | A |
4573551 | Schwerdtner | Mar 1986 | A |
4685426 | Kidaloski et al. | Aug 1987 | A |
4919169 | Bachmann et al. | Apr 1990 | A |
5299601 | Koch | Apr 1994 | A |
5431009 | Bauver, II | Jul 1995 | A |
5555718 | Anderson et al. | Sep 1996 | A |
5946901 | Bauver et al. | Sep 1999 | A |
6125623 | Cloyd et al. | Oct 2000 | A |
6298655 | Lee et al. | Oct 2001 | B1 |
6453852 | Lifshits | Sep 2002 | B1 |
6851514 | Han | Feb 2005 | B2 |
6919050 | Hettwer et al. | Jul 2005 | B2 |
8596227 | Heinrichs | Dec 2013 | B2 |
20070119388 | Waseda | May 2007 | A1 |
20110048010 | Balcezak et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
19737507 | Mar 1999 | DE |
19961540 | Dec 2000 | DE |
0863364 | Sep 1998 | EP |
1146285 | Oct 2001 | EP |
2026000 | Feb 2009 | EP |
WO 9931435 | Jun 1999 | WO |
WO 9945321 | Sep 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20120279596 A1 | Nov 2012 | US |