This application claims the benefit of priority from European Patent Application No. 07290146.5, filed on Feb. 5, 2007, the entirety of which is incorporated by reference.
1. Field of the Invention
The invention relates to an arrangement for monitoring the leak-tightness of an evacuated space which is hermetically closed, leak-tight, by means of at least one metallic wall, in which is inserted a device which is connected to the evacuated space and which indicates an inadmissible pressure rise in the evacuated space caused by a leak in the wall, and in which the device consists of a metallic concertina, which is hermetically connected, leak-tight, to the evacuated space, and of an electrical proximity switch to which an evaluation unit is connected (DE 101 17 329 A1).
2. Background
An “evacuated space” basically may be any hermetically-sealed off space in which a more or less high vacuum is to be maintained. Such an evacuated space, referred to below as “vacuum space”, may, for example, be part of a container or of a pipe, or a pipeline for carrying a cooled medium, for example, a low-temperature liquid gas, around which is mounted a vacuum insulation closed off outwardly by means of a metallic tube and operated under a vacuum. The vacuum space with vacuum insulation may also be the interspace between two concentric metal tubes of a cryostat for superconductive cables. Further statements relate to vacuum insulation of this type as representing all other possibilities of use.
In order to detect leakage, referred to below as, in brief, a “leak”, in the “envelope” of a vacuum space, a response threshold of a few kPa is sufficient. Pressures in the region of 10−3 Pa are customary for vacuum insulation. The vacuum insulation largely loses its effectiveness in the region of 0.1 Pa. If a leak occurs in the outer tube delimiting the vacuum insulation, a pressure of approximately 105 Pa is reached after a short time, whereas in the case of a leak in the inner tube, a pressure of, for example, up to 2 MPa, corresponding to the operating pressure, may occur after a short time.
To monitor the pressure in a vacuum space, it is known to use a friction vacuum gauge which has a ball which is located in a small tube connected to the vacuum space and which is brought into suspension and set in rotation from outside by means of external magnetic fields. The friction of this ball with respect to the surrounding gas is dependent on the pressure of the latter. It can be determined by means of corresponding evaluation electronics as a measure of the pressure or of the residual pressure in the vacuum space. The outlay is very high on account of the measuring instruments required.
The known arrangement according to DE 101 17 329 A1 mentioned in the introduction is a pipe-break protection for a vacuum-insulated filling line. Connected to the filling line is a concertina which is closed off by means of a contact plate and around which is arranged a guide tube which is axially shorter than the concertina in the expanded initial position. In the operating position, the contact plate of the then shortened concertina bears against the end face of the guide tube. The contact plate is connected to a pneumatic or electrical contact maker. In the event of a pressure loss in the vacuum insulation of the filling line, the concertina expands. At the same time it takes up the contact plate which is thereby moved away from the contact maker, so that the latter is no longer activated. The supply of a cryogenic medium to the filling line is then interrupted. This known arrangement can be employed only restrictedly or even not at all for use outside buildings, because the concertina is not protected against environmental influences and may easily ice up.
The object on which the invention is based is to design the arrangement outlined in the introduction such that it can be used unrestrictedly even outside buildings.
This object is achieved, according to the invention,
This arrangement has a very simple set-up and requires no complicated measuring instruments. Merely a commercially available metallic concertina is connected to the vacuum space, for which purpose a correspondingly large orifice has to be formed in its wall, for example, a metallic tube. When the concertina is evacuated from inside together with the vacuum space, it is shortened. If a leak occurs in the wall of the vacuum space, the pressure in the latter rises, and the concertina expands in the direction of its initial position which corresponds to the expanded state and which it assumed before evacuation. This is detected by the proximity switch which may be a commercially available proximity switch. When the concertina reaches a specific preset position in the event of an undesirable pressure rise in the vacuum space, this is indicated in an evaluated way by the proximity switch. The tube surrounding the concertina in a moisture-tight manner is of essential importance in this arrangement. This tube does not impede the movement of the concertina, since an air gap is left all round. The tube is designed to be axially of a length such that it even projects beyond the concertina in its greatest length which corresponds to the initial position in the expanded state. The tube projects beyond the concertina to an extent such that the proximity switch is also at least partially surrounded and sealed off with respect to the tube. The concertina and the relevant part of the proximity switch are thus protected by the tube, even against rough environmental conditions, such as rain and dirt, and an icing-up of the concertina may be ruled out.
An exemplary embodiment of the subject of the invention is illustrated in the drawing, in which:
The invention is explained below by the example of a pipeline, again as representing all other possibilities of use outlined in the introduction.
Designated by 1 is a pipe, consisting, for example, of high-grade steel, of a pipeline, around which pipe, for example, an outer pipe 2 likewise consisting of high-grade steel is arranged coaxially and at a distance. The two pipes 1 and 2 are held in their mutual position by means of spacers 3. The hermetically sealed-off interspace between the two pipes 1 and 2 forms a vacuum space 4 which is evacuated in order to form a vacuum insulation of the pipeline.
A concertina 5 projecting, for example, radially from the outer pipe 2, is hermetically connected, leak-tight, to the latter, specifically via a hole 6 located in the outer pipe 2. The concertina 5 may likewise consist of high-grade steel with a wall thickness of between, for example, 0.1 mm and 0.4 mm. Another material may, however, also be used for the concertina 5, such as, for example, copper or a glass-fibre-reinforced plastic.
An electrical proximity switch 7, merely indicated diagrammatically, is arranged at a distance from the concertina 5 in the axial direction of the latter and is connected to an evaluation unit 8. The proximity switch 7 is advantageously a commercially available proximity switch which may operate inductively or capacitively. The evaluation unit 8 may be an only indicating instrument. It may, however, advantageously also be coupled to an alarm device.
Arranged around the concertina 5 is a tube 9 which is connected fixedly, and leak-tight, to the outer pipe 2 and which is preferably welded as a metallic tube to the latter. The tube 9 is axially longer than the concertina 5 in its greatest length shown in
After the fastening of the concertina 5 and tube 9 to the outer pipe 2, the proximity switch 7 is positioned. For this purpose, the latter is activated and, for example, screwed into the tube 9, then provided with an internal thread, until the proximity switch 7 responds. The latter is then moved nearer to the concertina 5 to an extent such that the latter is detected. For safety reasons, the proximity switch 7, after responding, is brought somewhat nearer to the concertina 5, so that its response is ensured in any event when the concertina 5 expands in the case of a pressure rise when the arrangement is in operation. This position of the proximity switch 7 corresponds to that illustrated in
The arrangement according to the invention operates, for example, as follows:
After the positioning of the proximity switch 7, the vacuum space 4 and consequently the concertina 5 are evacuated, so that the latter assumes its working position evident from
As soon as the proximity switch 7 has detected that the concertina 5 has expanded as described, it transmits a signal to the evaluation unit 8. This signal may be merely indicated in the evaluation unit 8. It may also lead to the triggering of an alarm or be fed to an overriding process control, by means of which the operation of the pipeline can be discontinued automatically.
The positioning of the proximity switch 7 in the direction of movement of the concertina 5 has the further advantage that, in the case of a very high pressure rise in the arrangement, an overexpansion and consequently a destruction of the concertina 5 can be prevented. A corresponding movement of the concertina 5 is then stopped by the proximity switch 7 when the concertina 5 comes to bear with its end face against the latter.
Number | Date | Country | Kind |
---|---|---|---|
07290146.5 | Feb 2007 | EP | regional |