The invention relates to an arrangement for the remote-controlled release of active ingredients according to the species of the patent claims.
In different areas of technology and biomedicine, of medical engineering in particular, there has been a continuing need for a remote-controlled release of substances out of a storage system, such as a capsule, at locations that cannot be accessed directly (e.g. within the human alimentary tract) at a desired time and without connecting this storage system via hoses, electrical lines or the like.
According to the state of the art, various means and methods are particularly known for the remote-controlled release of active ingredients within the digestive system which use capsules with a relatively complex structure. Typical examples are the so-called RF capsules [S. P. Eriksen et al., J. Pharmaceutical Sciences 50 (1961) p. 151], a small intestine capsule [A. Hemmati, Dtsch. Med. Wschr. 93 (1968) S. 1468], an HF capsule [B. Hugemann and O. Schuster, German Patent Document DE 29 28 477 (1979)], an InteliSite® capsule [A. F. Parr et al., Pharmaceutical Research 16 (1999) p. 266] and a marker for intestine diagnostic and therapeutic measures [W. Andrä und M. Wendt, DE 197 45 890 (1999)]. Other capsules are described in the U.S. Pat. Nos. 4,239,040 and 5,279,607.
All designs of the capsules known have at least one of the following disadvantages:
The object of the invention is to design an arrangement for the remote-controlled release of active ingredients that avoids the aforementioned disadvantages.
According to the invention, this object is achieved by the elements of the first patent claim. Instead of magnetic or electrical losses in the eddy-current-exposed parts of the capsule, we use the friction losses generated by the movement of a magnetic body in a fluid. In this embodiment, the magnetic body can be directly integrated within a cavity filled with an active ingredient or it is arranged in a capsule filled with a suitable fluid and said capsule itself is positioned within the active ingredient in the cavity. Further improvements of the invention are expressed in the elements of the subclaims. The magnetic body in the form of a rotor is either rotated by a rotating magnetic field the generation of which requires at least two coils or coil pairs or by a self-triggered alternating field that requires only one coil.
Accompanying the specification are figures which assist in illustrating the embodiments of the invention, in which:
a is the timed succession of the z-component of the magnetic field of a rotor; and
b is the timed succession of the current pulses and of a alternating magnetic field if only one coil is used.
In
Hollow sphere 12, which can consist of two or more closely connected parts, is firmly linked to an oval or longish capsule 14 via holders 13 and is supported in said capsule that is filled with suitable active ingredient 15. The holders 13—at least one of them must be provided—consist of a mixture of about 50 Vol % gelatin and about 50 Vol % graphite; in this composition they are also suitable for the use as thermal bridges. Here, another suited substance can again replace gelatin, and instead of graphite it is possible to use silicon powder for example as an atoxic substance with a high thermal conductivity. Main, inner part 141 of capsule 14, having e.g. the standardized size 00, a diameter of Φ 8.5 mm and a length of 28 mm, consists of hard gelatin the outside of which is provided with thin coating 142, for example of polyethylene, to protect it against being dissolved by aggressive fluids, such as digestive tract fluids.
Capsule 14 is provided with opening 161 which is closed by closing element 16 consisting of paraffin wax or an animal or vegetable wax that has a melting point of between 50 and 55° C. If active ingredient 15 contains water, the interior wall of capsule 14 is also to be provided with a coating that preferably consists of the same material as the melting closing element.
According to
The rotating magnetic field H forces permanent-magnetic body 10 with the magnetic moment m to rotate into the direction indicated by arrow 21. For example, the magnetic field H rotates at a defined fixed speed of 1000 Hz=60,000 rotations/min. The friction between rotor 10 and fluid 11 generated during this process heats up fluid 11 and closing element 16 via hollow sphere 12 and corresponding holder 13 in such a way that it melts and active ingredient 15 can escape out of capsule 14.
To achieve maximum possible friction losses, i.e. a maximum possible temperature rise, the surface of permanent-magnetic rotor 10 is to be provided with a sufficiently high number of friction noses which can have the form of warts or wings. The amplitude of the magnetic field depends on the selected frequency and the viscosity of fluid 11 in which rotor 10 is arranged. For edible oil with a viscosity of h=0.04 N×S/m2 and a selected frequency of f=500 Hz, the field amplitude must be higher than about 8 kA/m to be able to reach a temperature rise above 10 K.
The inventive arrangement overcomes the disadvantage mentioned in point 1 thanks to the fact that permanent-magnetic body 10 is manufactured from magnetit or another magnetic iron oxide that is approved as food coloring. Edible oil or another atoxic liquid can serve as the fluid. Capsule enclosures manufactured from atoxic materials are already used in medical applications.
The disadvantage mentioned in point 2 is avoided by the remote-controlled modification of the rigid form of all parts of capsule 14 into a form which can pass stenoses within the digestive tract. This is possible for permanent-magnetic body 10, because it consists of a magnetic powder that is held together by an atoxic binding agent, such as wax or gelatin which is tolerated by the intestine system. When fluid 11 is heated up by friction, not only temperature-sensitive closing element 16 of capsule 14 will be opened and active ingredient 15 will be released. Permanent-magnetic body 10 is also transferred into smaller parts (powder and deformable wax or something like that) which can pass the stenoses of the intestine.
The dissolution of the residual capsule parts is ensured by the water-soluble material (e.g. hard gelatin) they are manufactured from and which is only protected by a water-insoluble cover (e.g. of polyethylene) at such surfaces that are in contact with water or body tissue even before temperature-sensitive closing element 16 is opened. If temperature-sensitive closing element 16 has been opened and rotor 10 has disintegrated, the intestine fluid or the like can penetrate into capsule 14 and cause its dissolution from the inside.
Thanks to the inventive heat generation mechanism, the disadvantage mentioned in point 3 can be avoided, too. To explain this, the working mechanism of an inventive arrangement is compared to an arrangement according to the state of the art. In the following, heat is generated under a) by the core losses of a sphere and under b) by the friction of a permanent-magnetic sphere in a fluid of appropriate viscosity.
This shows that in example b) a considerably lower field amplitude and a lower frequency yield a thermal output that is tenfold higher than in example a). As this output distributes itself not only on the fluid volume but also on the rotor and the hollow sphere, the temperature rise really generated is only a little bit higher than double the one of example a). The product of the amplitude and frequency remains away below the “Brezovich-Limit”.
However, as described above for
In
The extremes of the sensor signal, which for example indicates the z component of the magnetic field HD (
The reduced number of coils caused by the self-triggered alternating field reduces the efforts as a whole. The triggering is released after the measurement of the magnetic field HD that starts from the magnetic moment m of permanent-magnetic body 10. H is the pulse-like magnetic field generated by coil 22. A time lag exists between the periodic time sequences of field H and HD. It is marked by tv in
All elements presented in the description, the subsequent claims and the drawings can be decisive for the invention both as single elements and in any combination.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not as restrictive. The scope of the invention is, therefore, indicated by the appended claims and their combination in whole or in part rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Number | Date | Country | Kind |
---|---|---|---|
103 10 825 | Mar 2003 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3659600 | Merrill | May 1972 | A |
4239040 | Hosoya et al. | Dec 1980 | A |
4439197 | Honda et al. | Mar 1984 | A |
4507115 | Kambara et al. | Mar 1985 | A |
5170801 | Casper et al. | Dec 1992 | A |
5217449 | Yuda et al. | Jun 1993 | A |
5279607 | Schentag et al. | Jan 1994 | A |
5562915 | Lowe et al. | Oct 1996 | A |
7282045 | Houzego et al. | Oct 2007 | B2 |
20070248661 | Andra et al. | Oct 2007 | A1 |
Number | Date | Country |
---|---|---|
29 28 477 | Jan 1981 | DE |
197 45 890 | Mar 1999 | DE |
WO-0178836 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20060015088 A1 | Jan 2006 | US |