The invention relates to the field of devices for securing panels, in particular glass panels, in a rail by tightening wedges located on both sides of the panel in a groove of the rail.
It is known that guardrails can be made by securing a vertical panel in the groove of a rail. Such a panel is made of glass, for example.
Classically, the positioning and securing of a guardrail panel in the groove is achieved by inserting at least two opposing wedges on either side of the panel. In order to be able to adjust the verticality of the panel at the same time as its securing, the tightening of each wedge is adjusted by means of an associated screw-nut assembly. The wedge is thus tightened either by moving the screw or by moving the nut as the screw is screwed.
Each screw-nut assembly is arranged on the same side of the panel as the wedge whose tightening it controls. Thus, when mounting the guardrail, an operator first installs the panel in the groove. The operator then accesses a first side of the panel to adjust the tightness of the first wedge. The operator then accesses the other side of the panel to adjust the tightening of the second opposite wedge.
An example of such an arrangement for securing a panel is disclosed for example in EP A2 2.921.607.
Such an arrangement provides a very strong securing of the panel in the groove while allowing easy adjustment of the verticality of the panel.
However, in some cases, the panel is only easily accessible from one side, the so-called inner side. This is particularly the case when the guardrail is arranged at a high level, where the outer side faces the void. As a result, it is not possible to screw the wedge on the other outer side without using a lifting means such as a scaffold or a platform.
To solve this problem, securing arrangements with wedges only on the inner side have already been proposed.
However, such an arrangement does not allow easy adjustment of the verticality of the panel during the securing operation.
It has also been proposed to pull the wedge on the outer side from the inner side of the panel by means of a flexible strip.
However, this solution is complex and expensive to implement. The flexible strip must be able to withstand a very high tension. Therefore, the strip must be made of a material that is both flexible and highly tensile strength. In addition, the strip applies a very high pressure on the panel cradle.
The invention provides an arrangement for securing a vertical panel in a longitudinal groove opened vertically upwards for receiving a lower edge of the panel, the panel having an inner face and an outer face, the securing being carried out by transverse tightening between transversely opposed wedges, the arrangement comprising:
The arrangement is characterized in that the upper and lower outer wedges slide vertically upwards from their one released position to their tight position located above the released position.
According to further features of the invention:
Further features and advantages of the invention will become apparent from the following detailed description, for the understanding of which reference is made to the attached drawings in which:
In the following description, the longitudinal, vertical and transverse orientations indicated by the “L,V,T” trihedron in the figures will be adopted as non-limiting.
In the following description, elements having an identical structure or similar functions will be designated by the same reference.
The guardrail 10 comprises a vertical panel 14 and a support rail 16. The panel 14 is preferably made of glass. It is held vertically in the support rail 16 by several securing devices 18 which are distributed along the length of the rail 16. Only a section of rail 16 with a single securing device 18 is shown in
The panel 14 is bounded transversely by an inner face 20 which faces the accessible side of the rail 16, and by an outer face 22 which faces the inaccessible side of the rail 16. The panel 14 in the mounted position thus divides the space into an accessible inner side 24 and an inaccessible outer side 26. For the remainder of the description, elements located on the inner side of the panel 14 will be referred to as “inner”, while elements located on the outer side will be referred to as “outer”.
As illustrated in more detail in
In profile view, the groove 28 has a concave, preferably semicircular, curved bottom 30 which is extended vertically upwards by an inner lateral face 32, on the one hand, and by an outer lateral face 34, on the other hand, which are arranged transversely opposite each other. The groove 28 has an upper opening. The width of the groove 28 between the two lateral faces 32, 34 is greater than the thickness of the panel 14. The first inner lateral face 32 is located on the inner side 24, while the second outer lateral face 34 is located on the outer side 26.
Each securing device 18 is designed as a module formed of several parts, some of which may be pre-assembled before insertion into the groove 28. A securing device 18 is now described with reference to
The securing device 18 comprises at least one inner wedge 36A, 36B and at least two opposing outer wedges 38A, 38B which are intended to transversely tight the panel 14 in the longitudinal receiving groove 28.
The securing device 18 also comprises a cradle 40, the profile of which forms a “U”. The cradle 40 which is designed to straddle a lower edge 42 of the panel 14, as shown in
Each lateral face 32, 34 of the groove 28 also comprises a projecting stop 46 which is intended to retain the cradle 40 vertically at the bottom of the groove 28 by cooperation with a notch 48 made in an external vertical face of the cradle 40.
The cradle 40 is here made of rigid plastic material.
At least one inner wedge 36A or 36B of the securing device 18 is interposed between the inner face 32 of the groove 28 and the inner face 20 of the panel 14, as illustrated in
In the embodiments shown in the figures, the securing device 18 comprises several inner wedges 36A, 36B. It thus comprises, in a non-limiting manner, an upper inner wedge 36A and two lower inner wedges 36B.
The upper inner wedge 36A cooperates with a ramp 52A which is formed in the upper part of the first face 24 of the groove 20. The ramp 52A is designed so that tightening of the upper inner wedge 36A between the panel 14 and the inner face 32 of the groove 28 occurs as it slides downwards. The upper inner wedge 36A here has a tightening face which is intended to be tight either directly against the panel 14 or with the interposition of a shim.
The lower inner wedges 36B each cooperate with an associated ramp 52B of the cradle 40 which bears transversely against the inner face 32 of the groove 28. More particularly, the lower inner wedges 36B are interposed between the ramp 52B and the inner face 20 the panel 14. The ramp 52B is designed so that tightening of the lower inner wedge 36B between the panel 14 and the inner face 32 of the groove 28 occurs as it slides upwards. Each lower inner wedge 36B here has a tightening face which is intended to be tight either directly against the panel 14 or with the interposition of a shim.
The sliding of the upper inner wedge 36A and that of each lower inner wedge 36B is achieved by means of two vertical axis control screws 54. Each control screw 54 is received in an associated smooth orifice 56 in the upper inner wedge 36A in line with each lower inner wedge 36B. The lower end of each control screw 56 is screwed into an orifice 58 in each lower inner wedge 36B. The control screw 54 is, for example, screwed into the orifice 58 with force. Alternatively, the orifice 58 is threaded. In any case, the control screw 54 is engaged with the associated lower inner wedge 36B.
Thus, when the screws 54 are screwed in, the lower inner wedges 36B, locked against rotation by the cradle 40 and the panel 14, slide upwards to a tight position in which they are trapped between the ramp 52B and the panel 14. As the screwing continues, a head 60 of the control screw 54 engages the upper inner wedge 36A to slide it downwards until it is wedged between the inner face 32 of the groove 28 and the panel 14. The screwing can be continued until the inner wedges 36A, 36B are tightened with the desired vertical force to achieve vertical securing of the panel 14. In addition to the speed of securing, this system of adjusting the position of the upper inner wedge 36A and each lower inner wedge 36B with a single control screw 54 allows the tightening force applied by each inner wedge 36A, 36B against the panel 14 to be balanced.
The outer wedges 38A, 38B comprise at least one upper outer wedge 38A and at least one lower outer wedge 38B. The upper outer wedge 38A is thus arranged above the outer wedge 38B in the groove 28. Each outer wedge 38A, 38B is interposed between the outer lateral face 34 of the groove 28 and the outer face 22 of the panel 14. Each outer wedge 38A, 38B is vertically slidably mounted between a released position and a tight position between the outer lateral face 34 of the groove 28 and the outer face 22 of the panel 14. The outer wedges 38A, 38B are slidably mounted between their released position and their tight position independently of each other.
It is provided that the tightening of the outer wedges 38A, 38B can be adjusted from the inner side 24 of the panel 14. For this purpose, the securing device 18 comprises at least two movable force transmission members 62A, 62B which are interposed between the lower edge 42 of the panel 14 and the lower bottom 30 of the groove 28. The force transmission members 62A, 62B are each capable of transmitting a sliding force to an associated outer wedge 38A, 38B from the inner side 24.
According to the teachings of the invention, both the upper outer wedge 38A and the lower outer wedge 38B slide vertically upwards from their lower released position to their upper tight position which is located above their released position. Thus, in order to control the outer wedges 38A, 38B to their upper tight position, the movable transmission members 62A, 62B are biased in compression by at least one control device 63 which is arranged on the inner side 24 of the panel 14.
In the example embodiments shown in the figures, each movable transmission member 62A, 62B is formed by a rigid element having the shape of a semi-circular segment which is slidably received in a channel 64A, 64B of complementary shape arranged between the lower edge 42 of the panel 14 and the lower bottom 30 of the groove 28. All the transmission members 62A, 62B have a semi-circular shape with the same radius of curvature.
Each transmission member 62A, 62B thus has an inner transverse end 66 and an outer transverse end 68. The two ends 66, 68 both have a vertically upward facing face.
The transmission members 62A, 62B are mounted in parallel with each other. Each channel 64A, 64B is formed in a bottom of the cradle 40 for receiving the edge 42 of the panel 14. Thus, each transmission member 62A, 62B is received slipping on the bottom of the cradle 40, under the panel 14, and not against the bottom 30 of the groove 28.
The outer end 68 of each transmission member 62A, 62B is intended to be pressed vertically against a thrust face 70A, 70B of the associated outer wedge 38A, 38B, while the inner end 66 is intended to be biased by a substantially vertical force provided by an associated control device 63, as will be explained in more detail below.
The outer ends 68 of the transmission members 62A, 62B are arranged at substantially the same height due to the semi-circular shape of the transmission members. In this regard, the thrust faces 70A, 70B of the outer wedges 38A, 38B are here arranged at the same height. Thus, the upper outer wedge 38A has a tab which extends vertically downwards into a passageway provided in the lower outer wedge 38B to the associated transmission member 62A.
Alternatively, a vertically slidable thrust element is sandwiched between the outer face 68 of the transmission member 62A and the upper outer wedge 38A.
As a non-limiting example, and as shown in the figures, a single transmission member 62A controls the sliding of the upper outer wedge 38A while the lower outer wedge 38B is controlled in sliding by two transmission members 62B. The transmission member 62A associated with the upper outer wedge 38A is here arranged between the two transmission members 62B associated with the lower outer wedge 38B.
At least one of the outer wedges 38A, 38B may move transversely towards the panel 14 as it slides vertically towards its tight position. In this case, the outer wedge 38A, 38B has a longitudinal tightening face 72 which faces towards the panel 14 as illustrated for the two outer wedges shown in the embodiment of
Alternatively, shown in
Regardless of the embodiment of the outer wedge, the tightening face 72 can be tight either directly in contact with the outer face 22 of the panel 14, or with the interposition of a shim between the tightening face 72 and the outer face 22 of the panel 14. This shim allows the same securing device 18 to be adapted to different thicknesses of panels 14. The thickness of the tightening shim will thus be adapted to the thickness of the panel 14 to be secured.
In the embodiments shown in the figures, each outer wedge 38A, 38B is interposed between an outer flange 76 of the cradle 40 and the outer face 22 of the panel 14. The outer flange 76 of the cradle 40 is arranged against the outer face 34 of the groove 28 and extends in a vertical longitudinal plane to adjacent the opening of the groove 28.
To enable transverse tightening of the panel 14 as they slide vertically upwards, at least one of the outer wedge 38A, 38B or the internal face of the outer flange 76 of the cradle 40 has a tightening ramp which pushes the tightening face 72 transversely towards the panel 14 as the associated outer wedge 38A, 38B slides towards its tight position.
In the examples shown in
Alternatively, as shown in
According to a first embodiment of the invention which is shown in
Each control device 63A, 63B comprises here at least one screw 82A, 82B which is capable of biasing at least one transmission member 62A, 62B. Each screw 82A, 82B is screwed into an internal threaded 84A, 84B which is fixed with respect to the cradle 40 to allow axial displacement of the screw 82A, 82B with respect to the cradle 40 by screwing or unscrewing. In the example shown in
As shown in detail in
The length of the control screw 82B is determined so as not to bias the transmission member 62A associated with the upper outer wedge 38A when the lower outer wedge 38B is in its tight position, as shown in
Referring now to
The length of the control screw 82A is sufficient for a lower end of the control screw 82A to bias the inner end 66 of the transmission member 62A as it is screwed in, while its recess remains accessible to a tightening tool, as shown in
When securing the panel 14, the control screw 82A is screwed into the nut 86, causing it to be lowered, as indicated by the arrow “F0′” in
As shown in
According to a second embodiment of the invention which is shown in
The control device 63 comprises at least one control screw 82 with a vertical axis which is screwed into a nut 100 which is vertically slidably mounted on the inner side of the cradle 40. The cradle 40 is here made in an inner half 40A and an outer half 40B which can be assembled together by transverse interlocking.
The control screw 82 is arranged in line with the inner end 66 of the transmission member 62A associated with the upper outer wedge 38A. Thus, when the control screw 82 is moved downwards, as indicated by the arrow F0″ in
In addition, as shown in
In the example shown in the figures, the force return means are formed by at least one cam 102 slidingly integral with the nut 100 and by at least one pusher 104 guided in displacement along an arcuate path in the cradle 40. The cam 102 is arranged on at least one transverse flank of the nut 100 to move a cam follower 106 of the pusher 104 away from the axis of the control screw 82 when the nut 100 moves upwards with respect to the pusher 104 as indicated by the arrow “D”. The cam 104 thus applies a transverse force F0′″ to the cam follower 106 of the pusher 104, as shown in
This causes a lower end 108 of the pusher 104 to slide downwardly to push the inner end 66 of the associated transmission member 62B downwardly, as indicated by arrow F1′″. This causes the transmission member 62B to slide with the outer end 68 applying an upwardly directed vertical force FV′″ to the lower outer wedge 38B.
As shown in
Given that the cam 102 is capable of applying a radial reaction force to the control screw 82, the control device 63 advantageously comprises two opposite cams 102 arranged on two opposite flanks of the nut 100. Two pushers 104 as described above are arranged symmetrically with respect to a transverse plane passing through the axis of the control screw 82 in order to cooperate each with one of the cams 102. Each pusher 104 thus enables an associated transmission member 62B to be driven. This advantageously enables the reaction forces applied radially to the control screw 82 to be balanced.
The control screw 82 is mounted to slide freely with respect to the cradle 40. This allows simultaneous and balanced tightening of the two outer wedges 38A, 38B by means of the single control screw 82.
When the outer wedges 38A, 38B are tightened, the control screw 82 is screwed into the nut 100. This causes a vertical gap between the nut 100 and the lower end of the control screw 82.
Thus, the lower end of the control screw 82 applies a downwardly directed vertical force F0″ to the inner end 66 of the transmission member 38A which tends to push the upper outer wedge 38A upwards. The slipping of the ramp 78 of the upper outer wedge 38A against the ramp 80 of the tightening pad 74 causes the tightening pad 74 to move until its tightening face 72 is tightened against the panel 14.
In reaction, the nut 100 moves upwards. The nut 100 then applies an upward force to the cams 102, which tends to simultaneously move the pushers 104 away from the axis of the control screw 82. The lower ends 108 of the pushers 104 abut the inner ends 66 of the associated transmission members 62B which slide to bias the lower outer wedge 38B towards its tight position. The ramp 72 of the lower outer wedge 38B then slips against the ramp 80 of the cradle to move the tightening face 72 transversely towards the panel 14.
As the control screw 82 continues to be screwed, the lower and upper outer wedges 38A, 38B are simultaneously tightened so that the forces applied by the nut 100 on the one hand and the control screw 82 on the other hand are balanced. The two outer wedges 38A, 38B are thus tightened in substantially the same manner and the force applied by the tightening faces 72 against the panel 14 are substantially balanced.
Whichever embodiment is selected, when securing the panel, the securing devices 18 are inserted into the groove 28 of the rail 16 with their inner and outer wedges in a released position. The panel 14 is then positioned in the groove so that its edge 42 rests on the cradles 40. Next, the panel 14 is held in the desired vertical position, and then the control screws of each of the inner and outer wedges are screwed in one after the other until each wedge occupies a tight position allowing the panel 14 to be secured in its vertical position. When the two outer wedges 38A, 38B are in the tight position, they are held in that position by the control screw 82, each transmission member 62A, 62B being compressed between the associated outer wedge 38A, 38B and the associated control screw 82.
The invention thus advantageously allows the two outer wedges 38A, 38B to be controlled in their tight position from the inner side 24 of the panel 14.
In addition, the use of transmission members operating in compression to hold the associated outer wedge in the tight position ensures a solid and durable hold over time, without risk of material creep. In addition, the transmission members can be made of materials that are less expensive than rigid plastic materials that are resistant to compression.
Number | Date | Country | Kind |
---|---|---|---|
1905808 | May 2019 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/064396 | 5/25/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/239670 | 12/3/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4680903 | Horgan, Jr. | Jul 1987 | A |
7730682 | Nash | Jun 2010 | B2 |
8181405 | Nash | May 2012 | B2 |
9617736 | Zhou | Apr 2017 | B2 |
9657760 | Giacometti | May 2017 | B2 |
10640985 | Strehlow | May 2020 | B2 |
10718117 | Noble | Jul 2020 | B2 |
10830264 | Dagand | Nov 2020 | B2 |
10876297 | Poma | Dec 2020 | B1 |
11053688 | Ravan | Jul 2021 | B2 |
11156000 | Noble | Oct 2021 | B2 |
11187323 | Sprague | Nov 2021 | B2 |
20130248792 | Bangratz | Sep 2013 | A1 |
20150110552 | Yang | Apr 2015 | A1 |
20150240851 | Giacometti et al. | Aug 2015 | A1 |
20160298375 | Wagner | Oct 2016 | A1 |
20170101784 | Gonzato | Apr 2017 | A1 |
20180135669 | Dagand et al. | May 2018 | A1 |
20190177973 | Mitrovic | Jun 2019 | A1 |
20190249442 | Strehlow et al. | Aug 2019 | A1 |
20220195734 | Giacometti | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
10 2016 112775 | Oct 2017 | DE |
2 921 607 | Sep 2015 | EP |
3 323 958 | May 2018 | EP |
Entry |
---|
International Search Report and Written Opinion dated Aug. 6, 2020, issued in corresponding International Application No. PCT/EP2020/064396, 9 pages. |
International Search Report dated Oct. 2, 2020, issued in corresponding International Application No. PCT/EP2020/064396, filed May 25, 2020, 2 pages. |
Written Opinion of the International Searching Authority dated Oct. 2, 2020, issued in corresponding International Application No. PCT/EP2020/064396, filed May 25, 2020, 6 pages. |
International Preliminary Report on Patentability dated Nov. 16, 2021, issued in corresponding International Application No. PCT/EP2020/064396, filed May 25, 2020, 1 page. |
Number | Date | Country | |
---|---|---|---|
20220195734 A1 | Jun 2022 | US |