The invention relates to an arrangement for supplying an internal combustion engine with fuel, comprising a fuel container including a fuel reservoir, a fuel pump, a fuel filter and a fuel level sensor and pipe elements which are accessible by a closable opening in the fuel container.
DE 195 28 182 A1 discloses a fuel pumping unit for pumping fuel from a fuel tank to an internal combustion engine of a motor vehicle. The fuel pumping unit can be arranged in the fuel tank as an assembly unit. A tank flange is connected, by way of a rotatable and longitudinally movable mechanical connection to a surge pot which includes a fuel pump and a fuel level sensor. The mechanical connection includes two spring elements which are mounted on the tank flange and the surge pot in a non-pivotable or -rotatable manner. Intermediate sections of the spring elements facilitate longitudinal movement and rotation of the surge pot relative to the tank flange and its support on the bottom of the fuel tank in a uniform manner.
Normally, the surge pot which is arranged within the fuel tank is part of a fuel pumping unit which also includes an electric fuel pump, by which fuel is supplied to the internal combustion engine. The purpose of the surge pot whose volume is substantially smaller than that of the fuel tank is mainly to ensure that a sufficient amount of fuel is contained in the area of the fuel pump inlet even under adverse operating conditions for example when the tank is close to empty or when negotiating a long curve or when the vehicle is not in a horizontal position. This requires the presence of a certain minimum amount of fuel in the surge pot so that the surge pot must have a certain minimum volume which is reduced by the fuel pumping unit and other components usually disposed in the surge pot. Today's motor vehicles however require a surge pot with a particularly large volume since short-term interruption of the fuel supply may for example cause damage to an exhaust gas catalytic converter.
For reason of stability of the fuel container and in order to achieve low emissions and to provide for a simple sealing of the container opening by a closing element, one usually tries to keep the cross-section of the opening in the fuel container as small as possible. For units which comprise a surge pot, a fuel supply pump and a fuel filter the size and consequently the volume of the surge pot is therefore limited. Extreme operating conditions of the vehicle, that is extreme sideward leaning or high centrifugal forces when negotiating a curve, can therefore result in a possibly large fuel loss per time unit from the surge pot. In order to ensure that also under these conditions a sufficiently large amount of fuel remains at the inlet for the fuel pump unit, the surge pot, whose height is limited by the height of the fuel tank, should have a relatively large volume. This however can be achieved only by a corresponding enlargement of the cross-section of the surge pot.
It is consequently the object of the present invention to provide an arrangement for supplying an internal combustion engine of a motor vehicle with fuel and also to provide a method of servicing or repairing such an arrangement in a simple and inexpensive way, wherein in spite of a small opening in the wall of the fuel container, a relatively large surge pot or fuel reservoir is provided.
In an arrangement for supplying an internal combustion engine with fuel and a method for servicing and repairing the arrangement wherein a number of components, that is, a fuel reservoir, a fuel pumping unit, a fuel filter, a fuel level sensor and line elements are arranged in a fuel container and the container has an access opening formed in a wall thereof and sealingly closed by a cover, at least the fuel reservoir and at least one of the line elements are firmly installed in the fuel container and only the other components are removed through the access opening after being disconnected from their support mounts and associated connecting lines.
In accordance with a particularly embodiment of the invention, the fuel reservoir is supported on the bottom of the fuel tank by way of noise insulation or uncoupling elements. The noise uncoupling elements 3 are welded to the bottom wall of the fuel container 1. The uncoupling elements 3 are not removable once attached to the fuel reservoir 2; that is they cannot be removed without being destroyed.
In accordance with another embodiment, the fuel filter element, the fuel pumping unit and/or the fuel level sensor are combined into a unit which is supported in the fuel container so as to be removable for servicing or repairing.
Preferably, releasable connections are provided comprising quick-connectors and/or a spring-biased locking connection.
Furthermore, in a preferred embodiment, line elements are provided which are designed for conducting the electric current or the liquid (RLDruckregler, RLssp, VLFilter, VLMotor and VLFilter+ssp) and/or gaseous media. The line elements are interconnected for a stable support structure in the fuel container and, for servicing procedures, remain in the fuel container. The return line RLDruckregler is furthermore firmly welded to the reservoir at its side adjacent the reservoir. The supply line VLMotor exits the container at an inwardly curved recess at the bottom of the fuel container and extends toward the internal combustion engine. The supply line VLMotor at this point is firmly soldered to the bottom of the container. The return line RLssp is also firmly supported in the container and is connected to a suction jet pump.
The arrangement for supplying an internal combustion engine with fuel can advantageously be used in connection with single or double chamber fuel containers for gasoline- or Diesel engine-operated vehicles.
It is advantageous if, with the method according to the invention for servicing or repairing an arrangement for supplying an internal combustion engine with fuel, which comprises a fuel container including within it a fuel reservoir, a fuel pumping unit, a fuel filter, a fuel level sensor and line elements, the fuel reservoir and the line elements remain permanently in the fuel container. The components arranged in the fuel container are accessible by an opening in the wall of the fuel container which can be closed. The servicing and repairs can be performed through that opening. For service and repair procedures of this arrangement, in a first step, a locking ring is removed so that a cover of the opening can be removed. In a subsequent second step, the hydraulic lines connected by quick-connectors and/or the electric lines interconnected by snap-in connectors are disconnected. In a third step, then the fuel pumping unit, the fuel filter and the fuel level sensor are removed while the fuel reservoir and the line elements remain permanently in the fuel container.
The invention will become more readily apparent from the following description of preferred embodiments thereof described below on the basis of the accompanying drawings.
a to 1c show schematically, and in a simplified manner, a fuel supply arrangement in a single chamber fuel container for a gasoline engine including a fuel pumping unit,
a to 2c show a fuel supply arrangement for a gasoline engine with two fuel pumping units,
a to 3c show a fuel supply arrangement for a single chamber fuel container for a Diesel engine with a fuel pumping unit,
a to 4c show a fuel supply arrangement of a two chamber fuel container of a gasoline engine with a fuel pumping unit,
a to 5c show a fuel supply arrangement of a two-chamber fuel container for a gasoline engine with two fuel pumping units, and
a to 6c show a fuel supply arrangement of a two-chamber fuel container for a Diesel engine with a single fuel pumping unit.
a) a fuel container with all devices installed therein,
b) the fuel container with the various units removed, and
c) the various units which can be removed for servicing removed from the fuel container.
a shows a single chamber fuel container for a gasoline engine with all units installed in the fuel container. A fuel supply arrangement comprises the fuel container 1 in which a fuel reservoir 2 is arranged, which is supported on the bottom of the fuel container 1 by way of noise absorbing support elements 3. The noise absorbing support elements 3 consist of an elastomer material, which absorbs the vibration generated in the reservoir 2 by the operation of a fuel pump which may produce noises. The walls 6 provided in the fuel reservoir 2 form a circular opening in which the fuel pump 4 contained in a plastic holder or plastic housing 5 is accommodated. During operation of the fuel pump, fuel is sucked into the pump from the reservoir 2 and is supplied to the internal combustion engine. The fuel reservoir 2 and the plastic holder or the plastic housing consist for example of a fuel resistant plastic material.
The fuel reservoir 2 includes a cover (not shown) with an opening for inserting the fuel pumping unit 4, wherein the pumping unit 4 is guided by spring-operated locking elements disposed on the cover (not shown) into a position in which the fuel pump is centered and engaged. The cover of the reservoir 2 further includes two connecting points for the fuel return lines.
The fuel reservoir 2 additionally is provided at the side thereof with several possible coupling locations or lock-in positions for one or several fuel level sensors 15, which provide automatically for electrical contacts when snapped into position. These fuel level sensors 15 are so-called fill-level sensors which indicate the fuel level in the respective container chambers.
The reservoirs 2 are filled with fuel from the fuel container 1 by a suction jet pump which is not shown but which is arranged at the bottom of the reservoir 2, by way of a so-called mushroom valve 7 (check valve). A seal and uncoupling element (not shown) of the suction jet pump is arranged directly above the mushroom valve 7 in the bottom part of the fuel reservoir 2. The suction jet pump 7 pumps in this way fuel from the fuel container 1 into the fuel reservoir 2.
As shown in
The closure element 11 includes a connection structure 17 for electrical connecting lines by way of which all electrical lines (not shown) for the connection of the fuel pump 4, the fuel level sensor 15 and an optional heater 23 shown in
The hydraulic lines (RLDruckregler, VLFilter VLMotor) which are required for conducting liquid and/or gaseous media and are shown in
The fuel contained in the fuel reservoir 2 is supplied to the fuel filter unit 10 from the fuel pumping unit 4 by way of the fuel supply line VLFilter. Depending on the load requirements of the engine, fuel is supplied to the engine by way of the supply line VLMotor If the filtered fuel is not needed by the engine it is returned to the fuel reservoir 2 by way of the return line RLDruckreglar.
The arrangement according to
In the following embodiments according to
The arrangement according to
As schematically shown in
As already pointed out in connection with the various embodiments, the arrangement provides in an advantageous manner for a modular building system with high variability and flexibility of the complete system. The servicing concept provides for a simple and uncomplicated removal of the various components that may require servicing. It is advantageous that the lines remain in the container since, with complex fuel container geometries, the removal could be complicated or the lines could be damaged in the process. Since the fuel reservoir remains in the fuel container, it may have a relatively large volume without having a complex shape and without the need for particular design features that would permit its removal. The service opening may be small and can easily be kept sealed. Also, the individual modular components (fuel reservoir 2, fuel filter unit 10, fuel pumping unit 4) can be firmly supported in the fuel container so as to be isolated from each other and from the container for noise control.
Number | Date | Country | Kind |
---|---|---|---|
103 24 779 | May 2003 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
5394902 | Shibao | Mar 1995 | A |
6000913 | Chung et al. | Dec 1999 | A |
6260543 | Chih | Jul 2001 | B1 |
6553973 | Coha et al. | Apr 2003 | B1 |
6619272 | Jones et al. | Sep 2003 | B1 |
6739319 | Braun et al. | May 2004 | B1 |
6776185 | Farrar et al. | Aug 2004 | B1 |
20030000502 | Jones et al. | Jan 2003 | A1 |
20040237941 | Sinz | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
195 28 182 | Feb 1997 | DE |
197 33 949 | Jan 1999 | DE |
08 282307 | Oct 1996 | JP |
Number | Date | Country | |
---|---|---|---|
20040244780 A1 | Dec 2004 | US |