The invention relates to an arrangement for the admission of pressurized water to spray systems arranged on powered support assemblies in underground mining, having at least one first spray system for plow or shearer track spraying and at least one further spray system for goaf space spraying, canopy spraying and/or side spraying, having a central water line for feeding spray nozzles of the spray systems, and having control valves arranged in a valve block for each spray system for switching the different spray systems on or off.
In the case of the powered support assemblies used in underground mining, it has been known for a long time to use spray nozzles for suppressing the fine coal dust detrimental to health and arising during the extraction of, for example, coal by means of a winning machine, such as in particular a plow or shearer loader, the working face being sprayed with spray water by said spray nozzles just before the winning machine travels past. For the plow or shearer track spraying, at least one spray nozzle for the associated track spray system is usually assigned to each shield, and a control valve is arranged in the hydraulic valve block of the powered support assembly for switching these nozzles on or off. The control valve is operated as a function of the position of the winning machine via the associated activating unit for the powered support assembly in order to initiate or stop the spray function.
It is known from DE 195 37 448 A1 of the generic type to also arrange spray systems for canopy moistening and goaf space moistening on a powered support assembly in addition to a spray system for the plow or shearer track spraying. Since, as a matter of priority, only the track spraying has to be supplied with water at high pressure, pressure-reducing valves are arranged between a central high-pressure water line and the control valves, at least for some of the spray systems, these pressure-reducing valves enabling the water pressure in the water line to be reduced from usually 150 to 200 bar to a low-pressure level of about 10 to 40 bar. The control valves are activated by pressure actuation with the same hydraulic medium as all the other control valves for the hydraulic consumers in the central hydraulic valve block. Used in this case for actuating the hydraulic consumers and for operating the control valves is a suitable emulsion, such as, for example, an HFA fluid, which is fed via a separate hydraulic line to all the powered support assemblies at the underground longwall.
Furthermore, it is known as prior art to couple the activation of the control valve for the spray system to certain operating functions of the support units. Thus, DE 38 02 992 C2 describes, for example, a spray valve device in which a spray nozzle is switched on automatically during the advancing movement of the powered support assembly.
The object of the invention is to increase the operating reliability of the arrangement for the admission of pressurized water to the spray systems on underground powered support assemblies.
This object is achieved according to the invention in that all the control valves for the spray systems are accommodated in a spray valve block which is provided with a connection for the water line and can be arranged or is arranged on the powered support assembly as a unit separated from a hydraulic valve block. In its basic idea, the solution according to the invention is based on complete separation of the fluid circuits of the spray water, on the one hand, and of the hydraulic medium harmful to the environment and detrimental to health, on the other hand. At the same time, the spray valve block provided according to the invention provides the precondition for being able to arrange a control valve that can be activated separately on the powered support assembly for each spray system without an increase in the construction space or the construction cost for the hydraulic valve block. According to the invention, the control valves for each spray system are arranged in an additional, separate spray valve block, and the spray valve block and the hydraulic valve block are spatially separated.
According to an especially preferred configuration, the control valves in the spray valve block are pressure-actuated and are activated by water pressure from the water line in a pressure-actuated manner. To this end, the spray water used for activating the control valves is preferably used only in the filtered state. The use of the spray water for activating the control valves firstly has the advantage that no connection at all for hydraulic medium needs to be provided in the spray valve block. The further advantage consists in the fact that the pressure of the spray water in the water line, at 150 bar, is in any case markedly lower than the pressure of the hydraulic medium, which is normally about 300 bar, so that overall both the control valves or activating valves in the valve block and the seals present there are subjected to lower loading.
According to a further advantageous configuration, the control valves are designed as 2/2-way directional valves which connect the water line to the respective spray system in the first control position and separate the associated spray system from the water line in the second control position. For the pressure-actuated activation of the control valves, an electrically, in particular electromagnetically, actuated activating valve is preferably assigned to each control valve in the spray valve block. Furthermore, four control valves and four activating valves can preferably be arranged in the spray valve block in order to be able to activate and control a total of four spray systems separately from one another. The activating valves can preferably be designed as 3/2-way directional valves which connect an activating line for the associated control valve to a leakage outlet in the spray valve block in the first control position and connect the water line to the activating line in a second control position for operating the control valve. Since the spray water is used for the pressure-actuated operation of the control valves, the spray water which is in the activating line when the control valves are closed can flow off via a leakage line without it being possible for environmentally hazardous contamination of the material in the longwall to occur.
Furthermore, the control valves are preferably accommodated in valve receptacles in the spray valve block which are oriented perpendicularly to the valve receptacles for the activating valves. In addition, if one of the spray systems is to be operated only with a lower water pressure, at least one pressure-reducing device can be arranged in the spray valve block. Furthermore, a filter device can also be arranged in the spray valve block in order to filter the spray water used for activating the control valves.
The invention also relates to a powered support assembly having floor skids, goaf shield, roof canopies and support props supporting the latter, fastened to which are the spray nozzles of the respective spray systems and a hydraulic valve block and a spray valve block provided according to the invention. The spray valve block is then preferably provided with individual functions or with all the functions described further above.
Further advantages and configurations of the invention follow from the description below of an exemplary embodiment shown schematically in the drawing, in which:
As is known to a person skilled in the art in underground mining, the powered support assembly 1 shown schematically in
The spray valve block 20 forms an independent unit which can be fitted and fastened to the powered support assembly 1 separately, preferably even spatially separately from a hydraulic valve block 40. To this end,
The control valves 21-24 arranged in the spray valve block 20 are not electrically activated directly, but rather the activation is effected by pressure actuation via the four activating valves 31, 32, 33 and 34, respectively, shown in
Furthermore, it can readily be seen from the diagram in
From the preceding description, the person skilled in the art can deduce numerous modifications which ought to come within the range of protection of the attached claims. It goes without saying that the spray valve block may also be given further control valves for additional spray functions at the powered support assembly. The spray valve block and the hydraulic valve block are preferably fastened to the powered support assembly spatially separately from one another. However, for the separation of the two fluid circuits, it is also sufficient to flange-mount the spray valve block, designed as a separate unit, for example laterally on the hydraulic valve block, since even then there is no risk of fluid being able to pass from the one circuit into the other circuit.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 057693.1 | Dec 2005 | DE | national |