The invention relates to an arrangement for the display of images perceivable in three dimensions.
There exist diverse methods and arrangements for the display of images perceivable in three dimensions. In the recent past, autostereoscopic systems, especially those based on the display of at least two (e.g., eight) perspective views, have increasingly gained ground.
The great number of perspective views required in such systems often is a disadvantage. Frequently, the appearance is impaired by moire patterns.
Therefore, it would be a great benefit to the three dimensional image arts to further improve arrangements of the kind mentioned above.
According to the invention, this purpose is solved by an arrangement for the display of images of a scene or object that are perceivable in three dimensions, comprising:
within a viewing space accommodating the viewer(s), the propagation directions intersect in a great number of intersection points, each of which constitutes a viewing position, so that, from each viewing position, a viewer sees predominantly or exclusively bits of partial information from a first selection of the views Ak (k=1 . . . n) with one eye, and predominantly or exclusively bits of partial information of a second selection of these views with the other eye,
The period, of course, means the smallest possible of all periods of the two-dimensional combination structure of the views on the grid.
Further, the term “essentially periodic” with regard to the combination structure means that, given a great number of such periods strung together, the condition according to the invention may be neglected for a proportionately small number of periods (e.g., less than 5%).
In one embodiment of the invention, at least one view Ak′ (k′=1 . . . n, n≧2) may be displayed less or more frequently than at least one other view Ak″ (k″=1 . . . n, n≧2), with Ak′≠Ak″, in a row or/and column of the respective period of the said two-dimensional, essentially periodic combination structure for the bits of partial information from at least two views Ak (k=1 . . . n, n≧2) on the grid of rows j and columns i.
Preferably, exactly one array of a great number of wavelength and/or gray level filters arranged in rows q and columns p and configured as filter elements βpq is provided. Further, part of these wavelength and/or gray level filters are transparent to essentially the entire visible light, whereas the remaining filters are opaque to light.
Moreover, in at least one position on the array, at least part of at least one of the outer edges of at least one filter element βpq that is transparent to essentially the entire visible light may border on at least one other filter element βpq that is transparent to essentially the entire visible light.
Advantageously, a great number of the pixels αij arranged in a grid of rows j and columns i on the image generator display bits of partial information from at least three views Ak (k=1 . . . n, n≧3) of the scene or object. Sometimes it may be of advantage also to limit the number of different views Ak to a maximum of 12 (k=1 . . . n, n≦12).
Those pixels αij in the grid of rows j and columns i on the image generator that display bits of partial information from at least two views Ak (k=1 . . . n, n≧2) of the scene or object, are, as a rule, the smallest physical pixels of the image generator, which preferably correspond to the R, G, B color subpixels, if provided. The image generator may be, e.g., an LC display, a plasma display, a laser-based display, a projection display, or an OLED monitor screen. Other configurations are feasible as well.
Preferably, the assignment of bits of partial image information from the views Ak (k=1 . . . n) to pixels αij of the position i,j is done according to the equation
where
Furthermore, for specified filter arrays, the filter elements βpq are combined into a mask image depending on their transmission wavelength/their transmission wavelength range/their transmittance λb, according to the equation
where
For the case that exactly one array of filter elements βpq is provided, the distance z between the said array and the grid of pixels αij, measured along the normal, is, for example, established by the equation
where
Preferably, all filter elements provided on the filter array(s) are of equal size. Furthermore, the light propagation directions for the bits of partial information displayed on the pixels αij can be defined depending on their respective wavelengths/wavelength ranges.
Each of the filter arrays provided is configured as a static filter array that is invariant in time, and is arranged essentially in a fixed position relative to the grid of pixels αij, i.e., to the image generator.
In some embodiment versions of the invention, at least one pixel αij displays image information that is a mix of bits of partial image information from at least two different views Ak. A method based on this premise is described in DE 10145133 C2.
Furthermore, it may be of advantage if means are provided for switching between a two-dimensional display and a display that is perceivable in three dimensions. This purpose is served, e.g., by an embodiment of the basic invention, in which a translucent image display device, for example, an LC display, is provided with exactly one array of filter elements βpq, which is arranged (in viewing direction) between the image display device and a planar illumination device, and with a switchable diffusion plate arranged between the image display device and the filter array, so that in a first mode of operation, in which the switchable diffusion plate is switched to be transparent, an impression of three dimensional space is created for the viewer(s), whereas in a second mode of operation, in which the switchable diffusion plate is switched to be at least partially diffusing, the effect of the array of filter elements βpq is cancelled to the greatest possible extent, so that the diffused light permits the illumination of the image display device to be homogeneous to the greatest possible extent and fully resolved two-dimensional image contents can be displayed on the image display device.
Below, the invention is explained by way of an example illustrated by the following figures:
As shown in
The combination structure shown in
In the filter array 2 shown in
In several locations of the filter array 2 shown, at least part of at least one of the outer edges of at least one filter element βpq that is transparent to essentially all visible light borders on at least one other filter element βpq that is transparent to essentially all visible light.
The assignment of bits of partial image information from the views Ak (k=1 . . . n) to pixels αij of the position i,j is preferably done according to the equation
where
For the combination structure shown in
The filter elements βpq of the filter array 2 are combined into a mask image depending on their transmission wavelength/transmission wavelength range/transmittance λb according to the equation
where
For the mask image shown in
The distance z between the said array 2 and the grid of pixels (αij), measured along the normal, is established by the equation
where
Further, the width of the filter elements can be established, for example, by the equation
in which the above definitions apply, and in which fb corresponds to the width of a filter segment which may be composed, e.g., of several immediately adjacent filter elements βpq, all of which are transmissive to essentially all visible light. Analogously, the height of such a filter segment could be calculated, e.g., from the mean vertical distance between two adjacent pixels αij.
If one uses, for example, the respective data of the Fujitsu Siemens T17-1 display mentioned above, the width of such a filter segment would be, for example, fb=0.0878811 mm. Such a filter segment composed of several immediately adjacent filter elements βpq, all of which are transmissive to essentially all visible light, has been outlined by a broken line in
The filter array 2 is configured as a static filter array invariable in time, and arranged in a fixed position relative to the grid of pixels αij, i.e. to the image generator 1. The filter array 2 may be, for example, an exposed/plotted and developed sheet of photographic film laminated to a carrier substrate. Alternatively, filter array 2 may be a printed one.
In some embodiments of the invention, at least one pixel αij displays image information that is a mix of bits of partial information from at least different views Ak. This is shown in
The invention offers several advantages over prior art. It improves existing arrangements for 3D display and enables convenient display of images perceivable in three dimensions.
The present invention may be embodied in other specific forms without departing from the spirit of any of the essential attributes thereof; therefore, the illustrated embodiments should be considered in all respects as illustrative and not restrictive, reference being made to the appended claims rather than to the foregoing description to indicate the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 051 355.4 | Oct 2004 | DE | national |
Right of priority and benefit of the filing date is herein claimed from the following U.S. non-provisional patent application: application Ser. No. 11254160, filed in the United States Patent and Trademark Office on Oct. 19, 2005 and titled “Arrangement for the display of images perceivable in three dimensions” (the '160 Application). The '160 Application is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11254160 | Oct 2005 | US |
Child | 12977435 | US |