The invention concerns an arrangement for the movement of a working unit of an agricultural working implement between a first position and a second position, with an actuator that is provided with a chamber to which a pressurized medium can be applied and that is coupled to the working unit in such a way that it brings the working unit into the second position when the medium is applied to the chamber and the working unit reaches the first position when the pressurized medium is not applied to the chamber.
In many types of agricultural working machines, a working implement is fastened to a self-propelled carrier vehicle. The working implement that is arranged, for example, for the harvesting of plants, can be repositioned in height in many cases, in order to be able to preset the working height above the ground. Alternatively the contact force of the working implement on the ground may be variable. As a rule, working implements of this type can be moved into a non-operating position for purposes of transportation.
EP 1 051 895 A describes an agricultural working machine in the form of a mowing implement. The mowing implement is provided with several working units that are mechanically separated from each other, with mowing arrangements, that can be pivoted upward by hydraulic cylinders into their transport position. Hydraulic fluid can be applied to a controlling lifting cylinder arranged between the carrier vehicle and the working machine which is thereby brought into the transport position. In order to pivot from the transport position into the working position, the hydraulic fluid is drained from the hydraulic cylinders of the working units. An elastic accumulator is connected to the hydraulic cylinder of the working unit in order to provide the function of a shock absorbing damping element that controls the working unit that contacts the ground in the working position. During the pivoting from the working position into the transport position, the damping element is separated from the hydraulic cylinder by a shut-off valve. In order to guarantee that the shut-off valve remains in the closed position as long as the working units remain in the raised position, a pressure sensor is provided that generates a signal as a function of the pressure holding the working units in the upward position, which keeps the shut-off valve closed as long as the pressure is maintained. After undershooting a threshold value of the pressure, the shut-off valve is again opened after the lowering of the working units. Then, the working units have been folded down, and the pressure established by a safety valve in the cylinder defines the contact pressure, and the damping element absorbs any possible shock loads. Thereby, the damping element is connected to the hydraulic cylinder that pivots the working units only when the working units are in the working position.
In the known working machine it is seen as a disadvantage that a controlling lifting cylinder is required for the raising and lowering of the working units. The lowering of the working units is rather time-consuming, since the pressure in the hydraulic cylinder drains away relatively slowly as the weight of the working units is used to move the hydraulic cylinder. Finally, all three working units always move simultaneously so that the working process of the working units, that are arranged behind each other in the direction of operation, does not occur in a straight line. Thereby, difficulties can occur, for example, in the case of swaths lying perpendicular to each other.
The problem underlying the invention is seen in the need to define an improved movement system for a working implement in which the aforementioned problems have been overcome.
The invention concerns any desired agricultural working implement that is provided with at least one working unit that can be moved between a first position and a second position. As a rule, the first position is an operating position, but this is not an absolute requirement; the second position may be, in particular, a non-operating position. An actuator is provided for the movement of the working unit that contains a chamber to which a medium (for example, hydraulic fluid or air) can be applied. Pressure is applied to the chamber in order to bring the working unit into the second position. As a rule, it is returned to the first position by the force of gravity.
The invention proposes that the chamber of the actuator for controlling the position of the working unit be connected with an accumulator when the working unit is moved from the second position to the first position. Since the pressure in the accumulator can be held to a considerably lower level than the pressure in the chamber at the beginning of the movement into the first position, the coupling of the accumulator to the chamber leads to a rapid, but gentle, lowering of the pressure resulting in the working unit reaching its first position rapidly and gently.
Most appropriately, the accumulator is separated from the chamber when the working unit is brought into the second position, and remains there, so that the pressurized medium is not applied to it, which causes the actuator to bring the working unit into the position.
An obvious solution is to arrange the actuator in such a way that it also supports the working unit in the first position. The working unit is then not in contact with a mechanical stop or the like, but the pressure existing in the chamber of the actuator defines the contact pressure of the working unit on the ground. The chamber is then connected with the accumulator which absorbs any possible shock loads caused by irregularities of the ground during the operation. In order to generate a defined pressure in the chamber, a pressure relief valve can be inserted between the chamber of the actuator and a reservoir for the medium. The pressure relief valve permits the medium to drain into the reservoir as long as the pressure existing in the chamber exceeds the cut-off pressure of the pressure relief valve. The cut-off pressure of the pressure relief valve can be remotely controlled and provided as input by an operator, or an automatic control can be provided.
A control arrangement can also control various valves of the arrangement according to the invention. These various valves include: a first valve that is located between the chamber and a source of pressurized medium; a second valve that is arranged between the chamber and the pressure relief valve; and a third valve that is located between the chamber and a reservoir for the medium. The third valve may be arranged in series with the pressure relief valve; but it would also be conceivable that these be arranged in a parallel circuit in order to accelerate the drainage of the medium in the reservoir when the working unit is brought from the second position to the first position; but then a fourth valve must be arranged in series with the pressure relief valve. This fourth valve is open only in the first position. The control arrangement, that preferably operates electronically, controls the valves that are usually electromagnetic valves. In the first position, the first valve is closed, the second valve is open, and the third valve is open if it is arranged in series with the pressure relief valve; otherwise, the third valve is closed. If the working unit is to be brought into the second position, then on the basis of an input by the operator into an input arrangement, the second valve is closed, the third valve is closed, and the first valve is opened. If the working unit is to be brought back into the first position thereafter on the basis of a corresponding input, the first valve is closed, and the second and third valves are opened. Then, the medium flows out of the chamber of the actuator into the accumulator and into the reservoir for the medium. A third valve, arranged in parallel to the pressure relief valve, must then be closed again in a timely manner in order to assure that the remaining pressure of the medium is sufficient to generate the desired ground contact pressure of the working unit.
Preferably, the working implement is provided with several working units that can be moved by separately controlled actuators with which each of them is associated. Selected working units can be brought into the first position, while others remain in the second position. This may be useful at the conclusion of the operation on a field if the remaining area is too narrow to be processed with all working units or if a reduction of the working width appears appropriate due to high loads on the working units by the harvested crop. As already noted above, the individual working units are controlled, as a rule, by an input arrangement, for example, a joystick, where inappropriate types of operation of the actuators are ignored, particularly during operation over public roads.
In such an embodiment, an appropriate control of the actuators can result in working units arranged one behind the other in the forward operating direction that reach the first position (operating position) one behind the other, with a time delay as a function of the forward operating velocity, where the beginning of their operation occurs along a straight line extending transverse to the forward operating direction.
The drawings show an embodiment of the invention that shall be described in greater detail in the following.
Referring now to
The agricultural working implement 12, configured as a multi-unit large area cutter head, incorporates a main frame 22 that is provided in its rear region with connecting points 24, each of which engages one end of two lifting cylinders 26 whose other ends are arranged on the carrier vehicle 10 to pivot about an axis 28 extending transverse to the direction of operation V, where the ends of the lifting cylinders 26 and the connecting points 24 also engage a pivot axis 30 that is located transverse to the direction of operation V.
The main frame 22 is provided, at both ends, with a vertical pivot axis 32 to which L-shaped side frames 34 are connected in joints, free to rotate, where the rotating motion about the axis 32 is attained by the fact that each side frame 34, in addition, is connected with the main frame 22 over one hydraulic pivoting cylinder 36. Each side frame 34 is provided with retaining flanges 38, each of which engages, free to rotate, the piston end of a single-acting lifting cylinder 40 coupled for pivoting about an axis 42 extending in the direction of operation V. At their rod ends, the lifting cylinders 40 are each also connected in a joint, free to rotate, in a retaining flange 48 about an axis 44 extending in the direction of operation V on a respective main frame 46 of the side working units 14, 18, where the working units 14, 18 are connected in a manner known in itself over at least one further joint, not shown, to the side frame 34 so that an application of pressure to the lifting cylinders 40 leads to a pivoting of the working units 14, 18 in the vertical direction.
In order to also make possible a pivoting of the working unit 16 that is arranged at the front side of the main frame 22, the main frame 22 is provided with further retaining flanges 50 that engage, free to pivot, the piston end of single acting lifting cylinders 52 used as actuators about an axis defined by pins 54 and located transverse to the direction of operation V. The rod end of the lifting cylinders 52 are engaged, free to pivot, by retaining eyes 56 that are arranged on a main frame 58 of the working unit 16 about axes 57 that are also arranged transverse to the direction of operation V. By inserting at least one coupling rod 60, that cannot be changed in length, between the working unit 16 and the main frame 22, an assurance is given that when pressure is applied to the lifting cylinders 52, the forward side working unit 16 can pivot in the vertical direction.
In order to reposition the entire agricultural working implement 12 in height in the vertical direction, opposite ends of a fixed-length coupling rod 66 are respectively pivotally coupled to retaining flanges 62 and 64, that are respectively located on the frame 22 and vehicle 10, such that pressure applied to the lifting cylinders 26 by the on-board hydraulic system of the carrier vehicle 10, that is known in itself and therefore not pictured, leads to the pivoting of the main frame 22 of the agricultural working implement 12 in the vertical direction.
The mechanism shown in
For the right working unit 18, an electromagnetically controlled shut-off valve 118 is connected on its inlet side with the line 100 and on its outlet side with a line 120, which is connected with the rod end chamber of the hydraulic cylinder 40 of the right working unit 18. Furthermore, the line 120 is connected with an accumulator control device defined by an electromagnetic shut-off valve 122, whose other end is connected with an elastic (pneumatic) accumulator 124. Furthermore the line 120 is connected with a further electromagnetically controlled shut-off valve 126, whose output side is connected over a pressure relief valve 128 with the line 102.
For the center working unit 16, an electromagnetically controlled shut-off valve 130 is connected at its inlet side with the line 100 and on its outlet side with a line 132, which is connected with the rod end chambers of the hydraulic cylinders 52 of the center working unit 16. Furthermore, the line 132 is connected with an accumulator control device defined by an electromagnetic shut-off valve 134, whose other end is connected with an elastic (pneumatic) accumulator 136. Furthermore, the line 132 is connected with a further, electromagnetically controlled shut-off valve 138, whose outlet side is connected over a pressure relief valve 140 with the line 102.
The shut-off valves 106, 110, 114, 118, 122, 126, 130, 134, and 138 are controlled by a control arrangement 104, shown schematically. The pressure relief valves 116, 128 and 140 can be repositioned by the control arrangement, so that their shut-off pressure can be varied by remote control. The control arrangement can be located on the carrier vehicle 10 or on the working implement 12.
The hydraulic cylinders 40 and 52 make it possible to lift the working units 14, 16, 18 about horizontal pivot axes and to bring them out of the operating position shown in
The pressure in the hydraulic cylinders 40 and 52, and thereby the ground contact pressure of the working units 14, 16, and 18, is defined in the operating position by the pressure relief valves 116, 128, and 140, whose shut-off pressure can be controlled by the control arrangement 104. The working units 14, 16, and 18 make contact with the ground in the working position and transmit shock loads to the working implement 10 in case they encounter uneven ground. The result is that the pistons of the hydraulic cylinders 40 and 52 assume different positions. The elastic accumulators 112, 124, and 136 take in or discharge hydraulic fluid as a function of the position of the pistons. Thereby the accumulators take over the function of a shock absorbing damping element, so that the mechanical damping elements provided in known working implements, such as compression springs, can be omitted.
If one of the keys 204-208 or 212-216 is activated, only the valves associated with the selected working units are activated by the control arrangement 104, so that only this working unit is moved.
In some cases, it may be useful to begin a mowing process at a straight line that extends transverse to the direction of operation V. After actuating a further key, not shown in
Having described the preferred embodiment, it will become apparent that various modifications can be made without departing from the scope of the invention as defined in the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
102 06 507 | Feb 2002 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4307559 | Jupp et al. | Dec 1981 | A |
4707971 | Forpahl et al. | Nov 1987 | A |
5566537 | Kieffer et al. | Oct 1996 | A |
5794422 | Reimers et al. | Aug 1998 | A |
6098719 | Turner | Aug 2000 | A |
6119802 | Puett, Jr. | Sep 2000 | A |
6349529 | Neuerburg et al. | Feb 2002 | B1 |
Number | Date | Country |
---|---|---|
1 051 895 | May 2000 | EP |
1 051 895 | Nov 2000 | EP |
2 086 286 | Dec 1971 | FR |
Number | Date | Country | |
---|---|---|---|
20030154701 A1 | Aug 2003 | US |