The European patent document EP 1 645 434 A1 discloses an arrangement for the timed processing of book blocks, composed of printed sheets, wherein these are frequently composed either of individual sheets or folded signatures. The aforementioned publication proposes assigning a lifting device provided with end stop to the feed element. With the aid of the lifting device, a supplied book block is pivoted from a horizontal position to a vertical position and is then transferred with the help of an adjustably driven end stop to the clamp of the perfect binder. With this sequence of operational steps, book blocks supplied while positioned horizontal can be transferred without problem and avoiding additional changeover movements to a perfect binding station. In the process, the book block is placed into the upright position by the lifting device and is inserted from below into a perfect binder clamp. The lifting movement is initiated before a book block arrives at the end stop, wherein the adjustability of the end stop can also be utilized for adjusting the format of the supplied book block. However, it has turned out that with such an operating sequence, the cycle time or the cadence is subject to relatively strong limitations. As a result, it is no longer possible to achieve higher timing rates because the underlying sequence is configured such that a return lift is first required before a new book block is advanced, meaning before it can be taken over.
In principle it has turned out that a book block can be supplied along an advancing plane only over the course of a plurality of processing cycles for which a longer feed section is required.
Several solutions are already disclosed for correcting this problem. However, these solutions on the whole did not satisfy since a partial improvement in each case could be achieved only with additional structural measures, which in turn had a negative effect on the susceptibility of the system.
For example, it was necessary to assign a guide element that is positioned at a distance to the guide rails forming the guide plane in order to prevent the possible tilting to one side of the book block at the end stop. This guide element supports and guides the book block on the opposite side.
To be sure, the book blocks can be pivoted with the aid of a gear assembly that is drive-connected to the end stop from the horizontal position on the feed element to a vertical position in which it rests on the book block spine, but this can be done only if corresponding additional guide rails are provided.
To prevent a tilting, the different book block thicknesses furthermore require an adjustment of the distance between the guide plane formed with the guide rails and the guide element. Unfortunately, this can be achieved with respect to kinematics only if a traction mechanism is provided.
It must furthermore be considered that at the instant of feeding the book block, meaning when the aforementioned lifting device is in the starting position, the guide rails must advantageously be positioned below the conveying center of the conveying elements, which are supported gliding on supports, to avoid friction between the book blocks and the guide rails, wherein this requires additional measures.
As a result of these point-by-point considerations, we can state that all the modifications disclosed so far involve a relatively large expenditure and have not always yielded the initially expected results, so that we now feel pressured to take new paths and provide new suggestions for developing an arrangement for the timed processing of book blocks composed of at least one printed sheet. It may be taken into consideration here that the book blocks may be composed of loose sheets, meaning the printed sheets are not securely joined to each other. Of course, it is also possible to use book blocks where the printed sheets are joined ahead of time.
It is an object of the present invention to correct the disadvantages of the prior art and to show advantageous new paths. The above an other objects are accomplished according to one aspect of the invention wherein there is provided an arrangement for the timed processing of book blocks, composed of at least one printed sheet or at least one signature, which, in one embodiment, includes at least one book block feed device; at least one processing station; and at least one transfer device, coupled to the at least one book block feed device to further convey the book blocks from the at least one transfer device to the at least one processing station, wherein the transfer device comprises at least one rotary or quasi-rotary translation device to take over the book blocks, wherein the at least one translation device operates in at least two dimensions to further convey the book blocks, wherein the at least one translation device has a uniform or changeable movement speed, and wherein the center axis of the at least one translation device occupies an optional position in space, relative to the at least one processing station.
One embodiment includes a system along with the necessary technical infrastructure, for which the critical speeds of the feeding method can be regular or irregular, can involve an acceleration or delay, can behave either synchronous or asynchronous, and can have adaptive accelerations or delays. The final purpose of the measures according to the embodiment may therefore be seen as a maximizing of the timing rates along with a careful handling of the print medium.
It is furthermore an object of the invention to propose measures for removing the individual book blocks as quickly as possible from the book block feed device, for example, by using a transfer device, which securely creates a space for the subsequently arriving book block. This has a positive effect on the cycle times and also allows maximizing the output.
A further object is to ensure a careful transfer of the book blocks along the conveying path, for example from the book block feed device to the transfer device and from there to the book channel.
The book blocks may be generated with the aid of a digital printing press, where such a digital printing press allows the sequential printing of the pages for a book block or a book. The sequential printing of a book block means that the digital printing press may start with the printing of the first sheet, which is followed sequentially and immediately by the printing of the other sheets for completing the book or the book block. Digital printing presses may operate without a fixed printing form and can therefore operate in the above-presented manner. Following the printing operation, the successively printed sheets can then either be stacked to form a book block, or they can be folded with the aid of a suitable folding machine into signatures and then stacked to form book blocks.
The book blocks to be transferred may be loose stacks composed of individual printed sheets or folded signatures. However, they can also be secured for the transport so that the individual printed sheets or the signatures cannot slide relative to each other. This can also be understood to mean a fixation in-between the layers with respect to the stacked printed sheets or signatures, or a temporary fixation, and that this fixation does not have a system-relevant effect in the completely processed and finished printed product or the product which is processed further. As a result, the compactness of the book block can be ensured during the transport.
With respect to the transfer device, an object of the normal or adaptive acceleration or delay is to influence the translational speeds of the transfer device within implemented movement profiles. The movement profiles can include various curve functions, as well as dwell times or stop times. In principle, an object may be to allow the movement speed to follow a specific progressive-movement profile, which is composed of one or more separate curve functions, or of curve functions that are superimposed relative to each other, in connection with the transfer process as well as in view of the otherwise relevant speeds within the arrangement, in particular also in view of the movement speeds of the book block feed device and the book channel.
According to one embodiment, the book block is not supplied and inserted directly into the clamp, but is transferred to an upstream-arranged book channel. A book channel of this type is disclosed in the art and may be used, for example, in connection with a gathering machine. A book channel of this type is known from gathering machines as a gathering channel that can be used to convey signatures, bound books and loose or secured book blocks with the aid of gripper fingers or other auxiliary mechanisms inside the channel.
According to another embodiment, the arrangement distances itself from a device moving in a purely linear or quasi-linear direction for supplying the book blocks from one station to the next station and that it proposes supplying the book blocks with the aid of a rotary or quasi-rotary translation movement to the book channel before they are conveyed further to a processing station. As a result, it may be possible to sustainably increase the timing or throughput rates while, at the same time, permitting a careful handling of the loose book blocks.
For the present case, the term translation refers to a movement where all points of the moving body are moving in the same direction.
The term quasi-rotary translation is in principle is understood to mean a movement for conveying the book block along a curved path. However, at least one linear movement can also be superimposed on the curved movement in one axis, or it can expand or superimpose the rotary movement at an optional location, wherein a movement of this type can also be generated by an outside mechanism, for example a robot-type arm. Accordingly, it is not absolutely required to implement the linear movement sequence before or after the rotary movement, but it can also be implemented in-between. Such combinations are always useful at locations where the space conditions or already existing units restrict the clearance spaces. It is furthermore advantageous that this linear movement can occur in a horizontal, vertical or also slanted position, which additionally ensures a high flexibility for the arrangement according to the invention.
According to another embodiment, during the transfer operation, the rotary or, if applicable, the quasi-rotary translation movement is not necessarily restricted to a two-dimensional movement. Rather, during the feeding operation, the aforementioned translation movements can also easily occupy the third dimension, if necessary, in view of the fact that at least during the complete transfer process the layers of the individual folded sheets must optimally be handled so that they cannot slide relative to each other, for example, meaning such that they can retain their compact shape during the complete process. Relative to the feed plane leading to the book channel, the rotary or quasi-rotary translations can assume any position per se, meaning, for example, horizontal or vertical or angled, where intermediate combinations are possible as well.
According to a further embodiment, the system is configured to allow a continuous as well as an intermittent feeding of the book blocks, which in turn expands or widens the applicability and flexibility of the system. This may be necessary, for example, if measuring/control stations are provided in the processing flow, which trigger interventions based on quality considerations without this having a negative effect on the product-related flow cadence. However, that is not always the case in particular for a conventional linear feed where quality-indicated interventions for the most part have a negative effect on the product-related cadence.
According to one embodiment, the system may include structural measures for which the geometry is selected such that it is in principle unnecessary to adjust the feed devices to the respective book block format. In turn, this has the advantage that even the smallest batches can be processed without requiring major conversions.
As mentioned above, the system according to the various embodiments for the first time may make it possible to achieve the type of comprehensive quality, which until now could not be achieved consequently with the prior art systems, which frequently was the result of a compromise because it would excessively lower the throughput rates.
Since the system according to the invention is flexible, as compared to a strictly timing-related, continuous feeding of the book blocks to the transfer device for the transfer process, it may be possible without problem to provide measuring/control stations prior to the rotary movement, which are adjusted to narrow tolerances and, upon exceeding a specific tolerance limit, are activated and in turn activate corresponding transfer-out mechanisms. The dimensional controls in this case relate in particular to the book block format and may be directed toward the height, width and thickness of the respective book block. In addition, they also comprise an identifying feature for the book block.
According to one embodiment, the measuring/control stations can also forward the measuring data to the following processing station, for example for the precise adjustments of the following processing machines. As a result, the measuring/control stations not only take on a purely static control function for an actual condition, but they also forward production-relevant information to the down-stream arranged processing machines.
According to another embodiment, the rotary as well as the quasi-rotary translation movements can be accelerated or delayed either in a uniform or non-uniform manner, wherein we point to the above explanations for the effects of such a speed change.
According to a further embodiment, the book blocks moving along the feed section can be positioned either transverse or in longitudinal direction, without this negatively affecting the timing rates. For example, optimally adjusting the position of the book block in front of the perfect binder does not influence the timing rate predetermined by the translation. This high flexibility is caused by the wide range of embodiment options for the translation devices used in the area of the transfer device, meaning the movement sequence of the translation can control the transfer of the book block to the book channel such that the following processes, e.g. the application of the binder, can occur under continuous optimum processing conditions.
Emphasized herein is the fact that the different options for configuring the transfer devices used all have a congruent finality and accordingly are all subject matters representing a uniform inventive idea.
Owing to the high flexibility of the rotary translation, it is also possible to provide additional control mechanisms along the path to the transfer station, which can monitor the quality, wherein these can be focused onto the position and inner consistency of the book blocks.
According to one embodiment, the takeover element belonging to the transfer device, for example taking the shape of a fork-type structure, takes over the advancing of the book blocks during the translation and is subjected to a angular movement immediately before the transfer, which forces the book block to assume a slanted position in the takeover element, so that the book block can purposely slide toward the end stop within this takeover element. A slanted positioning of this type among other things has a stabilizing effect on the book blocks mass, wherein this effect is accompanied by an increase in the ability of the body to stay put. However, the slanted position can also exist from the start and does not necessarily have to be imposed during the process at a suitable location, meaning specifically during the course of the rotary or quasi-rotary movement.
One advantage of the invention as it relates to the system includes the fact that it also has advantages for the peripheral systems, which are responsible for the product flows. As a result, printed products from a plurality of product flows or from divided product flows can be advanced, meaning a plurality of feeding stations can converge toward the rotary or quasi-rotary translation of the operating transfer device, so that parallel-operated transfer devices can also be provided as needed. This has the effect of an increase in the production, which is causally connected to an increased productivity of the arrangement according to the invention.
The present invention will be more readily understood from the following detailed description when read in conjunction with the following drawings, in which:
To ensure uniformity for the terms used herein, the feed device 60 is henceforth called a “book block feed device” and the conveying section 70 for conveying the book blocks downstream of the transfer device is referred to as “book channel.”
This Figure only shows the basic components of an arrangement A of this type, wherein the individual components are shown and described in further detail in the following Figures. Thus, the transfer device 10 is shown and described in more detail in
The transfer device 10 shown here in
The respectively assumed position is directly connected to the optimum takeover and subsequent transfer of the book blocks 61, meaning to the sequence of operations for the book block feed device 60 as well as the book channel 70. The goal here is to push the book blocks supplied by the book block feed device 60 carefully onto the support plane 17 and to transfer these book blocks carefully from the support plane to the book channel 70.
The support planes 17 at first maintain the initially assumed horizontal or quasi-horizontal position. Seen this way, the circular rotating takeover elements 16 follow a movement sequence that resembles the course of a giant wheel equipped with freely suspended cabins.
The book blocks 61 are conveyed further while positioned on the support plane 17 and, in the final phase of a cycle, are transferred to the book channel 70. As previously mentioned, this transfer should take place with the utmost care, which represents an essential aspect of ensuring the quality. For that purpose, the dynamic for this transfer can be configured such that the support plane 17 initially occupies an intermediate position above the book channel 70 and, starting from this intermediate position, initiates an acceleration in the direction of the book channel 70, such that it subsequently approaches the book channel 70 in the end phase of the operation with decreasing, adapted speed and in a quasi-asymptotic manner, thereby ensuring that the conditions for the maximum careful transfer of the book block 61 are met. An acceleration of this type can be realized in a careful manner if a gripper finger located in the intermediate plane is accelerated and moves the book block into the book channel 70, wherein the relative speed differences must be kept low during the transfer of the product to the book channel.
The support plane 17 is delimited by two adjacent walls 18, 19, which may be positioned at approximately a right angle to each other. This right-angle positioning corresponds to the peripheral geometry of the book block 61, wherein the corner formed by the adjacent walls 18, 19 forms an optimum end stop for the book block 61, as will be discussed in further detail later on.
The assumed horizontal position of the individual support planes 17, relative to the book channel 70 underneath, experiences a time-related position change during each rotation, which is started by a link mechanism 24 that grips the respective takeover element 16 just before it reaches the lowest position on the book channel side and imposes on the takeover element 16, rotating past it at this location, a partial angle-changing movement around the shaft 14c, as shown in
Owing to the fact that the takeover element 16 in the described region changes its former position relative to the book channel 70 creates more space, so that the gripper finger 23a passing by immediately underneath does not collide with the arriving takeover element 16, meaning it cannot hit the support plane 17 (see
The link mechanism 24 can furthermore be designed such that the respective takeover element 16 can execute a movement to occupy a slanted or more slanted position in addition to the angle movement, thus forming a diagonal to the corner formed with the adjacent walls 18, 19 so that the book block 61 can if need be slide toward the right-angle corner formed by the two walls 18, 19 (see
In this connection, the slanted positioning of the takeover element 16 on purpose, caused by the effect of the link mechanism 24, can be replaced by using the above-mentioned strategy, meaning to keep the takeover element 16 in the position above the book channel 70 until the respective gripper finger 23 for picking up at this location has passed through the critical zone.
The change in the angle position of the book block can also be effected at a different optional location. In that case, a different mechanism would offer itself, e.g. via a motor shaft or a cam mechanism inside the rotor, which can be superimposed on the normal translation of the transfer device.
The configuration and rotary sequence of the transfer device according to the preceding
The processing station 90 is only indicated in
The clamping devices 32, located at the poles, can maintain the book block position with the aid of a planet gear, as previously described in connection with
The advantages of this arrangement B must be seen in the fact that the number of effective clamping devices 32 as well as the angular speed can be varied without problems to take into consideration the given circumstances. In most cases, the operation may be based on a 90° timing rate, meaning a 90° rotary angle. However, a slanted-angle disposition of the transfer device 30 is also possible and, in particular, is recommended if the book blocks 61 must be supplied or must be conveyed further via a slanted plane. In all cases, the book block is transferred carefully, does not experience internal bending and retains the predetermined compactness or shape.
The linear translation of the clamping device 32 can be effective per se either toward the top or the bottom. The same is true for the clamping device shown in
The arrangement C shown in
A different transfer device is shown in
In connection with the above-described transfer devices, we also want to emphasize that these are particularly useful for providing maximum discharge cadences. As a result of the extraordinary compactness of these devices, it is possible to operate two or more transfer devices along the same book channel, which can accordingly be supplied with book blocks and fully utilized, wherein the discharge cadence for a following, jointly used book channel can also be increased multiple times.
With respect to the transfer devices discussed and shown in
An identification of the book block 61 can also take place at this location, e.g. with the aid of a bar code/data matrix code/transponder/RF ID or the like. However, the identification can also take place downstream or upstream of the measuring/control station 50. If a book block 61 does not pass the quality control test, it is removed from the sequence, for example as shown in
Through adaptive accelerations or delays, which can be effective within the rotary movement of a transfer device as well as relative to the transport speeds within the book block feed devices 60 or the book channels 70, wherein these accelerations and delays in the speed follow a specific curve function, it is possible to smooth out interferences in connection with the transfer or the further conveying of the book blocks 61, as well as to influence the cadence during the transfer of the book blocks 61 to the following processing station. The curve function of one of the above-described transfer devices can furthermore be influenced without problem in one direction by using a linear feed device, not shown in further detail herein, especially if it is necessary to close a gap in the product flow, for example if there are numerous transfer-out operations triggered by the measuring/control station 50 or if the speed for the effective curve function is slowed down during the takeover or transfer-out of a book block.
With respect to this curve function, it must be mentioned here that the translation follows a movement profile composed of different adaptive curve functions and/or dwell times. One characteristic of the curve function according to the invention is that it can assume a uniform speed course if necessary. The discontinuities can be planned such that maintaining the originally intended cadence is ensured.
As previously explained with respect to
The book block production machines can include a digital printing press and a stacking device for stacking the printed sheets, wherein a logistic system or a buffering system can furthermore be installed upstream of these components.
While several embodiments of the invention are described above, it should be understood that the foregoing is presented by way of example only, and not limitation. Thus, the breadth and scope of the invention should not be limited by the above-described embodiments, but should instead be defined only in accordance with the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4157821 | Fabrig | Jun 1979 | A |
5522588 | Soltysiak | Jun 1996 | A |
6966553 | Rathert | Nov 2005 | B2 |
7410157 | Stolz | Aug 2008 | B2 |
20060076725 | Matalevich et al. | Apr 2006 | A1 |
Number | Date | Country |
---|---|---|
1 645 434 | Apr 2006 | EP |
Number | Date | Country | |
---|---|---|---|
20110054672 A1 | Mar 2011 | US |