1. Field of the Invention
The present invention relates to an arrangement structure for a sensor to be mounted to an engine of a vehicle, wherein the engine is arranged in an engine compartment of the vehicle in a posture allowing a crankshaft of the engine to be oriented in a widthwise direction of the vehicle, and the sensor is mounted to a lateral surface of the engine.
2. Description of the Background Art
Heretofore, there has been known an internal combustion engine for a vehicle, which comprises a crankshaft rotatably supported by an engine bock, a compressor mounted to the engine block through a bracket, and a crank angle sensor mounted to a vehicle-frontward wall surface of the engine block facing in a frontward direction of the vehicle, while being exposed outside the engine block, wherein the bracket is provided between the engine block and the compressor, and the crank angle sensor is disposed at a given position of the vehicle-frontward wall surface of the engine block covered by the bracket, as disclosed, for example, in JP 2005-30311A.
In the structure disclosed in the above Patent Document, the crank angle sensor mounted to the vehicle-frontward wall surface of the engine block is covered by the compressor-mounting bracket. This provides an advantage of being able to protect the crank angle sensor against a pebble and water coming in from a front end of the vehicle during traveling of the vehicle.
However, in case where a crank angle sensor is mounted to a vehicle-frontward wall surface of an engine facing in a frontward direction of a vehicle as in the structure disclosed in the above Parent Document, for example, in the event that a relatively large amount of water comes in from the front end of the vehicle, the incoming water is likely to reach the sensor through a small gap or the like and wet the sensor, even if the sensor is shielded by a member, such as a bracket, which is liable to cause adverse effects on performance of the sensor.
Therefore, in view of more reliably prevent the sensor from being wetted by water coming in from the front end of the vehicle, it can be said that it is desirable to mount the sensor to a vehicle-rearward wall surface of the engine facing in a rearward direction of the vehicle, instead of the vehicle-frontward wall surface of the engine. However, even if a mounting position of the sensor is simply changed to the vehicle-rearward wall surface of the engine, it is unable to eliminate a possibility that a foreign object, such as a pebble kicked up by a front wheel, hits the sensor, and there remains a risk of being unable to maintain performance of the sensor on a long-term basis.
In view of the above circumstances, it is an object of the present invention to provide an arrangement structure for a sensor to be mounted to an engine of a vehicle, which is capable of more reliably protecting the sensor mounted to the engine against foreign objects, such as water and a pebble, to adequately maintain performance of the sensor on a long-term basis.
In order to achieve the above object, the present invention provides an arrangement structure for a sensor to be mounted to an engine of a vehicle, wherein the engine is arranged in an engine compartment of the vehicle in a posture allowing a crankshaft of the engine to be oriented in a widthwise direction of the vehicle, and the sensor is mounted to a lateral surface of the engine. The arrangement structure comprises a driveshaft arranged along a vehicle-rearward lateral surface of the engine facing in a rearward direction of the vehicle, to rotatably drive a front wheel, and a flange section provided as a joining section between two members constituting the engine, to protrude in the rearward direction of the vehicle and at a height position below that of the driveshaft, wherein the sensor is mounted to the vehicle-rearward lateral surface of the engine at a height position located above the flange section and in overlapping relation with the driveshaft when viewed from a rear side of the vehicle.
The exhaust passage 7 is arranged to extend from the cylinder head 13 downwardly and in the rearward direction of the vehicle, and led into a cross-sectionally inverted U-shaped floor tunnel 5 extending in a frontward-rearward (i.e., longitudinal) direction of the vehicle along a vehicle floor 4, as shown in
Although a detailed illustration will be omitted, a transaxle (not shown) having an integrated combination of a transmission and a differential gear mechanism is attached to a wall surface of the engine 1 facing on a left side of the vehicle (on the side of a back surface of the drawing sheet of
The crankshaft 8 is rotatably supported by a lower portion of the cylinder block 10, and a drive pulley 17 is attached to a font end of the crankshaft 8 (one end of the crankshaft 8 on the right side of the vehicle). An accessory drive belt 20 is wound around the drive pulley 17 to drive various accessories (22, 23, 24, etc., in
A sprocket (not shown) adapted to be rotated integrally together with the crankshaft 8 is provided between a front wall of the cylinder block 10 and the drive pulley 17 provided at the front end of the crankshaft 8, and a timing chain (not shown) is wound around the sprocket to drive a valve operating mechanism provided inside the cylinder head 13.
More specifically, a valve operating mechanism (not shown) composed of a cam mechanism or the like is provided inside the cylinder head 13 to open and close intake and exhaust valves, and the valve operating mechanism and the sprocket of the crankshaft 8 are adapted to be interlockingly coupled together through the timing chain, so that the rotation of the crankshaft 8 is transmitted to the valve operating mechanism to drivingly open and close intake and exhaust valves. In
As shown in
Further, as shown in
A driveshaft 50 is arranged in the engine compartment 2 to extend in the widthwise direction of the vehicle along a vehicle-rearward lateral surface of the engine 1 facing in the rearward direction of the vehicle. The driveshaft 50 is provided as a rotary shaft for coupling the transaxle to a front-wheel hub (not shown). The driveshaft 50 includes a driveshaft body 51 extending from the differential gear mechanism in the transaxle outwardly in the widthwise direction of the vehicle, and a universal joint unit 52 interposed between the driveshaft body and the front-wheel hub to bendably couple them together. Thus, during running of the engine 1, the rotation of the crankshaft 8 is transmitted to the driveshaft body 51 through the transaxle, and further transmitted to the front-wheel hub through the universal joint unit 52 at a distal end of the driveshaft body 51, so that a front wheel is drivenly rotated integrally together with the front-wheel hub. The driveshaft 50 provided as a driving-force transmitting member is made up of a metal solid member or a pipe member having relatively high rigidity (in
The shaft joint bracket 30 has a split structure consisting of a bracket body 31 fixed to the cylinder block 10, and a cap member 32 detachably fixed to the bracket body 31 through a fastening member, such as a bolt. A circular-shaped space is defined between the bracket body 31 and the cap member 32 to receive therein the driveshaft body 51, and a bearing (not shown) is attached in a gap C shown in
The bracket body 31 has three leg portions 31a extending in a rightward-leftward (i.e., widthwise) direction of the vehicle. Each of the leg portions 31a is fastened to the vehicle-rearward lateral surface of the cylinder block 10 through a fastening member, such as a bolt, so that the shaft joint bracket 30 is detachably fixed to the engine 1.
As shown in
The filter bracket 36 is made up of a metal member having rigidity greater than that of the oil filter 35, and detachably fixed to the vehicle-rearward lateral surface of the lower block 12 through a fastening member, such as a bolt. As shown in
More specifically, the filter bracket 36 is mounted to the vehicle-rearward lateral surface of the lower block 12 at a position close to the front end of the engine 1, and partially covered from the rear side of the vehicle by the shaft joint bracket 30 which is also mounted to the vehicle-rearward lateral surface of the cylinder block 10 at the position close to the front end of the engine 1, as shown in
The filter bracket 36 is arranged to extend from the vehicle-rearward lateral surface of the lower block 12 downwardly and in the rearward direction of the vehicle, in such a manner that a lower end of the filter bracket 36 is located below the height position of the driveshaft 50 supported by the shaft joint bracket 30. The oil filter 35 is detachably fixed to the lower end of the filter bracket 36 located below the height position of the driveshaft 50, by a fastening means, such as screwing.
As shown in
As shown in
A lubricating system of the engine 1 including the oil filter 35 and the oil cooler 38 will be briefly described below. A given amount of lubricating oil for lubricating each portion of the engine 1 is reserved in the oil pan 15, and an oil pump (not shown) composed of a trochoid pump or the like adapted to be rotated in conjunction with the crankshaft 8 is provided in a lower region inside of the engine 1 close to the front end of the engine 1, as a means to pump and pressure-feed the oil reserved in the oil pan 15. Further, the filter bracket 36 has an oil passage (not shown) formed thereinside to serve as a passage for the oil pressure-fed from the oil pump, and the oil passage formed inside the filter bracket 36 is communicated with associated oil passages formed inside the engine 1.
The oil pumped from the oil pan 15 by the oil pump is firstly introduced into the oil filter 35 via an oil passage formed inside the engine 1 to communicate between the oil pump and the filter bracket 36, and the oil passage formed inside the filter bracket 36. Subsequently, the oil filtered through the oil filter 35 and discharged from oil filter 35 is introduced into the oil cooler 38 via an oil passage formed between the filter bracket 36 and the oil cooler 38, and then fed from the oil cooler 38 to the internal sections of the engine 1, such as the crankshaft 8, a cylinder wall and the valve operating mechanism, via a plurality of oil passages each extending to a corresponding one of the internal sections of the engine 1.
A relief solenoid valve 40 is provided in a common oil passage as a part of the oil passages leading the oil from the oil cooler 38 to the internal sections of the engine 1. The solenoid valve 40 is adapted to be opened when the engine is operated in a given condition to release a part of the oil so as to prevent a pressure of the oil from excessively increasing.
The solenoid valve 40 is disposed closer to the front end of the engine 1 relative to the oil cooler 38 and in adjacent relation to the oil cooler 38. Thus, as shown in
As shown in
Further, the flange section 28 for fastening (joining) two engine components consisting of the lower block 12 and the oil pan 15, together, are located below the crank angle sensor 42. As shown in
As described above, in the arrangement structure for a sensor to be mounted to an engine of a vehicle, according to the above embodiment, the driveshaft 50 for rotatably driving the front wheel is arranged along the vehicle-rearward lateral surface of the engine 1 arranged in the engine compartment 2 of the vehicle in the posture allowing the crankshaft 8 to be oriented in the widthwise direction of the vehicle, and the flange section 28a as a joining section between two members constituting the engine (the lower block 12 and the oil pan 15) is provided to protrude in the rearward direction of the vehicle and at a height position below that of the driveshaft 50, wherein the crank sensor 42 is mounted to the vehicle-rearward lateral surface of the engine 1 at a height position located above the flange section 28a and in overlapping relation with the driveshaft 50 when viewed from a rear side of the vehicle. This arrangement structure has an advantage of being able to more reliably protect the crank angle sensor 42 mounted to the engine 1 against foreign objects, such as water and a pebble, to adequately maintain performance of the crank angle sensor 42 on a long-term basis.
More specifically, in the above embodiment, the crank angle sensor 42 is mounted to the vehicle-rearward lateral surface of the engine 1. Thus, even if water, such as rainwater coming in from a front end of the vehicle, gets into the engine compartment 2 of the vehicle during traveling of the vehicle, the water from the vehicle-front can be shielded by the engine 1, to prevent the crank angle sensor 42 mounted to the vehicle-rearward lateral surface of the engine 1 from being wetted by the water. In addition, the driveshaft 50 is arranged to cover the crank angle sensor 42 from the rear side of the vehicle, and the flange section 28a is provided below the crank angle sensor 42 to protrude in the rearward direction of the vehicle. Thus, even if a foreign object, such as a pebble kicked up by a front wheel, comes in toward the crank angle sensor 42, for example, from an obliquely downward position on the rear side of the vehicle with respect to the engine 1, the incoming foreign object can be shielded by the driveshaft 50 and the flange section 28a, to effectively prevent malfunction of the crank angle sensor 42 due to being hit by the foreign object to adequately maintain performance of the crank angle sensor 42 on a long-term basis.
In the above arrangement structure, the flange section 28a for joining the lower block 12 of the cylinder block 10 and the oil pan 15 beneath the lower block 12 together, and the driveshaft 50 for rotatably driving a front wheel, are utilized to prevent a foreign object, such as a pebble, from hitting the crank angle sensor 42. This provides an advantage of being able to achieve the protection of the crank angle sensor 42 with a simple and economic structure utilizing existing components. Further, during traveling (forward traveling) of the vehicle, the driveshaft 50 is rotated in a direction indicated by the arrowed line A in
In the above arrangement structure, the universal joint unit 52 having a diameter greater than that of the driveshaft body 51 is provided at one end of the driveshaft 50, and the crank angle sensor 42 is mounted in opposed relation to the universal joint unit 52. This provides an advantage of being able to more reliably protect the crank angle sensor 42 against a foreign object, such as a pebble, by utilizing the universal joint unit 52 having a relatively large diameter.
More specifically, in the above arrangement structure, a relatively large area rearward of the crank angle sensor 42 can be shielded by the large-diameter universal joint unit 52, to more reliably reduce a possibility that a foreign object from hitting the crank angle sensor 42. In addition, a circumferential velocity of the universal joint unit 52 during rotation is greater than that of the driveshaft body 51. Thus, as compared with a structure where the crank angle sensor 42 is shielded by the driveshaft body 51, a foreign object coming in from below can be more reliably flicked off in the direction away from the crank angle sensor 42, to more effectively prevent the foreign object from hitting the crank angle sensor 42.
In the above embodiment, the shaft joint bracket 30 is mounted to the vehicle-rearward lateral surface of the lower block 12 to rotatably support the driveshaft 50, and the crank angle sensor 42 is arranged in adjacent relation to the shaft joint bracket 30 in the widthwise direction of the vehicle. This provides an advantage of being able to more effectively prevent a foreign object from hitting the crank angle sensor 42, by utilizing the shaft joint bracket 30.
In the above embodiment, the filter bracket 36 having a lower end attached to the oil filter 35 is mounted to the vehicle-rearward lateral surface of the lower block 12 in overlapping relation with the driveshaft 50 in an upward-downward direction, and the crank angle sensor 42 is arranged in adjacent relation to the filter bracket 36 in the widthwise direction of the vehicle. Thus, the crank angle sensor 42 is additionally shielded by the filter bracket 36. This provides an advantage of being able to more reliably protect the crank angle sensor 42 against a foreign object.
In the above embodiment, the crank angle sensor 42 for detecting a rotation angle of the crankshaft 8 is shielded by the driveshaft 50 and the flange section 28a. This provides an advantage of being able to adequately protect the crank angle sensor 42 against a foreign object, such as a pebble, by utilizing the driveshaft 50 and the flange section 28a, while allowing the crank angle sensor 42 to be mounted in a vicinity of the crankshaft 8, i.e., at a relatively low height position having a high risk of being hit by the foreign object.
Although the arrangement structure according to above embodiment is designed to protect the crank angle sensor 42 mounted to the engine as an inline four-cylinder engine against a foreign object by utilizing the driveshaft 50 and the flange section 28a, the arrangement structure of the present invention may also be applied to an crank angle sensor mounted to any other type of engine, such as a V-type six-cylinder engine.
Further, a senor to be protected by utilizing the driveshaft 50 and the flange section 28a is not limited to the crank angle sensor 42. This means that the arrangement structure of the present invention may also be applied to any other type of sensor to be mounted at a relatively low height position of an engine.
In the last place, features and advantages of the present invention disclosed based on the above embodiment will be summarized as follows.
The present invention provides an arrangement structure for a sensor to be mounted to an engine of a vehicle, wherein the engine is arranged in an engine compartment of the vehicle in a posture allowing a crankshaft of the engine to be oriented in a widthwise direction of the vehicle, and the sensor is mounted to a lateral surface of the engine. The arrangement structure comprises a driveshaft arranged along a vehicle-rearward lateral surface of the engine facing in a rearward direction of the vehicle, to rotatably drive a front wheel, and a flange section provided as a joining section between two members constituting the engine, to protrude in the rearward direction of the vehicle and at a height position below that of the driveshaft, wherein the sensor is mounted to the vehicle-rearward lateral surface of the engine at a height position located above the flange section and in overlapping relation with the driveshaft when viewed from a rear side of the vehicle.
In the arrangement structure of the present invention, the sensor is mounted to the vehicle-rearward lateral surface of the engine. Thus, even if water, such as rainwater coming in from a front end of the vehicle, gets into the engine compartment of the vehicle during traveling of the vehicle, the water from the vehicle-front can be shielded by the engine, to prevent the sensor mounted to the vehicle-rearward lateral surface of the engine from being wetted by the water. In addition, the driveshaft is arranged to cover the sensor from the rear side of the vehicle, and the flange section is provided below the sensor to protrude in the rearward direction of the vehicle. Thus, even if a foreign object, such as a pebble kicked up by a front wheel, comes in toward the sensor, for example, from an obliquely downward position on the rear side of the vehicle with respect to the engine, the incoming foreign object can be shielded by the driveshaft and the flange section, to effectively prevent malfunction of the sensor due to being hit by the foreign object to adequately maintain performance of the sensor on a long-term basis.
In the arrangement structure of the present invention, when the driveshaft includes a driveshaft body, and a universal joint unit provided at one end of the driveshaft to have a diameter greater than that of the driveshaft body, the sensor is preferably mounted in opposed relation to the universal joint unit.
This feature provides an advantage of being able to more reliably protect the sensor against a foreign object, such as a pebble, by utilizing the universal joint unit having a relatively large diameter.
Preferably, the arrangement structure of the present invention further comprises a shaft joint bracket mounted to the vehicle-rearward lateral surface of the engine to rotatably support the driveshaft, and wherein the sensor is arranged in adjacent relation to the shaft joint bracket in the widthwise direction of the vehicle.
This feature provides an advantage of being able to more effectively protect the sensor by utilizing the shaft joint bracket.
Preferably, the arrangement structure of the present invention further comprises a filter bracket having a lower end attached to an oil filter, the filter bracket being mounted to the vehicle-rearward lateral surface of the engine in overlapping relation with the driveshaft in an upward-downward direction, and wherein the sensor is arranged in adjacent relation to the filter bracket in the widthwise direction of the vehicle.
This feature provides an advantage of being able to more effectively protect the sensor by utilizing the filter bracket.
In the arrangement structure of the present invention, the sensor is not limited to a specific type. A preferred example of the sensor includes a crank angle sensor. The arrangement structure for the crank angle sensor has an advantage of being able to adequately protect the crank angle sensor against a foreign object, such as a pebble, by utilizing the driveshaft and the flange section, while allowing the crank angle sensor to be mounted in a vicinity of the crankshaft, i.e., at a relatively low height position having a high risk of being hit by the foreign object.
Preferably, in the above arrangement structure, the engine includes a cylinder block, and an oil pan attached to a lower end of the cylinder block, and wherein the flange section is provided as a joining section between the cylinder block and the oil pan.
This feature provides an advantage of being able to effectively protect the crank angle sensor located at a relatively low height position, by utilizing the flange section provided as the joining section between the cylinder block and the oil pan.
This application is based on Japanese Patent application No. 2008-238134 filed in Japan Patent Office on Sep. 17, 2008, the contents of which are hereby incorporated by reference.
Although the present invention has been fully described by way of example with reference to the accompanying drawings, it is to be understood that various changes and modifications will be apparent to those skilled in the art. Therefore, unless otherwise such changes and modifications depart from the scope of the present invention hereinafter defined, they should be construed as being included therein.
Number | Date | Country | Kind |
---|---|---|---|
2008-238134 | Sep 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4413701 | Kumagai | Nov 1983 | A |
4796722 | Kumagai | Jan 1989 | A |
5066266 | Kobayashi | Nov 1991 | A |
5083478 | Hiraiwa | Jan 1992 | A |
5257674 | Okui et al. | Nov 1993 | A |
5704443 | Janiszewski | Jan 1998 | A |
5813381 | Kakimoto et al. | Sep 1998 | A |
6490914 | Brandenburg et al. | Dec 2002 | B1 |
6976790 | Min | Dec 2005 | B2 |
Number | Date | Country |
---|---|---|
1 482 149 | Dec 2004 | EP |
57-107626 | Jul 1982 | JP |
62-135639 | Aug 1987 | JP |
2001 055944 | Feb 2001 | JP |
2005 030311 | Feb 2005 | JP |
2005-030311 | Feb 2005 | JP |
2008-169730 | Jul 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20100064787 A1 | Mar 2010 | US |