Array microphone system and method of assembling the same

Information

  • Patent Grant
  • 11310592
  • Patent Number
    11,310,592
  • Date Filed
    Thursday, October 10, 2019
    5 years ago
  • Date Issued
    Tuesday, April 19, 2022
    2 years ago
Abstract
Embodiments include a microphone assembly comprising an array microphone and a housing configured to support the array microphone and sized and shaped to be mountable in a drop ceiling in place of at least one of a plurality of ceiling tiles included in the drop ceiling. A front face of the housing includes a sound-permeable screen having a size and shape that is substantially similar to the at least one of the plurality of ceiling tiles. Embodiments also include an array microphone system comprising a plurality of microphones arranged, on a substrate, in a number of concentric, nested rings of varying sizes around a central point of the substrate. Each ring comprises a subset of the plurality of microphones positioned at predetermined intervals along a circumference of the ring.
Description
TECHNICAL FIELD

This application generally relates to an array microphone system and method of assembling the same. In particular, this application relates to an array microphone capable of fitting into a ceiling tile of a drop ceiling and providing 360-degree audio pickup with an overall directivity index that is optimized across the voice frequency range.


BACKGROUND

Conferencing environments, such as boardrooms, video conferencing settings, and the like, can involve the use of microphones for capturing sound from audio sources. The audio sources may include human speakers, for example. The captured sound may be disseminated to an audience through speakers in the environment, a telecast, and/or a webcast.


In some environments, the microphones may be placed on a table or lectern near the audio source in order to capture the sound. However, such microphones may be obtrusive or undesirable, due to their size and/or the aesthetics of the environment in which the microphones are being used. In addition, microphones placed on a table can detect undesirable noise, such as pen tapping or paper shuffling. Microphones placed on a table may also be covered or obstructed, such as by paper, cloth, or napkins, so that the sound is not properly or optimally captured.


In other environments, the microphones may include shotgun microphones that are primarily sensitive to sounds in one direction. The shotgun microphones can be located farther away from an audio source and be directed to detect the sound from a particular audio source by pointing the microphone at the area occupied by the audio source. However, it can be difficult and tedious to determine the direction to point a shotgun microphone to optimally detect the sound coming from its audio source. Trial and error may be needed to adjust the position of the shotgun microphone for optimal detection of sound from an audio source. As such, the sound from the audio source may not be ideally detected unless and until the position of the microphone is properly adjusted. And even then, audio detection may be less than optimal if the audio source moves in and out of a pickup range of the microphone (e.g., if the human speaker shifts in his/her seat while speaking).


In some environments, microphones may be mounted to a ceiling or wall of the conference room to free up table space and provide human speakers with the freedom to move around the room, thereby resolving at least some of the above concerns with tabletop and shotgun microphones. Most existing ceiling-mount microphones are configured to be secured directly to the ceiling or hanging from drop-down cables that are mounted to the ceiling. As a result, these products require complex installation and tend to become a permanent fixture. Further, while ceiling microphones may not pick up tabletop noises given their distance from the table, such microphones have their own audio pickup challenges due to a closer proximity to loudspeakers and HVAC systems, a further distance from audio sources, and an increased sensitivity to air motion or white noise.


Accordingly, there is an opportunity for systems that address these concerns. More particularly, there is an opportunity for systems including an array microphone that is unobtrusive, easy to install into an existing environment, and can enable the adjustment of the microphone array to optimally detect sounds from an audio source, e.g., a human speaker, and reject unwanted noise and reflections.


SUMMARY

The invention is intended to solve the above-noted problems by providing systems and methods that are designed to, among other things: (1) provide an array microphone assembly that is sized and shaped to be mountable in a drop ceiling in place of a ceiling tile; and (2) provide an array microphone system comprising a concentric configuration of microphones that achieves improved directional sensitivity over the voice frequency range and an optimal main to side lobe ratio over a prescribed steering angle range.


In an embodiment, an array microphone system comprises a substrate and a plurality of microphones arranged, on the substrate, in a number of concentric, nested rings of varying sizes. In said embodiment, each ring comprises a subset of the plurality of microphones positioned at predetermined intervals along a circumference of the ring.


In another embodiment, a microphone assembly comprises an array microphone comprising a plurality of microphones and a housing configured to support the array microphone. In said embodiment, the housing is sized and shaped to be mountable in a drop ceiling in place of at least one of a plurality of ceiling tiles included in the drop ceiling. Further, a front face of the housing includes a sound-permeable screen having a size and shape that is substantially similar to the at least one of the plurality of ceiling tiles.


In another embodiment, a method of assembling an array microphone comprises arranging a first plurality of microphones to form a first configuration on a substrate and arranging a second plurality of microphones to form a second configuration on the substrate, where the second configuration concentrically surrounds the first configuration. The method further comprises electrically coupling each of the first and second pluralities of microphones to an audio processor for processing audio signals captured by the microphones.


These and other embodiments, and various permutations and aspects, will become apparent and be more fully understood from the following detailed description and accompanying drawings, which set forth illustrative embodiments that are indicative of the various ways in which the principles of the invention may be employed.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a front perspective view of an exemplary array microphone assembly in accordance with certain embodiments.



FIG. 2 is a rear perspective view of the array microphone assembly of FIG. 1 in accordance with certain embodiments.



FIG. 3 is an exploded view of the array microphone assembly of FIG. 1 in accordance with certain embodiments.



FIG. 4 is a side cross-sectional view of the array microphone assembly of FIG. 3 in accordance with certain embodiments.



FIG. 5 is a top plan view of the array microphone included in the array microphone assembly of FIG. 3 in accordance with certain embodiments.



FIG. 6 is an exemplary environment including the array microphone assembly of FIG. 1 in accordance with certain embodiments.



FIG. 7 is another exemplary environment including the array microphone assembly of FIG. 2 in accordance with certain embodiments.



FIG. 8 is another exemplary environment including the array microphone assembly of FIG. 2 in accordance with certain embodiments.



FIG. 9 is a graph showing microphone placement in another example array microphone in accordance with certain embodiments.



FIG. 10 is a block diagram depicting an example array microphone system in accordance with certain embodiments.



FIG. 11 is a polar plot showing select polar responses of the array microphone of FIG. 9 in accordance with certain embodiments.



FIG. 12 is a flow diagram illustrating an example process for assembling an array microphone in accordance with certain embodiments.





DETAILED DESCRIPTION

The description that follows describes, illustrates and exemplifies one or more particular embodiments of the invention in accordance with its principles. This description is not provided to limit the invention to the embodiments described herein, but rather to explain and teach the principles of the invention in such a way to enable one of ordinary skill in the art to understand these principles and, with that understanding, be able to apply them to practice not only the embodiments described herein, but also other embodiments that may come to mind in accordance with these principles. The scope of the invention is intended to cover all such embodiments that may fall within the scope of the appended claims, either literally or under the doctrine of equivalents.


It should be noted that in the description and drawings, like or substantially similar elements may be labeled with the same reference numerals. However, sometimes these elements may be labeled with differing numbers, such as, for example, in cases where such labeling facilitates a more clear description. Additionally, the drawings set forth herein are not necessarily drawn to scale, and in some instances proportions may have been exaggerated to more clearly depict certain features. Such labeling and drawing practices do not necessarily implicate an underlying substantive purpose. As stated above, the specification is intended to be taken as a whole and interpreted in accordance with the principles of the invention as taught herein and understood to one of ordinary skill in the art.


With respect to the exemplary systems, components and architecture described and illustrated herein, it should also be understood that the embodiments may be embodied by, or employed in, numerous configurations and components, including one or more systems, hardware, software, or firmware configurations or components, or any combination thereof, as understood by one of ordinary skill in the art. Accordingly, while the drawings illustrate exemplary systems including components for one or more of the embodiments contemplated herein, it should be understood that with respect to each embodiment, one or more components may not be present or necessary in the system.


Systems and methods are provided herein for an array microphone assembly that (1) is configured to be mountable in a drop ceiling of, for example, a conferencing or boardroom environment, in place of an existing ceiling panel, and (2) includes a plurality of microphone transducers selectively positioned in a self-similar or fractal-like configuration, or constellation, to create a high performance array with, for example, an optimal directivity index and a maximal main-to-side-lobe ratio. In embodiments, this physical configuration can be achieved by arranging the microphones in concentric rings, which allows the array microphone to have equivalent beamwidth performance at any given look angle in a three-dimensional (e.g., X-Y-Z) space. As a result, the array microphone described herein can provide a more consistent output than array microphones with linear, rectangular, or square constellations. Further, each concentric ring within the constellation of microphones can have a slight, rotational offset from every other ring in order to minimize side lobe growth, giving the array microphone lower side lobes than existing arrays with co-linearly positioned elements. This offset configuration can also tolerate further beam steering, which allows the array to cover a wider pick up area. Moreover, the microphone constellation can be harmonically nested to optimize beamwidth over a given set of distinct frequency bands.


In embodiments, the array microphone may be able to achieve maximal side lobe rejection across the voice frequency range and over a broad range of array focus (e.g., look) angles due, at least in part, to the use of micro-electrical mechanical system (MEMS) microphones, which allows for a greater microphone density and improved rejection of vibrational noise, as compared to existing arrays. The microphone density of the array constellation can permit varying beamwidth control, whereas existing arrays are limited to a fixed beamwidth. In other embodiments, the microphone system can be implemented using alternate transduction schemes (e.g., condenser, balanced armature, etc.), provided the microphone density is maintained.



FIGS. 1-5 illustrate an exemplary microphone array assembly 100 comprising a housing 102 and an array microphone 104, in accordance with embodiments. More specifically, FIG. 1 depicts a front perspective view of the microphone array assembly 100, FIG. 2 depicts a rear perspective view of the microphone array assembly 100, FIG. 3 depicts an exploded view of the microphone array assembly 100, showing various components of the housing 102 and the microphone array 104 included therein, FIG. 4 depicts a side cross-sectional view of the microphone array assembly 100, and FIG. 5 depicts the microphone array 104, in accordance with embodiments. For the sake of simplicity and illustration, several structural support elements, such as, e.g., screws, washers, rear mounting plate 101, and cable mounting hooks 103, standoffs 105, have been at least partially removed from select views, such as, e.g., FIGS. 3-5.


The array microphone 104 (also referred to herein as “microphone array”) comprises a plurality of microphone transducers 106 (also referred to herein as “microphones”) configured to detect and capture sounds in an environment, such as, for example, speech spoken by speakers sitting in chairs around a conference table. The sounds travel from the audio sources (e.g., human speakers) to the microphones 106. In some embodiments, the microphones 106 may be unidirectional microphones that are primarily sensitive in one direction. In other embodiments, the microphones 106 may have other directionalities or polar patterns, such as cardioid, subcardioid, or omnidirectional, as desired.


The microphones 106 may be any suitable type of transducer that can detect the sound from an audio source and convert the sound to an electrical audio signal. In a preferred embodiment, the microphones 106 are micro-electrical mechanical system (MEMS) microphones. In other embodiments, the microphones 106 may be condenser microphones, balanced armature microphones, electret microphones, dynamic microphones, and/or other types of microphones.


The microphones 106 can be coupled to, or included on, a substrate 107. In the case of MEMS microphones, the substrate 107 may be one or more printed circuit boards (also referred to herein as “microphone PCB”). For example, in FIG. 5, the microphones 106 are surface mounted to the microphone PCB 107 and included in a single plane. In other embodiments, for example, where the microphones 106 are condenser microphones, the substrate 107 may be made of carbon-fiber, or other suitable material.


As shown in FIGS. 1 and 2, the housing 102 is configured to fully encase the microphone array 104 in order to protect and structurally support the array 104. More specifically, a first or front face of the housing 102 includes a sound-permeable screen or grill 108, and a second or rear face of the housing 102 includes a back panel or support 110. As shown in FIG. 1, the screen 108 can have a perforated surface comprising a plurality of small openings, and can be made of aluminum, plastic, wire mesh, or other suitable material. In other embodiments, the screen 108 may have a substantially solid surface made of sound-permeable film or fabric. As shown in FIG. 3, the housing 102 also includes a membrane 111, made of foam or other suitable material, positioned between the screen 108 and the microphone array 104 to protect the microphone array 104 from external elements, as will be appreciated by those skilled in the pertinent art. As also shown in FIG. 3, the housing 102 further includes side rails 112 for securing each side of the back support 110, the foam membrane 111, and the screen 108 together to form the housing 102. The housing 102 may further include standoffs 105 and spacers (not shown) to mechanically support the microphone array 104 away from other components of the housing 102 and/or the assembly 100.


Referring additionally to FIG. 6, shown is an example ceiling 600 with the microphone array assembly 100 installed therein. The ceiling 600 may be part of a conferencing environment, such as, for example, a boardroom where microphones are utilized to capture sound from audio sources or human speakers. In the exemplary environment of FIG. 6, human speakers (not shown) may be seated in chairs at a table below the ceiling 600, or more specifically, below the microphone array assembly 100, although other physical configurations and placements of the audio sources and/or the microphone array assembly 100 are contemplated and possible. In embodiments, the microphone array 104 may be configured for optimal performance at a certain height, or range of heights, above a floor of the environment, for example, in accordance with standard ceiling heights (e.g., eight to ten feet high), or any other appropriate height range.


As shown in FIG. 6, the ceiling 600 may be a drop ceiling (a.k.a. dropped ceiling or suspended ceiling), or a secondary ceiling hung below a main, structural ceiling. As is conventional, the drop ceiling 600 comprises a grid of metal channels 602 that are suspended on wires (not shown) from the main ceiling and form a pattern of regularly spaced cells. Each cell can be filled with a lightweight ceiling tile or panel 604 that, for example, can be removed to provide access for repair or inspection of the area above the tiles. In a preferred embodiment, the ceiling tiles 604 are drop-in tiles that can be easily installed or removed without disturbing the grid or other tiles 604. Each ceiling tile 604 is typically sized and shaped according to a “cell size” of the grid. In the United States, for example, the cell size is typically a square of approximately two feet by two feet, or a rectangle of approximately two feet by four feet. As another example, in Europe, the cell size is typically a square of approximately 600 millimeters (mm) by 600 mm. As yet another example, in Asia, the cell size is typically a square of approximately 625 mm by 625 mm.


In embodiments, the housing 102 can be sized and shaped for installation in the drop ceiling 600 in place of at least one of the ceiling tiles 604. For example, the housing 102 can have length and width dimensions that are substantially equivalent to the cell size of the grid forming the drop ceiling 600. In one embodiment, the housing 102 is substantially square-shaped with dimensions of approximately two feet by two feet (e.g., each of the side rails 112 is about 2 feet long), so that the housing 102 can replace any one of the ceiling tiles 604 in a standard U.S. drop ceiling. In other embodiments, the housing 102 may be sized and shaped to replace two or more of the ceiling tiles 604. For example, the housing 102 may be shaped as an approximately four feet by four feet square to replace any group of four adjoining ceiling tiles 604 that form a square. In other embodiments, the housing 102 can be sized to fit into a standard European drop ceiling (e.g., 600 mm by 600 mm), or a standard Asian drop ceiling (e.g., 625 mm by 625 mm). By mounting the microphone array assembly 100 in place of a ceiling tile 604 of the drop ceiling 600, the assembly 100 can gain acoustic benefits, similar to that of mounting a speaker in a speaker cabinet (such, for example, infinite baffling).


In some cases, an adapter frame (not shown) may be provided to retro-fit or adapt the housing 102 to be compatible with drop ceilings that have a cell size that is larger than the housing 102. For example, the adapter frame may be an aluminum frame that can be coupled around a perimeter of the housing 102 and has a width that extends the dimensions of the housing 102 to fit a predetermined cell size. In such cases, a housing 102 that is sized for standard U.S. ceilings can be adapted to fit, for example, a standard Asian ceiling. In other cases, the housing 102 may be designed to fit a minimum cell size (such as, for example, a 600 mm by 600 mm square), and the adapter frame may be provided in multiple sizes or widths that can extend the dimensions of the housing 102 to fit various different cell sizes (such as, for example, a two feet by two feet square, a 625 mm by 625 mm square, etc.), as needed.


In embodiments, all or portions of the housing 102 may be made of a lightweight, sturdy aluminum or any other material that is light enough to allow the microphone array assembly 100 to be supported by the grid of the drop ceiling 600 and strong enough to enable the housing 102 to support the microphone array 104 mounted therein. For example, in certain embodiments, at least the back panel 110 comprises a flat, aerospace-grade, aluminum board comprising a honeycomb core (e.g., as manufactured by Plascore®). Further, according to certain embodiments, the components of the housing 102 (e.g., the side rails 112, the back portion 110, the screen 108, the microphone array 104, etc.) can be configured to easily fit together for assembly and easily taken apart for disassembly. This feature allows the housing 102 to be customizable according to the end user's specific needs, including, for example, replacing the screen 108 with a different material (e.g., fabric) or color (e.g., to match the color of the ceiling tiles 604); adding or removing an adapter frame to change an overall size of the housing 102, as described above; replacing the side rails 112 to match a color or material of the metal channels 602 in the drop ceiling 600; replacing or adjusting the array microphone 104 (e.g., in order to provide an array with more or fewer microphones 106); etc.


Referring additionally to FIGS. 7 and 8, in embodiments, the housing 102 can be configured to provide alternative mounting options, for example, to accommodate environments that have a ceiling 700 that is not a drop ceiling. In some cases, the microphone array assembly 100 can include the rear mounting plate 101, as shown in FIG. 2. The rear mounting plate 101 can be coupled to a mounting post 702, using a standard VESA mounting hole pattern, the mounting post 702 being configured for attachment to the ceiling 700, as shown in FIG. 7. As shown in FIG. 8, in some cases, the microphone array assembly 100 can be mounted to the ceiling 700 by coupling drop-down ceiling cables 704 to the cable mounting hooks 103 attached to the back support 110 of the housing 102, as shown in FIG. 2. In still other embodiments, the housing 102 can be configured to provide a wall-mounting option and/or for placement in front of a performance area, such as a stage.


Referring now to FIGS. 2-4, the microphone array assembly 100 includes a control box 114 mounted on the back support 110. As shown in FIGS. 3 and 4, the control box 114 houses a printed circuit board 116 (also referred to herein as “audio PCB”) that is electrically coupled to the microphone array 104. For example, the audio PCB 116 can be coupled to the microphone array 104, or more specifically, the substrate 107, through a board-to-board connector 118 that extends vertically from the microphone array 104 through an opening 120 in the back support 110, as shown in FIGS. 3 and 4. In embodiments, the audio PCB 116 can be configured as an audio processor (e.g., through hardware and/or software elements) to process audio signals received from and captured by the microphone array 104 and to produce a corresponding audio output, as discussed in more detail herein. As illustrated, the control box 114 can include a removable cover 122 to provide access to the audio PCB 116 and/or other components within the control box 114.


In embodiments, the microphone array assembly 100 includes an external port 124 mechanically coupled to the control box 114 and configured to electrically couple a cable (not shown) to the audio PCB 116. The cable may be a data, audio, and/or power cable, depending on the type of information being conveyed through the port 124. For example, upon coupling the cable thereto, the external port 124 can be configured to receive control signals from an external control device (e.g., an audio mixer, an audio recorder/amplifier, a conferencing processor, a bridge, etc.) and provide the control signals to the audio PCB 116. Further, the port 124 can be configured to transmit or output, to the external control device, audio signals received at the audio PCB 116 from the microphone array 104. In some cases, the external port 124 can be configured to provide power from an external power supply (e.g., a battery, wall outlet, etc.) to the audio PCB 116 and/or the microphone array 104. In a preferred embodiment, the external port 124 is an Ethernet port configured to receive an Ethernet cable (e.g., CAT5, CAT6, etc.) and to provide power, audio, and control connectivity to the microphone array assembly 100. In other embodiments, the external port 124 can include a number of ports and/or can include any other type of data, audio, and/or power port including, for example, a Universal Serial Bus (USB) port, a mini-USB port, a PS/2 port, an HDMI port, a serial port, a VGA port, etc.


Referring now to FIGS. 1 and 3, the microphone array assembly 100 further includes an indicator 126 that visually indicates an operating mode or status of the microphone array 104 (e.g., power on, power off, mute, audio detected, etc.). As shown in FIG. 1, the indicator 126 can be integrated into the screen 108, so that the indicator 126 is visible on an exterior of the front face of the housing 102, to externally indicate the operating mode of the microphone array 104 to human speakers or others in the conferencing environment. In embodiments, the indicator 126 (also referred to herein as “external indicator”) comprises at least one light source (not shown), such as, for example, a light emitting diode (LED), that is turned on or off in accordance with an operating mode (e.g., power on or off) of the array microphone assembly 100. In some embodiments, the light indicator 126 can turn on a first light source to indicate a first operating mode (e.g., power on) of the microphone array assembly 100, turn on a second light source to indicate a second operating mode (e.g., audio detected), such that, in some instances, both light sources may be on at the same time. In a preferred embodiment, the indicator 126 includes at least one LED (not shown) mounted to a PCB 126a (also referred to herein as “LED PCB”) and a light guide 126b configured to optically direct the light from the LED to outside the screen 108, as shown in FIG. 3. The LED can be electrically coupled to the microphone array 104 via a cable 128 that connects the LED PCB 126a to a connector 129 on the microphone PCB 107, as shown in FIGS. 3 and 5.


Referring now to FIGS. 3 and 5, in embodiments, the substrate 107 of the microphone array assembly 100 can include a central PCB 107a and one or more peripheral PCBs 107b positioned around the central board to increase an available space for mounting the microphones 106. For example, a portion of the microphones 106 may be mounted on the central PCB 107a and a remainder of the microphones 106 may be mounted on the peripheral PCBs 107b, as will be explained in more detail below. Each of the peripheral PCBs 107b can be coupled to the central PCB 107a using one or more board-to-board connectors 130. In a preferred embodiment, the microphones 106 are all mounted in one plane of the substrate 107, as shown in FIG. 4.


The number, size, and shape of the one or more peripheral PCBs 107b can vary depending on, for example, a number of sides 132, size and/or shape of the central PCB 107a, as well as an overall shape of the substrate 107. For example, in the illustrated embodiment, the central PCB 107a is a polygon with seven uniform sides 132, and the substrate 107 includes seven peripheral PCBs 107b respectively coupled to each side 132 at an inner end 134 of each peripheral PCB 107b. As illustrated, the inner ends 134 are flat surfaces uniformly sized to match any one of the seven sides 132. Each peripheral PCB 107b can further include an outer end 136 that is opposite the inner end 134. In the illustrated embodiment, the substrate 107 is shaped as a circle, and therefore, the outer end 136 of each peripheral PCB 107b is curved.


In other embodiments, the central PCB 107a can have other overall shapes, including, for example, other types of polygons (e.g., square, rectangle, triangle, pentagon, etc.), a circle, or an oval. In such cases, the inner ends 134 of the peripheral PCBs 107b may be sized and shaped according to the size and shape of the sides 132 of the central PCB 107a. For example, in one embodiment, the central PCB 107 may have a circular shape such that each of the sides 132 is curved, and therefore, the inner ends 134 of the peripheral PCBs 107b may also be curved. Likewise, in other embodiments, the substrate 107 can have other overall shapes, including, for example, an oval or a polygon, and the outer ends 136 of the peripheral PCB 107b can be shaped accordingly. In still other embodiments, the substrate 107 can include a donut-shaped peripheral PCB 107b surrounding a circular central PCB 107a, or a single, continuous board 107 comprising all of the microphone transducers 106.


As shown in FIG. 5, in embodiments, the plurality of microphones 106 includes a central microphone 106a positioned at a central point of the central PCB 107a and a remaining set of the microphones 106b that are arranged in a fractal, or self-similar, configuration surrounding the central microphone 106a and positioned on either the central PCB 107a or the peripheral PCB 107b. Due, at least in part, to the fractal-like placement of the microphones 106, the array microphone 104 can achieve improved directional sensitivity across the voice frequency range and maximal main-to-side-lobe ratio over a prescribed steering angle range. As a result, the microphone array 104 can more precisely “listen” for signals coming from a single direction and reject unwanted noise and/or interference sounds, and can more effectively differentiate between adjacent human speakers. In addition, the fractal nature of the microphone configuration allows the directivity of the array 104 to be easily extensible to a wider frequency range (e.g., lower and/or higher frequencies) by adding more microphones and/or creating a larger-sized microphone array 104.


More specifically, in embodiments, the microphones 106 can be arranged in concentric, circular rings of varying sizes, so as to avoid undesired pickup patterns (e.g., due to grating lobes) and accommodate a wide range of audio frequencies. As used herein, the term “ring” may include any type of circular configuration (e.g., perfect circle, near-perfect circle, less than perfect circle, etc.), as well as any type of oval configuration or other oblong loop. As shown in FIG. 5, the rings can be positioned at various radial distances from the central microphone 106a, or a central point of the substrate 107, to form a nested configuration that can handle progressively lower audio frequencies, with the outermost ring being configured to optimally operate at the lowest frequencies in the predetermined operating range. Using harmonic nesting techniques, the concentric rings can be used to cover a specific frequency bands within a range of operating frequencies.


In embodiments, each ring contains a different subset of the remaining microphones 106b, and each subset of microphones 106b can be positioned at predetermined intervals along a circumference of the corresponding ring. The predetermined interval or spacing between neighboring microphones 106b within a given ring can depend on a size or diameter of the ring, a number of microphones 106b included in the subset assigned to that ring, and/or a desired sensitivity or overall sound pressure for the microphones 106b in the ring. Increasing the number of microphones 106 and a microphone density of the rings (e.g., due to nesting of the rings) can help remove grating lobes and thereby, produce an improved beamwidth with a near constant frequency response across all frequencies within the preset range.


As will be appreciated, FIG. 5 only shows an exemplary embodiment of the array microphone 104 and other configurations of the microphones 106 are contemplated in accordance with the principles disclosed herein. For example, in some embodiments, the plurality of microphones 106 may be arranged in concentric rings around a central point, but without any microphone positioned at the central point (e.g., without the central microphone 106a). In still other embodiments, only a portion of the microphones 106 may be arranged in concentric rings, and the remaining portion of the microphones 106 may be positioned at various points outside of, or in between, the discrete rings, at random locations on the substrate 107, or in any other suitable arrangement.



FIG. 9 graphically depicts an exemplary microphone configuration 900 that may be found in an array microphone in accordance with certain embodiments. The microphone configuration 900 may be substantially similar to the self-similar configuration of microphones 106 included the microphone array 104, except for the number of microphones 106b included in an innermost ring of the array 104. As shown, the microphone configuration 900 includes one microphone 902 (e.g., the central microphone 106a) located at a center of the configuration 900 and a plurality of microphones 906 (e.g., the remaining set of microphones 106b) arranged in seven concentric rings 910-922. For ease of explanation and illustration, a circle has been drawn through each group of microphones 906 that forms the rings of the microphone configuration 900.


In order to accommodate the microphones 906, the microphone configuration 900 may be mounted on a plurality of printed circuit boards (not shown), similar to the central PCB 107a and the plurality of peripheral PCBs 107b. For example, referring now to FIG. 5 as well, the microphones 906 may include (i) a first subset of the microphones 906 mounted on the central PCB 107a to form a first ring 910 surrounding the central microphone 902, (ii) a second subset of the microphones 906 mounted on the central PCB 107a to form a second ring 912 surrounding the first ring 910, (iii) a third subset of the microphones 906 that are mounted on the central PCB 107a to form a third ring 914 surrounding the second ring 912, (iv) a fourth subset of the microphones 906 mounted on the central PCB 107a to form a fourth ring 916 surrounding the third ring 914, (v) a fifth subset of the microphones 906 mounted on the peripheral PCBs 107b to form a fifth ring 918 surrounding the fourth ring 916, (vi) a sixth subset of the microphones 906 mounted on the peripheral PCBs 107b to form a sixth ring 920 surrounding the fifth ring 918, and (vii) a seventh subset of the microphones 906 mounted on, and near an edge of, the peripheral PCBs 107b to form a seventh ring 922 surrounding the sixth ring 920.


In embodiments, the number of rings 910-922 included in the microphone array, a diameter of each ring, and/or the radial distance between neighboring rings can vary depending on the desired frequency range over which the array microphone is configured to operate and what percentage of that range will be covered by each ring. In embodiments, the diameter of each ring in the microphone array defines the lowest frequency at which the subset of microphones within that ring can operate without picking up unwanted signals (e.g., due to grating lobes). As such, the diameter of the outermost ring 922 can determine a lower end of the operational frequency range of the microphone array, and the remaining ring diameters can be determined by subdividing the remaining frequency range. For example and without limitation, in some embodiments, the microphone array can be configured to cover an operational frequency range of at least 100 hertz (Hz) to at least 10 kilohertz (KHz), with each ring covering, or contributing to coverage of, a different octave or other frequency band within this range. As a further example, in such embodiments, the outermost ring 922 may be configured to cover the lowest frequency band (e.g., 100 Hz), and the remaining rings 910-920, either alone or in combination with one or more other rings, may contribute to coverage of the remaining octaves or bands (e.g., frequency bands starting at 200 Hz, 400 Hz, 800 Hz, 1600 Hz, 3200 Hz, and/or 6400 Hz).


As will be appreciated, side lobes may be present in a polar response of a microphone array, in addition to a main lobe of the array beam, the result of undesired, extraneous pick-up sensitivity at angles other than the desired beam angle. Because side lobes can change in magnitude and frequency sensitivity as the array beam is steered, a beam that typically has very small side lobes relative to a main lobe can have a much larger side lobe response once the beam is steered to a different direction. In some cases, the side lobe sensitivity can even rival the main lobe sensitivity at certain frequencies. However, in embodiments, including more microphones 906 within the microphone array can strengthen the main lobe of a given beam and thereby, reduce the ratio of side lobe sensitivity to main lobe sensitivity.


In embodiments, the rings 910-922 may be at least slightly rotated relative to a central axis 930 that passes through a center of the array (e.g., the central microphone 902) in order to optimize the directivity of the microphone array. In such cases, the microphone array can be configured to constrain microphone sensitivity to the main lobes, thereby maximizing main lobe response and reducing side lobe response. In some embodiments, the rings 910-922 can be rotationally offset from each other, for example, by rotating each ring a different number of degrees, so that no more than any two microphones 906 are axially aligned. For example, in microphone arrays with a smaller number of microphones, this rotational offset may be beneficial to reduce an undesired acoustic signal pickup that can occur when more than two microphones are aligned. In other embodiments, for example, in arrays with a large number of microphones, the rotational offset may be more arbitrarily implemented, if at all, and/or other methods may be utilized to optimize the overall directivity of the microphone array.


Referring back to FIG. 5, in embodiments, each of the peripheral PCBs 107b can be uniformly designed to streamline manufacturing and assembly. For example, as shown in FIG. 5, each peripheral PCB 107b can have a uniform shape, and the microphones 106b can be placed in identical locations on each board 107b. In this manner, any one of the peripheral PCBs 107b can be coupled to any one of the connectors 130 in order to electrically couple the peripheral PCB 107b to the central PCB 107a. For example, in the illustrated embodiment, the microphone PCB 107 includes seven peripheral PCBs 107b so that each of the peripheral PCBs 107b can include eight microphones in uniform locations. The remaining 64 microphones are included on the central PCB 107a, so that the microphone array 104 includes a total of 120 microphones.


In embodiments, the total number of microphones 106 and/or the number of microphones 106b on the central PCB 107a and/or each of the peripheral PCBs 107b may vary depending on, for example, the configuration of the harmonic nests, a preset operating frequency range of the array 104, an overall size of the microphone array 104, as well as other considerations. For example, in FIG. 9, the microphone configuration 900 includes only 113 microphones, or more specifically, one central microphone 902 surrounded by 112 microphones 906, because the ring 910 includes seven fewer microphones 906 than the corresponding ring of the microphone array 104 in FIG. 5. In certain embodiments, removing these seven microphones from the first or innermost ring 910 can be achieved with little to no loss in frequency coverage or microphone sensitivity.


In embodiments, the number of microphones 906 included in each of the rings 910-922 can be selected to create a self-similar or repeating pattern in the microphone configuration 900. This can allow the microphone configuration 900 to be easily extended by adding one or more rings, in order to cover more audio frequencies, or easily reduced by removing one or more rings, in order to cover fewer frequencies. For example, in the illustrated embodiments of FIGS. 5 and 9, a fractal or self-similar configuration is formed by placing 7, 14, or 21 microphones 106b/906 (e.g., a multiple of 7) in each of the seven rings 910-922. Other embodiments may include other repeatable arrangements of the microphones 106b/906, such as, for example, multiples of another integer greater than one, or any other pattern that can simplify manufacturing of the array microphone 104. For example and without limitation, in one embodiment, the number of microphones 906 in each of the inner rings 910-920 may alternate between two numbers (e.g., 8 and 16), while the outermost ring 922 may include any number of microphones 906 (e.g., 20).


As will be appreciated, in other embodiments, the microphones 106/906 may be arranged in other configuration shapes, such as, for example, ovals, squares, rectangles, triangles, pentagons, or other polygons, have more or fewer subsets or rings of microphones 106/906, and/or have a different number of microphones 106/906 in each of the rings 910-922 depending on, for example, a desired distance between each ring, an overall size of the substrate 107, a total number of microphones 106 in the array 104, a preset audio frequency range covered by the array 104, as well as other performance- and/or manufacturing-related considerations.



FIG. 10 illustrates a block diagram of an exemplary audio system 1000 comprising an array microphone system 1030 and a control device 1032. The array microphone system 1030 may be configured similar to the array microphone assembly 100 shown in FIGS. 1-5, or in other configurations. For example, the array microphone system 1030 may include an array microphone 1034 that is similar to the array microphone 104. The array microphone system 1030 may also include an audio component 1036 that receives audio signals from the array microphone 1034 and is configured as an audio recorder, audio mixer, amplifier, and/or other component for processing of audio signals captured by the microphone array 1034. In such embodiments, the audio component 1036 may be at least partially included on a printed circuit board (not shown), such as, e.g., the audio PCB 116. In other embodiments, the audio component 1036 is located in the audio system 1000 independently of the array microphone system 1030, and the array microphone system 1030 (e.g., within the control device 1032) may be in wired or wireless communication with the audio component 1036. The array microphone system 1030 may further include an indicator 1038 similar to the indicator 126 to visually indicate an operating mode of the microphone array 1034 on a front exterior of the array microphone system 1030.


The control device 1032 may be in wired or wireless communication with the array microphone system 1030 to control the audio component 1036, the microphone array 1034, and/or the indicator 1038. For example, the control device 1036 may include controls to activate or deactivate the microphone array 1034 and/or the indicator 1038. Controls on the control device 1036 may further enable the adjustment of parameters of the microphone array 1034, such as directionality, gain, noise suppression, pickup pattern, muting, frequency response, etc. In embodiments, the control device 1036 may be a laptop computer, desktop computer, tablet computer, smartphone, proprietary device, and/or other type of electronic device. In other embodiments, the control device 1036 may include one or more switches, dimmer knobs, buttons, and the like.


In some embodiments, the microphone array system 1030 includes a wireless communication device 1040 (e.g., a radio frequency (RF) transmitter and/or receiver) for facilitating wireless communication between the system 1030 and the control device 1036 and/or other computer devices (e.g., by transmitting and/or receiving RF signals). For example, the wireless communication may be in the form of an analog or digital modulated signal and may contain audio signals captured by the microphone array 1034 and/or control signals received from the control device 1036. In some embodiments, the wireless communication device 1040 may include a built-in web server for facilitating web conferencing and other similar features through communication with a remote computer device and/or server.


In some embodiments, the array microphone system 1030 includes an external port (not shown) similar to the external port 124, and the system 1030 is in wired communication with the control device 1036 via a cable 1042 coupled to the port 124. In one such embodiment, the audio system 1000 further includes a power supply 1044 that is also coupled to the array microphone system 1030 via the cable 1042, such that the cable 1042 carries power, control, and/or audio signals between various components of the audio system 1000. In a preferred embodiment, the cable 1042 is an Ethernet cable (e.g., CAT5, CAT6, etc.). In other embodiments, the power supply 1044 is coupled to the array microphone system 1030 via a separate power cable.


As illustrated, the indicator 1038 can include a first light source 1046 and a second light source 1048. The first light source 1046 may be configured to indicate a first operating mode or status of the microphone array 1034 by turning the light on or off, and likewise, the second light source 1048 may be configured to indicate a second operating mode of the microphone array 1034. For example, the first light source 1046 may indicate whether or not the microphone array system 1030 has power (e.g., the light 1046 turns on if the system 1030 is turned on), and the second light source 1048 may indicate whether or not the microphone array 1034 has been muted (e.g., the light 1048 turns on if the system 1030 has been set to a mute setting). In other cases, at least one of the light sources 1046, 1048 may indicate whether or not audio is being received from an outside audio source (e.g., during web conferencing). In a preferred embodiment, the first light source 1046 is a first LED with a first light color, and the second light source 1048 is a second LED with a second light color that is different from the first light color (e.g., blue, green, red, white, etc.). The indicator 1038 can be in electronic communication with and controlled by the control device 1032 and/or the audio component 1036, for example, to determine which operating mode(s) can be indicated by the indicator 1038 and which color(s), LED(s), or other forms of indication are assigned to each operating mode.


In embodiments, the audio component 1036 can be configured (e.g., via computer programming instructions) to enable adjustment of parameters of the microphone array 1034, such as directionality, gain, noise suppression, pickup pattern, muting, frequency response, etc. Further, the audio component 1036 may include an audio mixer (not shown) to enable mixing of the audio signals captured by the microphone array 1034 (e.g., combining, routing, changing, and/or otherwise manipulating the audio signals). The audio mixer may continuously monitor the received audio signals from each microphone in the microphone array 1034, automatically select an appropriate (e.g., best) lobe formed by the microphone array 1034 for a given human speaker, automatically position or steer the selected lobe directly towards the human speaker, and output an audio signal that emphasizes the selected lobe while suppressing signals from the other audio sources.


In embodiments, in order to accommodate the possibility of several human speakers speaking simultaneously (e.g., in a boardroom environment), the microphone array 1034 can be configured to simultaneously form up to eight lobes at any angle around the microphone array 1034, for example, to emulate up to eight seated positions at a table. Due to its microphone configuration (e.g., the microphone configuration 900), the microphone array 1034 can form relatively narrow lobes (e.g., as shown in FIG. 11) to pick up less of the unwanted audio signals (e.g., noise) in an environment. The lobes can be steerable so as to provide audio pick-up coverage of human speakers positioned at any point 360 degrees around the array 1034. For example, the audio component 1036 may be configured (e.g., using computer programming instructions) to allow the lobes to be steered or adjusted to any point in a three-dimensional space covering azimuth, elevation, and distance or radius. In embodiments, the beam pattern of the microphone array 1034 can be electronically steered without physically moving the array 1034.


Further, the audio mixer may be configured to simultaneously provide up to eight individually-routed outputs or channels (not shown), each output corresponding to a respective one of the eight lobes of the microphone array 1034 and being generated by combining the inputs received from all microphones in the microphone array 1034. The audio mixer may also provide a ninth auto-mixed output to capture all other audio signals. As will be appreciated, the microphone array 1034 can be configured to have any number of lobes.


According to embodiments, the lobes of the microphone array 1034 can be configured to have an adjustable beamwidth that allows the audio component 1036 to effectively track, and capture audio from, human speakers as they move within the environment. In some cases, the microphone array system 1030 and/or the control device 1032 may include a user control (not shown) that allows manual beamwidth adjustment. For example, the user control may be a knob, slider, or other manual control that can be adjusted between three settings: normal beamwidth, wide beamwidth, and narrow beamwidth. In other cases, the beamwidth control can be configured using software running on the audio component 1036 and/or the control device 1032.


In environments where multiple microphone array systems 1030 are included, for example, to cover a very large conference room, the audio system 1000 may include an audio mixer that receives the outputs from the audio components 1036 included in each microphone array system 1030 and outputs a mixed output based on the received audio signals.


The audio component 1036 may also include an audio amplifier/recorder (not shown) that is in wired or wireless communication with the audio mixer. The audio amplifier/recorder may be a component that receives the mixed audio signals from the audio mixer and amplifies the mixed audio signals for output to a loudspeaker, headphones, live radio or TV feeds, etc., and/or records the received signals onto a medium, such as flash memory, hard drives, solid state drives, tapes, optical media, etc. For example, the audio amplifier/recorder may disseminate the sound to an audience through loudspeakers located in the environment 600, or to a remote environment via a wired or wireless connection.


The connections between the components shown in FIG. 10 are intended to depict the potential flow of control signals, audio signals, and/or other signals over wired and/or wireless communication links. Such signals may be in digital and/or analog formats.


In embodiments, the microphone array 1034 includes a plurality of MEMS microphones (e.g., the microphones 906) arranged in a self-similar or repeating configuration comprising concentric, nested rings of microphones (e.g., the rings 910-922) surrounding a central microphone (e.g., the microphone 902). MEMS microphones can be very low cost and very small sized, which allows a large number of microphones to be placed in close proximity in a single microphone array. For example, in embodiments, the microphone array 1034 includes between 113 and 120 microphones and has a diameter of less than two feet (e.g., to fit in place of a two feet by two feet ceiling tile). Further, by using MEMS microphones in the microphone array 1034, the audio component 1036 may require less programming and other software-based configuration. More specifically, because MEMS microphones produce audio signals in a digital format, the audio component 1036 need not include analog-to-digital conversion/modulation technologies, which reduces the amount of processing required to mix the audio signals captured by the microphones. In addition, the microphone array 1034 may be inherently more capable of rejecting vibrational noise due to the fact that MEMS microphones are good pressure transducers but poor mechanical transducers, and have good radio frequency immunity compared to other microphone technologies.



FIG. 11 is a diagram of an example microphone polar pattern 1100 in accordance with embodiments. The polar pattern 1100 represents the directionality of a given microphone array (e.g., the microphone array 1034/104 or a microphone array having the microphone configuration 900), or more specifically, indicates how sensitive the microphone array is to sounds arriving at different angles about a central axis of the microphone array. In particular, the polar pattern 1100 shows polar responses of the microphone array at each of frequencies 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, and 8000 Hz, with the microphone array being configured to form a lobe 1102, or a directional beam, at each of these frequencies and the lobe 1102 being steered to an elevation of 60 degrees relative to the plane of the array. As will be appreciated, while the polar plot 1100 shows the polar responses of a single lobe 1102 at selected frequencies, the microphone array is capable of creating multiple simultaneous lobes in multiple directions, each with equivalent, or at least substantially similar, polar response.


As shown by the polar pattern 1100, at the 1000 Hz frequency, side lobes 1104 are formed at 10 decibels (dB) below the main lobe 1102. Further, as shown in FIG. 11, the low frequency response at 500 Hz has a large beamwidth, representing lower directivity, while the higher frequency responses at 1000 Hz, 2000 Hz, 4000 Hz, and 8000 Hz each have a narrow beamwidth, representing high directivity. Thus, in embodiments, the microphone array can provide a high overall directivity index (e.g., 19 dB) across the voice frequency range with a high level of side lobe rejection and an optimal main-to-side-lobe ratio (e.g., 10 dB) over a prescribed steering angle range.



FIG. 12 illustrates an example method 1200 of assembling an array microphone in accordance with embodiments. The array microphone may be substantially similar to the array microphone 104 shown in FIG. 5 and/or may include a plurality of microphones arranged in a configuration that is substantially similar to the microphone configuration 900 shown in FIG. 9. The array microphone may be arranged on a substrate, such as, for example, a printed circuit board, a carbon-fiber board, or any other suitable substrate. In some embodiments, the substrate includes a central board (e.g., the central PCB 107a) and a plurality of peripheral or satellite boards (e.g., the peripheral PCBs 107b). In such cases, the method 1200 can include step 1204, where the peripheral boards are electrically coupled to the central board, for example, using board-to-board connectors (e.g., connectors 130).


In some embodiments, the method 1200 includes, at step 1206, selecting a total number of microphones (e.g., the microphones 106b/906) to include in each configuration that will be placed on the substrate. Where the configuration includes a number of concentric rings, the number of microphones in each ring may be selected based on a desired frequency range of the array, a frequency band assigned to the ring, a desired microphone density for the array, as well as other considerations, as discussed herein. In one embodiment, the total number may be selected from a group consisting of numbers that are a multiple of an integer greater than one. For example, for the rings shown in FIGS. 5 and 9, the integer is seven, and each ring includes 7, 14, or 21 microphones. Other patterns or arrangements may drive the selection of the total number of microphones for each configuration, as described herein.


As illustrated, the method 1200 includes, at step 1208, arranging a first plurality of microphones in a first configuration on the substrate. The method 1200 also includes, at step 1210, arranging a second plurality of microphones in a second configuration on the substrate, the second configuration concentrically surrounding the first configuration. In some embodiments, the method 1200 can additionally include, at step 1212, arranging a third plurality of microphones in a third configuration on the substrate, the third configuration concentrically surrounding the second configuration.


In embodiments, each of the first, second, and/or third configurations comprises a number of concentric rings positioned at different radial distances from a central point of the substrate to form a nested configuration. In some cases, the first configuration includes a different number of concentric rings than at least one of the second configuration and the third configuration. For example, in the illustrated embodiment of FIG. 9, the first configuration comprises at least the innermost ring 910, the second ring 912, and third ring 914, the second configuration comprises at least the fourth ring 916 and the fifth ring 918, and the third configuration comprises at least the sixth ring 920 and the outermost ring 922. In each of the configurations, arranging the microphones can include, for each concentric ring, arranging a subset of the microphones at predetermined intervals along a circumference of that ring. In some embodiments, the first configuration further includes the central point of the substrate, and at least one of the first plurality of microphones is positioned at the central point. Further, in some embodiments, at least one of the rings included in the second configuration may be positioned on the peripheral boards. Further, in some embodiments, the third configuration may be positioned entirely on the peripheral boards.


In some embodiments, the method 1200 can include, at step 1214, rotating at least one of the first, second, and third fourth configurations relative to a central axis (e.g., the central axis 930) of the array microphone so that the configurations are at least slightly rotationally offset from each other, to improve the overall directivity of the array microphone. The method 1200 can also include, at step 1216, electrically coupling each of the microphones to an audio processor for processing audio signals captured by the microphones.


In embodiments, the first, second, and/or third pluralities of microphones are configured to cover different preset frequency ranges, or in some cases, octaves within an overall operating range of the array microphone (for example and without limitation, 100 Hz to 10 KHz). According to embodiments, a diameter of each concentric ring can be defined by a lowest operating frequency assigned to the microphones forming the ring. In some cases, the concentric rings included in the first, second, and/or third configurations are harmonically nested. In a preferred embodiment, the microphone array includes a plurality of MEMS microphones.


Any process descriptions or blocks in figures should be understood as representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process, and alternate implementations are included within the scope of the embodiments of the invention in which functions may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those having ordinary skill in the art.


This disclosure is intended to explain how to fashion and use various embodiments in accordance with the technology rather than to limit the true, intended, and fair scope and spirit thereof. The foregoing description is not intended to be exhaustive or to be limited to the precise forms disclosed. Modifications or variations are possible in light of the above teachings. The embodiment(s) were chosen and described to provide the best illustration of the principle of the described technology and its practical application, and to enable one of ordinary skill in the art to utilize the technology in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the embodiments as determined by the appended claims, as may be amended during the pendency of this application for patent, and all equivalents thereof, when interpreted in accordance with the breadth to which they are fairly, legally and equitably entitled.

Claims
  • 1. A microphone system comprising: a housing;an array microphone comprising a plurality of microphones, the array microphone disposed within the housing and configured to simultaneously form a plurality of lobes at various angles to capture a plurality of audio sources;an audio processor disposed within the housing and electrically coupled to the array microphone, the audio processor configured to process audio signals captured by the plurality of microphones and generate at least one audio output based on the processed audio signals; andan external port disposed within and accessible external to the housing and electrically connected to the audio processor, the external port being configured to: electrically couple a cable received therein to the audio processor and, via the cable, receive control signals from an external control system, transmit the at least one audio output to an external audio component, and receive power from an external power supply.
  • 2. The microphone system of claim 1, wherein the audio processor is configured to perform digital signal processing including at least one of gain control and audio mixing.
  • 3. The microphone system of claim 1, wherein the audio processor is further configured to enable steering of a selected one of the lobes towards a desired location.
  • 4. The microphone system of claim 1, wherein the audio processor is further configured to enable adjustment of a beamwidth of a selected lobe.
  • 5. The microphone system of claim 1, wherein the audio processor is further configured to generate multiple audio outputs based on the audio signals captured by the plurality of microphones, each audio output corresponding to a respective one of the lobes.
  • 6. The microphone system of claim 5, wherein the multiple audio outputs are transmitted to the external audio component via the external port.
  • 7. The microphone system of claim 5, wherein the audio processor is further configured to simultaneously provide each of the multiple audio outputs as an individually-routed channel.
  • 8. The microphone system of claim 5, wherein the audio processor is further configured to provide an auto-mixed output based on the audio signals captured by the plurality of microphones.
  • 9. The microphone system of claim 1, further comprising an indicator visible externally of the housing and configured to indicate an operating mode of the array microphone.
  • 10. The microphone system of claim 1, wherein the plurality of microphones are micro-electrical mechanical system (MEMS) microphones.
  • 11. The microphone system of claim 1, wherein the power received at the external port is for powering the array microphone.
  • 12. The microphone system of claim 1, wherein the control signals received at the external port are for controlling the audio processor.
  • 13. The microphone system of claim 1, wherein the plurality of microphones are arranged in a number of concentric, nested groups.
  • 14. The microphone system of claim 13, wherein the concentric, nested groups are rotationally offset from each other.
  • 15. The microphone system of claim 14, wherein each group is rotationally offset from a central axis by a different number of degrees.
  • 16. The microphone system of claim 13, wherein the groups are positioned at different radial distances from a central point of the array microphone to form a nested configuration.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/833,404, filed on Dec. 6, 2017, which is a continuation of U.S. patent application Ser. No. 15/631,310, filed on Jun. 23, 2017, which is a continuation of U.S. patent application Ser. No. 15/403,765, filed on Jan. 11, 2017, which is a continuation of U.S. patent application Ser. No. 14/701,376, filed on Apr. 30, 2015, now U.S. Pat. No. 9,565,493. The contents of each application are fully incorporated herein by reference.

US Referenced Citations (976)
Number Name Date Kind
1535408 Fricke Apr 1925 A
1540788 McClure Jun 1925 A
1965830 Ammer Jul 1934 A
2075588 Meyers Mar 1937 A
2113219 Olson Apr 1938 A
2164655 Kleerup Jul 1939 A
D122771 Doner Oct 1940 S
2233412 Hill Mar 1941 A
2268529 Stiles Dec 1941 A
2343037 Adelman Feb 1944 A
2377449 Prevette Jun 1945 A
2481250 Schneider Sep 1949 A
2521603 Prew Sep 1950 A
2533565 Eichelman Dec 1950 A
2539671 Olson Jan 1951 A
2777232 Kulicke Jan 1957 A
2828508 Labarre Apr 1958 A
2840181 Wildman Jun 1958 A
2882633 Howell Apr 1959 A
2912605 Tibbetts Nov 1959 A
2938113 Schnell May 1960 A
2950556 Larios Aug 1960 A
3019854 OBryant Feb 1962 A
3132713 Seeler May 1964 A
3143182 Sears Aug 1964 A
3160225 Sechrist Dec 1964 A
3161975 McMillan Dec 1964 A
3205601 Gawne Sep 1965 A
3239973 Hannes Mar 1966 A
3240883 Seeler Mar 1966 A
3310901 Sarkisian Mar 1967 A
3321170 Vye May 1967 A
3509290 Mochida Apr 1970 A
3573399 Schroeder Apr 1971 A
3657490 Scheiber Apr 1972 A
3696885 Grieg Oct 1972 A
3755625 Maston Aug 1973 A
3828508 Moeller Aug 1974 A
3857191 Sadorus Dec 1974 A
3895194 Fraim Jul 1975 A
3906431 Clearwaters Sep 1975 A
D237103 Fisher Oct 1975 S
3936606 Wanke Feb 1976 A
3938617 Forbes Feb 1976 A
3941638 Horky Mar 1976 A
3992584 Dugan Nov 1976 A
4007461 Luedtke Feb 1977 A
4008408 Kodama Feb 1977 A
4029170 Phillips Jun 1977 A
4032725 McGee Jun 1977 A
4070547 Dellar Jan 1978 A
4072821 Bauer Feb 1978 A
4096353 Bauer Jun 1978 A
4127156 Brandt Nov 1978 A
4131760 Christensen Dec 1978 A
4169219 Beard Sep 1979 A
4184048 Alcaide Jan 1980 A
4198705 Massa Apr 1980 A
D255234 Wellward Jun 1980 S
D256015 Doherty Jul 1980 S
4212133 Lufkin Jul 1980 A
4237339 Bunting Dec 1980 A
4244096 Kashichi Jan 1981 A
4244906 Heinemann Jan 1981 A
4254417 Speiser Mar 1981 A
4275694 Nagaishi Jun 1981 A
4296280 Richie Oct 1981 A
4305141 Massa Dec 1981 A
4308425 Momose Dec 1981 A
4311874 Wallace, Jr. Jan 1982 A
4330691 Gordon May 1982 A
4334740 Wray Jun 1982 A
4365449 Liautaud Dec 1982 A
4373191 Fette Feb 1983 A
4393631 Krent Jul 1983 A
4414433 Horie Nov 1983 A
4429850 Weber Feb 1984 A
4436966 Botros Mar 1984 A
4449238 Lee May 1984 A
4466117 Goerike Aug 1984 A
4485484 Flanagan Nov 1984 A
4489442 Anderson Dec 1984 A
4518826 Caudill May 1985 A
4521908 Miyaji Jun 1985 A
4566557 Lemaitre Jan 1986 A
4593404 Bolin Jun 1986 A
4594478 Gumb Jun 1986 A
D285067 Delbuck Aug 1986 S
4625827 Bartlett Dec 1986 A
4653102 Hansen Mar 1987 A
4658425 Julstrom Apr 1987 A
4669108 Deinzer May 1987 A
4675906 Sessler Jun 1987 A
4693174 Anderson Sep 1987 A
4696043 Iwahara Sep 1987 A
4712231 Julstrom Dec 1987 A
4741038 Elko Apr 1988 A
4752961 Kahn Jun 1988 A
4805730 O'Neill Feb 1989 A
4815132 Minami Mar 1989 A
4860366 Fukushi Aug 1989 A
4862507 Woodard Aug 1989 A
4866868 Kass Sep 1989 A
4881135 Heilweil Nov 1989 A
4888807 Reichel Dec 1989 A
4903247 Van Gerwen Feb 1990 A
4923032 Nuernberger May 1990 A
4928312 Hill May 1990 A
4969197 Takaya Nov 1990 A
5000286 Crawford Mar 1991 A
5038935 Wenkman Aug 1991 A
5058170 Kanamori Oct 1991 A
5088574 Kertesz, III Feb 1992 A
D324780 Sebesta Mar 1992 S
5121426 Baumhauer Jun 1992 A
D329239 Hahn Sep 1992 S
5189701 Jain Feb 1993 A
5204907 Staple Apr 1993 A
5214709 Ribic May 1993 A
D340718 Leger Oct 1993 S
5289544 Franklin Feb 1994 A
D345346 Alfonso Mar 1994 S
D345379 Chan Mar 1994 S
5297210 Julstrom Mar 1994 A
5322979 Cassity Jun 1994 A
5323459 Hirano Jun 1994 A
5329593 Lazzeroni Jul 1994 A
5335011 Addeo Aug 1994 A
5353279 Koyama Oct 1994 A
5359374 Schwartz Oct 1994 A
5371789 Hirano Dec 1994 A
5383293 Royal Jan 1995 A
5384843 Masuda Jan 1995 A
5396554 Hirano Mar 1995 A
5400413 Kindel Mar 1995 A
D363045 Phillips Oct 1995 S
5473701 Cezanne Dec 1995 A
5509634 Gebka Apr 1996 A
5513265 Hirano Apr 1996 A
5525765 Freiheit Jun 1996 A
5550924 Helf Aug 1996 A
5550925 Hori Aug 1996 A
5555447 Kotzin Sep 1996 A
5574793 Hirschhorn Nov 1996 A
5602962 Kellermann Feb 1997 A
5633936 Oh May 1997 A
5645257 Ward Jul 1997 A
D382118 Ferrero Aug 1997 S
5657393 Crow Aug 1997 A
5661813 Shimauchi Aug 1997 A
5673327 Julstrom Sep 1997 A
5687229 Sih Nov 1997 A
5706344 Finn Jan 1998 A
5715319 Chu Feb 1998 A
5717171 Miller Feb 1998 A
D392977 Kim Mar 1998 S
D394061 Fink May 1998 S
5761318 Shimauchi Jun 1998 A
5766702 Lin Jun 1998 A
5787183 Chu Jul 1998 A
5796819 Romesburg Aug 1998 A
5848146 Slattery Dec 1998 A
5870482 Loeppert Feb 1999 A
5878147 Killion Mar 1999 A
5888412 Sooriakumar Mar 1999 A
5888439 Miller Mar 1999 A
D416315 Nanjo Nov 1999 S
5978211 Hong Nov 1999 A
5991277 Maeng Nov 1999 A
6035962 Lin Mar 2000 A
6039457 O'Neal Mar 2000 A
6041127 Elko Mar 2000 A
6049607 Marash Apr 2000 A
D424538 Hayashi May 2000 S
6069961 Nakazawa May 2000 A
6125179 Wu Sep 2000 A
D432518 Muto Oct 2000 S
6128395 De Vries Oct 2000 A
6137887 Anderson Oct 2000 A
6144746 Azima Nov 2000 A
6151399 Killion Nov 2000 A
6173059 Huang Jan 2001 B1
6198831 Azima Mar 2001 B1
6205224 Underbrink Mar 2001 B1
6215881 Azima Apr 2001 B1
6266427 Mathur Jul 2001 B1
6285770 Azima Sep 2001 B1
6301357 Romesburg Oct 2001 B1
6329908 Frecska Dec 2001 B1
6332029 Azima Dec 2001 B1
D453016 Nevill Jan 2002 S
6386315 Roy May 2002 B1
6393129 Conrad May 2002 B1
6424635 Song Jul 2002 B1
6442272 Osovets Aug 2002 B1
6449593 Valve Sep 2002 B1
6481173 Roy Nov 2002 B1
6488367 Debesis Dec 2002 B1
D469090 Tsuji Jan 2003 S
6505057 Finn Jan 2003 B1
6507659 Iredale Jan 2003 B1
6510919 Roy Jan 2003 B1
6526147 Rung Feb 2003 B1
6556682 Gilloire Apr 2003 B1
6592237 Pledger Jul 2003 B1
6622030 Romesburg Sep 2003 B1
D480923 Neubourg Oct 2003 S
6633647 Markow Oct 2003 B1
6665971 Lowry Dec 2003 B2
6694028 Matsuo Feb 2004 B1
6704422 Jensen Mar 2004 B1
D489707 Kobayashi May 2004 S
6731334 Maeng May 2004 B1
6741720 Myatt May 2004 B1
6757393 Spitzer Jun 2004 B1
6768795 Feltstroem Jul 2004 B2
6868377 Laroche Mar 2005 B1
6885750 Egelmeers Apr 2005 B2
6885986 Gigi Apr 2005 B1
D504889 Andre May 2005 S
6889183 Gunduzhan May 2005 B1
6895093 Ali May 2005 B1
6931123 Hughes Aug 2005 B1
6944312 Mason Sep 2005 B2
D510729 Chen Oct 2005 S
6968064 Ning Nov 2005 B1
6990193 Beaucoup Jan 2006 B2
6993126 Kyrylenko Jan 2006 B1
6993145 Combest Jan 2006 B2
7003099 Zhang Feb 2006 B1
7013267 Huart Mar 2006 B1
7031269 Lee Apr 2006 B2
7035398 Matsuo Apr 2006 B2
7035415 Belt Apr 2006 B2
7050576 Zhang May 2006 B2
7054451 Janse May 2006 B2
D526643 Ishizaki Aug 2006 S
D527372 Allen Aug 2006 S
7092516 Furuta Aug 2006 B2
7092882 Arrowood Aug 2006 B2
7098865 Christensen Aug 2006 B2
7106876 Santiago Sep 2006 B2
7120269 Lowell Oct 2006 B2
7130309 Planka Oct 2006 B2
D533177 Andre Dec 2006 S
7149320 Haykin Dec 2006 B2
7161534 Tsai Jan 2007 B2
7187765 Popovic Mar 2007 B2
7203308 Kubota Apr 2007 B2
D542543 Bruce May 2007 S
7212628 Popovic May 2007 B2
D546318 Yoon Jul 2007 S
D546814 Takita Jul 2007 S
D547748 Tsuge Jul 2007 S
7239714 De Blok Jul 2007 B2
D549673 Niitsu Aug 2007 S
7269263 Dedieu Sep 2007 B2
D552570 Niitsu Oct 2007 S
D559553 Mischel Jan 2008 S
7333476 LeBlanc Feb 2008 B2
D566685 Koller Apr 2008 S
7359504 Reuss Apr 2008 B1
7366310 Stinson Apr 2008 B2
7387151 Payne Jun 2008 B1
7412376 Florencio Aug 2008 B2
7415117 Tashev Aug 2008 B2
D578509 Thomas Oct 2008 S
D581510 Albano Nov 2008 S
D582391 Morimoto Dec 2008 S
D587709 Niitsu Mar 2009 S
D589605 Reedy Mar 2009 S
7503616 Linhard Mar 2009 B2
7515719 Hooley Apr 2009 B2
7536769 Pedersen May 2009 B2
D595402 Miyake Jun 2009 S
D595736 Son Jul 2009 S
7558381 Ali Jul 2009 B1
7565949 Tojo Jul 2009 B2
D601585 Andre Oct 2009 S
7651390 Profeta Jan 2010 B1
7660428 Rodman Feb 2010 B2
7667728 Kenoyer Feb 2010 B2
7672445 Zhang Mar 2010 B1
D613338 Marukos Apr 2010 S
7701110 Fukuda Apr 2010 B2
7702116 Stone Apr 2010 B2
D614871 Tang May 2010 S
7724891 Beaucoup May 2010 B2
D617441 Koury Jun 2010 S
7747001 Kellermann Jun 2010 B2
7756278 Moorer Jul 2010 B2
7783063 Pocino Aug 2010 B2
7787328 Chu Aug 2010 B2
7830862 James Nov 2010 B2
7831035 Stokes Nov 2010 B2
7831036 Beaucoup Nov 2010 B2
7856097 Tokuda Dec 2010 B2
7881486 Killion Feb 2011 B1
7894421 Kwan Feb 2011 B2
D636188 Kim Apr 2011 S
7925006 Hirai Apr 2011 B2
7925007 Stokes Apr 2011 B2
7936886 Kim May 2011 B2
7970123 Beaucoup Jun 2011 B2
7970151 Oxford Jun 2011 B2
D642385 Lee Aug 2011 S
D643015 Kim Aug 2011 S
7991167 Oxford Aug 2011 B2
7995768 Miki Aug 2011 B2
8000481 Nishikawa Aug 2011 B2
8005238 Tashev Aug 2011 B2
8019091 Burnett Sep 2011 B2
8041054 Yeldener Oct 2011 B2
8059843 Hung Nov 2011 B2
8064629 Jiang Nov 2011 B2
8085947 Haulick Dec 2011 B2
8085949 Kim Dec 2011 B2
8095120 Blair Jan 2012 B1
8098842 Florencio Jan 2012 B2
8098844 Elko Jan 2012 B2
8103030 Barthel Jan 2012 B2
8109360 Stewart, Jr. Feb 2012 B2
8112272 Nagahama Feb 2012 B2
8116500 Oxford Feb 2012 B2
8121834 Rosec Feb 2012 B2
D655271 Park Mar 2012 S
D656473 Laube Mar 2012 S
8130969 Buck Mar 2012 B2
8130977 Chu Mar 2012 B2
8135143 Ishibashi Mar 2012 B2
8144886 Ishibashi Mar 2012 B2
D658153 Woo Apr 2012 S
8155331 Nakadai Apr 2012 B2
8170882 Davis May 2012 B2
8175291 Chan May 2012 B2
8175871 Wang May 2012 B2
8184801 Hamalainen May 2012 B1
8189765 Nishikawa May 2012 B2
8189810 Wolff May 2012 B2
8194863 Takumai Jun 2012 B2
8199927 Raftery Jun 2012 B1
8204198 Adeney Jun 2012 B2
8204248 Haulick Jun 2012 B2
8208664 Iwasaki Jun 2012 B2
8213596 Beaucoup Jul 2012 B2
8213634 Daniel Jul 2012 B1
8219387 Cutler Jul 2012 B2
8229134 Duraiswami Jul 2012 B2
8233352 Beaucoup Jul 2012 B2
8243951 Ishibashi Aug 2012 B2
8244536 Arun Aug 2012 B2
8249273 Inoda Aug 2012 B2
8259959 Marton Sep 2012 B2
8275120 Stokes, III Sep 2012 B2
8280728 Chen Oct 2012 B2
8284949 Farhang Oct 2012 B2
8284952 Reining Oct 2012 B2
8286749 Stewart Oct 2012 B2
8290142 Lambert Oct 2012 B1
8291670 Gard Oct 2012 B2
8297402 Stewart Oct 2012 B2
8315380 Liu Nov 2012 B2
8331582 Steele Dec 2012 B2
8345898 Reining Jan 2013 B2
8355521 Larson Jan 2013 B2
8370140 Vitte Feb 2013 B2
8379823 Ratmanski Feb 2013 B2
8385557 Tashev Feb 2013 B2
D678329 Lee Mar 2013 S
8395653 Feng Mar 2013 B2
8403107 Stewart Mar 2013 B2
8406436 Craven Mar 2013 B2
8428661 Chen Apr 2013 B2
8433061 Cutler Apr 2013 B2
D682266 Wu May 2013 S
8437490 Marton May 2013 B2
8443930 Stewart, Jr. May 2013 B2
8447590 Ishibashi May 2013 B2
8472639 Reining Jun 2013 B2
8472640 Marton Jun 2013 B2
D685346 Szymanski Jul 2013 S
D686182 Ashiwa Jul 2013 S
8479871 Stewart Jul 2013 B2
8483398 Fozunbal Jul 2013 B2
8498423 Thaden Jul 2013 B2
D687432 Duan Aug 2013 S
8503653 Ahuja Aug 2013 B2
8515089 Nicholson Aug 2013 B2
8515109 Dittberner Aug 2013 B2
8526633 Ukai Sep 2013 B2
8553904 Said Oct 2013 B2
8559611 Ratmanski Oct 2013 B2
D693328 Goetzen Nov 2013 S
8583481 Viveiros Nov 2013 B2
8599194 Lewis Dec 2013 B2
8600443 Kawaguchi Dec 2013 B2
8605890 Zhang Dec 2013 B2
8620650 Walters Dec 2013 B2
8631897 Stewart Jan 2014 B2
8634569 Lu Jan 2014 B2
8638951 Zurek Jan 2014 B2
D699712 Bourne Feb 2014 S
8644477 Gilbert Feb 2014 B2
8654955 Lambert Feb 2014 B1
8654990 Faller Feb 2014 B2
8660274 Wolff Feb 2014 B2
8660275 Buck Feb 2014 B2
8670581 Harman Mar 2014 B2
8672087 Stewart Mar 2014 B2
8675890 Schmidt Mar 2014 B2
8675899 Jung Mar 2014 B2
8676728 Velusamy Mar 2014 B1
8682675 Togami Mar 2014 B2
8724829 Visser May 2014 B2
8730156 Weising May 2014 B2
8744069 Cutler Jun 2014 B2
8744101 Burns Jun 2014 B1
8755536 Chen Jun 2014 B2
8811601 Mohammad Aug 2014 B2
8818002 Tashev Aug 2014 B2
8824693 Åhgren Sep 2014 B2
8842851 Beaucoup Sep 2014 B2
8855326 Derkx Oct 2014 B2
8855327 Tanaka Oct 2014 B2
8861713 Xu Oct 2014 B2
8861756 Zhu Oct 2014 B2
8873789 Bigeh Oct 2014 B2
D717272 Kim Nov 2014 S
8886343 Ishibashi Nov 2014 B2
8893849 Hudson Nov 2014 B2
8898633 Bryant Nov 2014 B2
D718731 Lee Dec 2014 S
8903106 Meyer Dec 2014 B2
8923529 McCowan Dec 2014 B2
8929564 Kikkeri Jan 2015 B2
8942382 Elko Jan 2015 B2
8965546 Visser Feb 2015 B2
D725059 Kim Mar 2015 S
D725631 McNamara Mar 2015 S
8976977 De Mar 2015 B2
8983089 Chu Mar 2015 B1
8983834 Davis Mar 2015 B2
D726144 Kang Apr 2015 S
D727968 Onoue Apr 2015 S
9002028 Haulick Apr 2015 B2
D729767 Lee May 2015 S
9038301 Zelbacher May 2015 B2
9088336 Mani Jul 2015 B2
9094496 Teutsch Jul 2015 B2
D735717 Lam Aug 2015 S
D737245 Fan Aug 2015 S
9099094 Burnett Aug 2015 B2
9107001 Diethorn Aug 2015 B2
9111543 Åhgren Aug 2015 B2
9113242 Hyun Aug 2015 B2
9113247 Chatlani Aug 2015 B2
9126827 Hsieh Sep 2015 B2
9129223 Velusamy Sep 2015 B1
9140054 Oberbroeckling Sep 2015 B2
D740279 Wu Oct 2015 S
9172345 Kok Oct 2015 B2
D743376 Kim Nov 2015 S
D743939 Seong Nov 2015 S
9196261 Burnett Nov 2015 B2
9197974 Clark Nov 2015 B1
9203494 Tarighat Mehrabani Dec 2015 B2
9215327 Bathurst Dec 2015 B2
9215543 Sun Dec 2015 B2
9226062 Sun Dec 2015 B2
9226070 Hyun Dec 2015 B2
9226088 Pandey Dec 2015 B2
9232185 Graham Jan 2016 B2
9237391 Benesty Jan 2016 B2
9247367 Noble Jan 2016 B2
9253567 Morcelli Feb 2016 B2
9257132 Gowreesunker Feb 2016 B2
9264553 Pandey Feb 2016 B2
9264805 Buck Feb 2016 B2
9280985 Tawada Mar 2016 B2
9286908 Zhang Mar 2016 B2
9294839 Lambert Mar 2016 B2
9301049 Elko Mar 2016 B2
D754103 Fischer Apr 2016 S
9307326 Elko Apr 2016 B2
9319532 Bao Apr 2016 B2
9319799 Salmon Apr 2016 B2
9326060 Nicholson Apr 2016 B2
D756502 Lee May 2016 S
9330673 Cho May 2016 B2
9338301 Pocino May 2016 B2
9338549 Haulick May 2016 B2
9354310 Visser May 2016 B2
9357080 Beaucoup May 2016 B2
9403670 Schelling Aug 2016 B2
9426598 Walsh Aug 2016 B2
D767748 Nakai Sep 2016 S
9451078 Yang Sep 2016 B2
D769239 Li Oct 2016 S
9462378 Kuech Oct 2016 B2
9473868 Huang Oct 2016 B2
9479627 Rung Oct 2016 B1
9479885 Ivanov Oct 2016 B1
9489948 Chu Nov 2016 B1
9510090 Lissek Nov 2016 B2
9514723 Silfvast Dec 2016 B2
9516412 Shigenaga Dec 2016 B2
9521057 Klingbeil Dec 2016 B2
9549245 Frater Jan 2017 B2
9560446 Chang Jan 2017 B1
9560451 Eichfeld Jan 2017 B2
9565493 Abraham Feb 2017 B2
9578413 Sawa Feb 2017 B2
9578440 Otto Feb 2017 B2
9589556 Gao Mar 2017 B2
9591123 Sorensen Mar 2017 B2
9591404 Chhetri Mar 2017 B1
D784299 Cho Apr 2017 S
9615173 Sako Apr 2017 B2
9628596 Bullough Apr 2017 B1
9635186 Pandey Apr 2017 B2
9635474 Kuster Apr 2017 B2
D787481 Tyss May 2017 S
D788073 Silvera May 2017 S
9640187 Niemisto May 2017 B2
9641688 Pandey May 2017 B2
9641929 Li May 2017 B2
9641935 Ivanov May 2017 B1
9653091 Matsuo May 2017 B2
9653092 Sun May 2017 B2
9655001 Metzger May 2017 B2
9659576 Kotvis May 2017 B1
D789323 Mackiewicz Jun 2017 S
9674604 Deroo Jun 2017 B2
9692882 Mani Jun 2017 B2
9706057 Mani Jul 2017 B2
9716944 Yliaho Jul 2017 B2
9721582 Huang Aug 2017 B1
9734835 Fujieda Aug 2017 B2
9754572 Salazar Sep 2017 B2
9761243 Taenzer Sep 2017 B2
D801285 Timmins Oct 2017 S
9788119 Vilermo Oct 2017 B2
9813806 Graham Nov 2017 B2
9818426 Kotera Nov 2017 B2
9826211 Sawa Nov 2017 B2
9854101 Pandey Dec 2017 B2
9854363 Sladeczek Dec 2017 B2
9860439 Sawa Jan 2018 B2
9866952 Pandey Jan 2018 B2
D811393 Ahn Feb 2018 S
9894434 Rollow, IV Feb 2018 B2
9930448 Chen Mar 2018 B1
9936290 Mohammad Apr 2018 B2
9973848 Chhetri May 2018 B2
9980042 Benattar May 2018 B1
D819607 Chui Jun 2018 S
D819631 Matsumiya Jun 2018 S
10015589 Ebenezer Jul 2018 B1
10021506 Johnson Jul 2018 B2
10021515 Mallya Jul 2018 B1
10034116 Kadri Jul 2018 B2
10054320 Choi Aug 2018 B2
10153744 Every Dec 2018 B1
10165386 Lehtiniemi Dec 2018 B2
D841589 Böhmer Feb 2019 S
10206030 Matsumoto Feb 2019 B2
10210882 McCowan Feb 2019 B1
10231062 Pedersen Mar 2019 B2
10244121 Mani Mar 2019 B2
10244219 Sawa Mar 2019 B2
10269343 Wingate Apr 2019 B2
10367948 Wells-Rutherford Jul 2019 B2
D857873 Shimada Aug 2019 S
10389861 Mani Aug 2019 B2
10389885 Sun Aug 2019 B2
D860319 Beruto Sep 2019 S
D860997 Jhun Sep 2019 S
D864136 Kim Oct 2019 S
10440469 Barnett Oct 2019 B2
D865723 Cho Nov 2019 S
10566008 Thorpe Feb 2020 B2
10602267 Grosche Mar 2020 B2
D883952 Lucas May 2020 S
10650797 Kumar May 2020 B2
D888020 Lyu Jun 2020 S
10728653 Graham Jul 2020 B2
D900070 Lantz Oct 2020 S
D900071 Lantz Oct 2020 S
D900072 Lantz Oct 2020 S
D900073 Lantz Oct 2020 S
D900074 Lantz Oct 2020 S
10827263 Christoph Nov 2020 B2
10863270 O'Neill Dec 2020 B1
10930297 Christoph Feb 2021 B2
10959018 Shi Mar 2021 B1
10979805 Chowdhary Apr 2021 B2
D924189 Park Jul 2021 S
11109133 Lantz Aug 2021 B2
D940116 Cho Jan 2022 S
20010031058 Anderson Oct 2001 A1
20020015500 Belt Feb 2002 A1
20020041679 Beaucoup Apr 2002 A1
20020048377 Vaudrey Apr 2002 A1
20020064158 Yokoyama May 2002 A1
20020064287 Kawamura May 2002 A1
20020069054 Arrowood Jun 2002 A1
20020110255 Killion Aug 2002 A1
20020126861 Colby Sep 2002 A1
20020131580 Smith Sep 2002 A1
20020140633 Rafii Oct 2002 A1
20020146282 Wilkes Oct 2002 A1
20020149070 Sheplak Oct 2002 A1
20020159603 Hirai Oct 2002 A1
20030026437 Janse Feb 2003 A1
20030053639 Beaucoup Mar 2003 A1
20030059061 Tsuji Mar 2003 A1
20030063762 Tajima Apr 2003 A1
20030063768 Cornelius Apr 2003 A1
20030072461 Moorer Apr 2003 A1
20030107478 Hendricks Jun 2003 A1
20030118200 Beaucoup Jun 2003 A1
20030122777 Grover Jul 2003 A1
20030138119 Pocino Jul 2003 A1
20030156725 Boone Aug 2003 A1
20030161485 Smith Aug 2003 A1
20030163326 Maase Aug 2003 A1
20030169888 Subotic Sep 2003 A1
20030185404 Milsap Oct 2003 A1
20030198339 Roy Oct 2003 A1
20030198359 Killion Oct 2003 A1
20030202107 Slattery Oct 2003 A1
20040013038 Kajala Jan 2004 A1
20040013252 Craner Jan 2004 A1
20040076305 Santiago Apr 2004 A1
20040105557 Matsuo Jun 2004 A1
20040125942 Beaucoup Jul 2004 A1
20040175006 Kim Sep 2004 A1
20040202345 Stenberg Oct 2004 A1
20040240664 Freed Dec 2004 A1
20050005494 Way Jan 2005 A1
20050041530 Goudie Feb 2005 A1
20050069156 Haapapuro Mar 2005 A1
20050094580 Kumar May 2005 A1
20050094795 Rambo May 2005 A1
20050149320 Kajala Jul 2005 A1
20050157897 Saltykov Jul 2005 A1
20050175189 Lee Aug 2005 A1
20050175190 Tashev Aug 2005 A1
20050213747 Popovich Sep 2005 A1
20050221867 Zurek Oct 2005 A1
20050238196 Furuno Oct 2005 A1
20050270906 Ramenzoni Dec 2005 A1
20050271221 Cerwin Dec 2005 A1
20050286698 Bathurst Dec 2005 A1
20050286729 Harwood Dec 2005 A1
20060083390 Kaderavek Apr 2006 A1
20060088173 Rodman Apr 2006 A1
20060093128 Oxford May 2006 A1
20060098403 Smith May 2006 A1
20060104458 Kenoyer May 2006 A1
20060109983 Young May 2006 A1
20060151256 Lee Jul 2006 A1
20060159293 Azima Jul 2006 A1
20060161430 Schweng Jul 2006 A1
20060165242 Miki Jul 2006 A1
20060192976 Hall Aug 2006 A1
20060198541 Henry Sep 2006 A1
20060204022 Hooley Sep 2006 A1
20060215866 Francisco Sep 2006 A1
20060222187 Scott Oct 2006 A1
20060233353 Beaucoup Oct 2006 A1
20060239471 Mao Oct 2006 A1
20060262942 Oxford Nov 2006 A1
20060269080 Oxford Nov 2006 A1
20060269086 Page Nov 2006 A1
20070006474 Taniguchi Jan 2007 A1
20070009116 Reining Jan 2007 A1
20070019828 Hughes Jan 2007 A1
20070053524 Haulick Mar 2007 A1
20070093714 Beaucoup Apr 2007 A1
20070116255 Derkx May 2007 A1
20070120029 Keung May 2007 A1
20070165871 Roovers Jul 2007 A1
20070230712 Belt Oct 2007 A1
20070253561 Williams Nov 2007 A1
20070269066 Derleth Nov 2007 A1
20080008339 Ryan Jan 2008 A1
20080033723 Jang Feb 2008 A1
20080046235 Chen Feb 2008 A1
20080056517 Algazi Mar 2008 A1
20080101622 Sugiyama May 2008 A1
20080130907 Sudo Jun 2008 A1
20080144848 Buck Jun 2008 A1
20080168283 Penning Jul 2008 A1
20080188965 Bruey Aug 2008 A1
20080212805 Fincham Sep 2008 A1
20080232607 Tashev Sep 2008 A1
20080247567 Kjolerbakken Oct 2008 A1
20080253553 Li Oct 2008 A1
20080253589 Trahms Oct 2008 A1
20080259731 Happonen Oct 2008 A1
20080260175 Elko Oct 2008 A1
20080279400 Knoll Nov 2008 A1
20080285772 Haulick Nov 2008 A1
20090003586 Lai Jan 2009 A1
20090030536 Gur Jan 2009 A1
20090052684 Ishibashi Feb 2009 A1
20090086998 Jeong Apr 2009 A1
20090087000 Ko Apr 2009 A1
20090087001 Jiang Apr 2009 A1
20090094817 Killion Apr 2009 A1
20090129609 Oh May 2009 A1
20090147967 Ishibashi Jun 2009 A1
20090150149 Cutter Jun 2009 A1
20090161880 Hooley Jun 2009 A1
20090169027 Ura Jul 2009 A1
20090173030 Gulbrandsen Jul 2009 A1
20090173570 Levit Jul 2009 A1
20090226004 Sorensen Sep 2009 A1
20090233545 Sutskover Sep 2009 A1
20090237561 Kobayashi Sep 2009 A1
20090254340 Sun Oct 2009 A1
20090274318 Ishibashi Nov 2009 A1
20090310794 Ishibashi Dec 2009 A1
20100011644 Kramer Jan 2010 A1
20100034397 Nakadai Feb 2010 A1
20100074433 Zhang Mar 2010 A1
20100111323 Marton May 2010 A1
20100111324 Yeldener May 2010 A1
20100119097 Ohtsuka May 2010 A1
20100123785 Chen May 2010 A1
20100128892 Chen May 2010 A1
20100128901 Herman May 2010 A1
20100131749 Kim May 2010 A1
20100142721 Wada Jun 2010 A1
20100150364 Buck Jun 2010 A1
20100158268 Marton Jun 2010 A1
20100165071 Ishibashi Jul 2010 A1
20100166219 Marton Jul 2010 A1
20100189275 Christoph Jul 2010 A1
20100189299 Grant Jul 2010 A1
20100202628 Meyer Aug 2010 A1
20100208605 Wang Aug 2010 A1
20100215184 Buck Aug 2010 A1
20100215189 Marton Aug 2010 A1
20100217590 Nemer Aug 2010 A1
20100245624 Beaucoup Sep 2010 A1
20100246873 Chen Sep 2010 A1
20100284185 Ngai Nov 2010 A1
20100305728 Aiso Dec 2010 A1
20100314513 Evans Dec 2010 A1
20110002469 Ojala Jan 2011 A1
20110007921 Stewart Jan 2011 A1
20110033063 Mcgrath Feb 2011 A1
20110038229 Beaucoup Feb 2011 A1
20110096136 Liu Apr 2011 A1
20110096631 Kondo Apr 2011 A1
20110096915 Nemer Apr 2011 A1
20110164761 McCowan Jul 2011 A1
20110194719 Frater Aug 2011 A1
20110211706 Tanaka Sep 2011 A1
20110235821 Okita Sep 2011 A1
20110268287 Ishibashi Nov 2011 A1
20110311064 Teutsch Dec 2011 A1
20110311085 Stewart Dec 2011 A1
20110317862 Hosoe Dec 2011 A1
20120002835 Stewart Jan 2012 A1
20120014049 Ogle Jan 2012 A1
20120027227 Kok Feb 2012 A1
20120076316 Zhu Mar 2012 A1
20120080260 Stewart Apr 2012 A1
20120093344 Sun Apr 2012 A1
20120117474 Miki May 2012 A1
20120128160 Kim May 2012 A1
20120128175 Visser May 2012 A1
20120155688 Wilson Jun 2012 A1
20120155703 Hernandez-Abrego Jun 2012 A1
20120163625 Siotis Jun 2012 A1
20120169826 Jeong Jul 2012 A1
20120177219 Mullen Jul 2012 A1
20120182429 Forutanpour Jul 2012 A1
20120207335 Spaanderman Aug 2012 A1
20120224709 Keddem Sep 2012 A1
20120243698 Elko Sep 2012 A1
20120262536 Chen Oct 2012 A1
20120288079 Burnett Nov 2012 A1
20120288114 Duraiswami Nov 2012 A1
20120294472 Hudson Nov 2012 A1
20120327115 Chhetri Dec 2012 A1
20120328142 Horibe Dec 2012 A1
20130002797 Thapa Jan 2013 A1
20130004013 Stewart Jan 2013 A1
20130015014 Stewart Jan 2013 A1
20130016847 Steiner Jan 2013 A1
20130028451 De Roo Jan 2013 A1
20130029684 Kawaguchi Jan 2013 A1
20130034241 Pandey Feb 2013 A1
20130039504 Pandey Feb 2013 A1
20130083911 Bathurst Apr 2013 A1
20130094689 Tanaka Apr 2013 A1
20130101141 McElveen Apr 2013 A1
20130136274 Aehgren May 2013 A1
20130142343 Matsui Jun 2013 A1
20130147835 Lee Jun 2013 A1
20130156198 Kim Jun 2013 A1
20130182190 Mccartney Jul 2013 A1
20130206501 Yu Aug 2013 A1
20130216066 Yerrace Aug 2013 A1
20130226593 Magnusson Aug 2013 A1
20130251181 Stewart Sep 2013 A1
20130264144 Hudson Oct 2013 A1
20130271559 Feng Oct 2013 A1
20130294616 Mulder Nov 2013 A1
20130297302 Pan Nov 2013 A1
20130304476 Kim Nov 2013 A1
20130304479 Teller Nov 2013 A1
20130329908 Lindahl Dec 2013 A1
20130332156 Tackin Dec 2013 A1
20130336516 Stewart Dec 2013 A1
20130343549 Vemireddy Dec 2013 A1
20140003635 Mohammad Jan 2014 A1
20140010383 Mackey Jan 2014 A1
20140016794 Lu Jan 2014 A1
20140029761 Maenpaa Jan 2014 A1
20140037097 Labosco Feb 2014 A1
20140050332 Nielsen Feb 2014 A1
20140072151 Ochs Mar 2014 A1
20140098233 Martin Apr 2014 A1
20140098964 Rosca Apr 2014 A1
20140122060 Kaszczuk May 2014 A1
20140177857 Kuster Jun 2014 A1
20140233777 Tseng Aug 2014 A1
20140233778 Hardiman Aug 2014 A1
20140264654 Salmon Sep 2014 A1
20140265774 Stewart Sep 2014 A1
20140270271 Dehe Sep 2014 A1
20140286518 Stewart Sep 2014 A1
20140295768 Wu Oct 2014 A1
20140301586 Stewart Oct 2014 A1
20140307882 Leblanc Oct 2014 A1
20140314251 Rosca Oct 2014 A1
20140341392 Lambert Nov 2014 A1
20140357177 Stewart Dec 2014 A1
20140363008 Chen Dec 2014 A1
20150003638 Kasai Jan 2015 A1
20150025878 Gowreesunker Jan 2015 A1
20150030172 Gaensler Jan 2015 A1
20150033042 Iwamoto Jan 2015 A1
20150050967 Bao Feb 2015 A1
20150055796 Nugent Feb 2015 A1
20150055797 Nguyen Feb 2015 A1
20150063579 Bao Mar 2015 A1
20150070188 Aramburu Mar 2015 A1
20150078581 Etter Mar 2015 A1
20150078582 Graham Mar 2015 A1
20150097719 Balachandreswaran Apr 2015 A1
20150104023 Bilobrov Apr 2015 A1
20150117672 Christoph Apr 2015 A1
20150118960 Petit Apr 2015 A1
20150126255 Yang May 2015 A1
20150156578 Alexandridis Jun 2015 A1
20150163577 Benesty Jun 2015 A1
20150185825 Mullins Jul 2015 A1
20150189423 Giannuzzi Jul 2015 A1
20150208171 Funakoshi Jul 2015 A1
20150237424 Wilker Aug 2015 A1
20150281832 Kishimoto Oct 2015 A1
20150281833 Shigenaga Oct 2015 A1
20150281834 Takano Oct 2015 A1
20150312662 Kishimoto Oct 2015 A1
20150312691 Virolainen Oct 2015 A1
20150326968 Shigenaga Nov 2015 A1
20150341734 Sherman Nov 2015 A1
20150350621 Sawa Dec 2015 A1
20150358734 Butler Dec 2015 A1
20160011851 Zhang Jan 2016 A1
20160021478 Katagiri Jan 2016 A1
20160029120 Nesta Jan 2016 A1
20160031700 Sparks Feb 2016 A1
20160037277 Matsumoto Feb 2016 A1
20160055859 Finlow-Bates Feb 2016 A1
20160080867 Nugent Mar 2016 A1
20160088392 Huttunen Mar 2016 A1
20160100092 Bohac Apr 2016 A1
20160105473 Klingbeil Apr 2016 A1
20160111109 Tsujikawa Apr 2016 A1
20160127527 Mani May 2016 A1
20160134928 Ogle May 2016 A1
20160142548 Pandey May 2016 A1
20160142814 Deroo May 2016 A1
20160142815 Norris May 2016 A1
20160148057 Oh May 2016 A1
20160150315 Tzirkel-Hancock May 2016 A1
20160150316 Kubota May 2016 A1
20160155455 Ojanperä Jun 2016 A1
20160165340 Benattar Jun 2016 A1
20160173976 Podhradsky Jun 2016 A1
20160173978 Li Jun 2016 A1
20160189727 Wu Jun 2016 A1
20160192068 Ng Jun 2016 A1
20160196836 Yu Jul 2016 A1
20160234593 Matsumoto Aug 2016 A1
20160275961 Yu Sep 2016 A1
20160295279 Srinivasan Oct 2016 A1
20160300584 Pandey Oct 2016 A1
20160302002 Lambert Oct 2016 A1
20160302006 Pandey Oct 2016 A1
20160323667 Shumard Nov 2016 A1
20160323668 Abraham Nov 2016 A1
20160330545 McElveen Nov 2016 A1
20160337523 Pandey Nov 2016 A1
20160353200 Bigeh Dec 2016 A1
20160357508 Moore Dec 2016 A1
20170019744 Matsumoto Jan 2017 A1
20170064451 Park Mar 2017 A1
20170105066 McLaughlin Apr 2017 A1
20170134849 Pandey May 2017 A1
20170134850 Graham May 2017 A1
20170164101 Rollow, IV Jun 2017 A1
20170180861 Chen Jun 2017 A1
20170206064 Breazeal Jul 2017 A1
20170230748 Shumard Aug 2017 A1
20170264999 Fukuda Sep 2017 A1
20170303887 Richmond Oct 2017 A1
20170308352 Kessler Oct 2017 A1
20170374454 Bernardini Dec 2017 A1
20180083848 Siddiqi Mar 2018 A1
20180102136 Ebenezer Apr 2018 A1
20180109873 Xiang Apr 2018 A1
20180115799 Thiele Apr 2018 A1
20180160224 Graham Jun 2018 A1
20180196585 Densham Jul 2018 A1
20180219922 Bryans Aug 2018 A1
20180227666 Barnett Aug 2018 A1
20180292079 Branham Oct 2018 A1
20180310096 Shumard Oct 2018 A1
20180313558 Byers Nov 2018 A1
20180338205 Abraham Nov 2018 A1
20180359565 Kim Dec 2018 A1
20190042187 Truong Feb 2019 A1
20190166424 Harney May 2019 A1
20190215540 Nicol Jul 2019 A1
20190230436 Tsingos Jul 2019 A1
20190259408 Freeman Aug 2019 A1
20190268683 Miyahara Aug 2019 A1
20190295540 Grima Sep 2019 A1
20190295569 Wang Sep 2019 A1
20190319677 Hansen Oct 2019 A1
20190371354 Lester Dec 2019 A1
20190373362 Ansai Dec 2019 A1
20190385629 Moravy Dec 2019 A1
20190387311 Schultz Dec 2019 A1
20200015021 Leppanen Jan 2020 A1
20200021910 Rollow, IV Jan 2020 A1
20200037068 Barnett Jan 2020 A1
20200068297 Rollow, IV Feb 2020 A1
20200100009 Lantz Mar 2020 A1
20200100025 Shumard Mar 2020 A1
20200137485 Yamakawa Apr 2020 A1
20200145753 Rollow, IV May 2020 A1
20200152218 Kikuhara May 2020 A1
20200162618 Enteshari May 2020 A1
20200228663 Wells-Rutherford Jul 2020 A1
20200251119 Yang Aug 2020 A1
20200275204 Labosco Aug 2020 A1
20200278043 Cao Sep 2020 A1
20200288237 Abraham Sep 2020 A1
20210012789 Husain Jan 2021 A1
20210021940 Petersen Jan 2021 A1
20210044881 Lantz Feb 2021 A1
20210051397 Veselinovic Feb 2021 A1
20210098014 Tanaka Apr 2021 A1
20210098015 Pandey Apr 2021 A1
20210120335 Veselinovic Apr 2021 A1
20210200504 Park Jul 2021 A1
20210375298 Zhang Dec 2021 A1
Foreign Referenced Citations (157)
Number Date Country
2359771 Apr 2003 CA
2475283 Jan 2005 CA
2505496 Oct 2006 CA
2838856 Dec 2012 CA
2838856 Dec 2012 CA
2846323 Sep 2014 CA
2846323 Sep 2014 CA
1780495 May 2006 CN
101217830 Jul 2008 CN
101833954 Sep 2010 CN
101860776 Oct 2010 CN
101894558 Nov 2010 CN
102646418 Aug 2012 CN
102821336 Dec 2012 CN
102833664 Dec 2012 CN
102833664 Dec 2012 CN
102860039 Jan 2013 CN
104036784 Sep 2014 CN
104053088 Sep 2014 CN
104080289 Oct 2014 CN
104080289 Oct 2014 CN
104347076 Feb 2015 CN
104581463 Apr 2015 CN
105355210 Feb 2016 CN
105548998 May 2016 CN
106162427 Nov 2016 CN
106251857 Dec 2016 CN
106851036 Jun 2017 CN
107221336 Sep 2017 CN
107534725 Jan 2018 CN
108172235 Jun 2018 CN
109087664 Dec 2018 CN
208190895 Dec 2018 CN
109727604 May 2019 CN
110010147 Jul 2019 CN
306391029 Mar 2021 CN
2941485 Apr 1981 DE
0077546430001 Mar 2020 EM
0381498 Aug 1990 EP
0594098 Apr 1994 EP
0869697 Oct 1998 EP
1180914 Feb 2002 EP
1184676 Mar 2002 EP
0944228 Jun 2003 EP
1439526 Jul 2004 EP
1651001 Apr 2006 EP
1727344 Nov 2006 EP
1906707 Apr 2008 EP
1952393 Aug 2008 EP
1962547 Aug 2008 EP
2133867 Dec 2009 EP
2159789 Mar 2010 EP
2197219 Jun 2010 EP
2360940 Aug 2011 EP
2710788 Mar 2014 EP
2721837 Apr 2014 EP
2721837 Apr 2014 EP
2772910 Sep 2014 EP
2778310 Sep 2014 EP
2778310 Sep 2014 EP
2942975 Nov 2015 EP
2988527 Feb 2016 EP
3131311 Feb 2017 EP
2393601 Mar 2004 GB
2446620 Aug 2008 GB
S63144699 Jun 1988 JP
H01260967 Oct 1989 JP
H0241099 Feb 1990 JP
H05260589 Oct 1993 JP
H07336790 Dec 1995 JP
3175622 Jun 2001 JP
2003060530 Feb 2003 JP
2003087890 Mar 2003 JP
2004349806 Dec 2004 JP
2004537232 Dec 2004 JP
2005323084 Nov 2005 JP
2006094389 Apr 2006 JP
2006101499 Apr 2006 JP
4120646 Aug 2006 JP
4258472 Aug 2006 JP
4196956 Sep 2006 JP
2006340151 Dec 2006 JP
4760160 Jan 2007 JP
4752403 Mar 2007 JP
2007089058 Apr 2007 JP
4867579 Jun 2007 JP
2007208503 Aug 2007 JP
2007228069 Sep 2007 JP
2007228070 Sep 2007 JP
2007274131 Oct 2007 JP
2007274463 Oct 2007 JP
2007288679 Nov 2007 JP
2008005347 Jan 2008 JP
2008042754 Feb 2008 JP
5028944 May 2008 JP
2008154056 Jul 2008 JP
2008259022 Oct 2008 JP
2008263336 Oct 2008 JP
2008312002 Dec 2008 JP
2009206671 Sep 2009 JP
2010028653 Feb 2010 JP
2010114554 May 2010 JP
2010268129 Nov 2010 JP
2011015018 Jan 2011 JP
4779748 Sep 2011 JP
2012165189 Aug 2012 JP
5139111 Feb 2013 JP
5306565 Oct 2013 JP
5685173 Mar 2015 JP
2016051038 Apr 2016 JP
100298300 May 2001 KR
100960781 Jan 2004 KR
100901464 Jun 2009 KR
1020130033723 Apr 2013 KR
300856915 May 2016 KR
201331932 Aug 2013 TW
I484478 May 2015 TW
1997008896 Mar 1997 WO
1998047291 Oct 1998 WO
2000030402 May 2000 WO
2003073786 Sep 2003 WO
2003088429 Oct 2003 WO
2004027754 Apr 2004 WO
2004090865 Oct 2004 WO
2006049260 May 2006 WO
2006071119 Jul 2006 WO
2006114015 Nov 2006 WO
2006121896 Nov 2006 WO
2007045971 Apr 2007 WO
2008074249 Jun 2008 WO
2008125523 Oct 2008 WO
2009039783 Apr 2009 WO
2009109069 Sep 2009 WO
2010001508 Jan 2010 WO
2010091999 Aug 2010 WO
2010140084 Dec 2010 WO
2010144148 Dec 2010 WO
2010144148 Dec 2010 WO
2011104501 Sep 2011 WO
2012122132 Sep 2012 WO
2012140435 Oct 2012 WO
2012160459 Nov 2012 WO
2012174159 Dec 2012 WO
2012174159 Dec 2012 WO
2013016986 Feb 2013 WO
2013182118 Dec 2013 WO
2014156292 Oct 2014 WO
2016176429 Nov 2016 WO
2016179211 Nov 2016 WO
2017208022 Dec 2017 WO
2018140444 Aug 2018 WO
2018140618 Aug 2018 WO
2018211806 Nov 2018 WO
2019231630 Dec 2019 WO
2020168873 Aug 2020 WO
2020191354 Sep 2020 WO
211843001 Nov 2020 WO
Non-Patent Literature Citations (301)
Entry
Maruo et al., On the Optimal Solutions of Beamformer Assisted Acoustic Echo Cancellers, IEEE Statistical Signal Processing Workshop, 2011, pp. 641-644.
McCowan, Microphone Arrays: A Tutorial, Apr. 2001, 36 pgs.
Mohammed, A New Adaptive Beamformer for Optimal Acoustic Echo and Noise Cancellation with Less Computational Load, Canadian Conference on Electrical and Computer Engineering, May 2008, pp. 000123-000128.
Mohammed, A New Robust Adaptive Beamformer for Enhancing Speech Corrupted with Colored Noise, AICCSA, Apr. 2008, pp. 508-515.
Mohammed, Real-time Implementation of an efficient RLS Algorithm based on IIR Filter for Acoustic Echo Cancellation, AICCSA, Apr. 2008, pp. 489-494.
Myllyla et al., Adaptive Beamforming Methods for Dynamically Steered Microphone Array Systems, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Mar-Apr. 2008, pp. 305-308.
Nguyen-Ky et al., An Improved Error Estimation Algorithm for Sterephonic Acoustic Echo Cancellation Systems, 1st International Conference on Signal Processing and Communication Systems, Dec. 2007, 5 pgs.
Oh et al., Hands-Free Voice Communication in an Automobile With a Microphone Array, 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar. 1992, pp. I-281-I-284.
Omologo, Multi-Microphone Signal Processing for Distant-Speech Interaction, Human Activity and Vision Summer School (HAVSS), INRIA Sophia Antipolis, Oct. 3, 2012, 79 pgs.
Pados et al., An Iterative Algorithm for the Computation of the MVDR Filter, IEEE Trans. On Signal Processing, vol. 49, No. 2, Feb. 2001, pp. 290-300.
Pettersen, Broadcast Applications for Voice-Activated Microphones, db, Jul./Aug. 1985, 6 pgs.
Plascore, PCGA-XR1 3003 Aluminum Honeycomb Data Sheet, 2008, 2 pgs.
Polycom Inc., Vortex EF2211/EF2210 Reference Manual, 2003, 66 pgs.
Polycom, Inc., Polycom SoundStructure C16, C12, C8, and SR12 Design Guide, Nov. 2013, 743 pgs.
Polycom, Inc., Setting Up the Polycom HDX Ceiling Microphone Array Series, https://support.polycom.com/content/dam/polycom-support/products/Telepresence-and-Video/HDX%20Series/setup-maintenance/en/hdx_ceiling_microphone_array_setting_up.pdf, 2010, 16 pgs.
Polycom, Inc., Vortex EF2241 Reference Manual, 2002, 68 pgs.
Powers, Proving Adaptive Directional Technology Works: A Review of Studies, The Hearing Review, http://www.hearingreview.com/2004/04/proving-adaptive-directional-technology-works-a-review-of-studies/, Apr. 2004, 8 pgs.
Sabinkin et al., Estimation of Wavefront Arrival Delay Using the Cross-Power Spectrum Phase Technique, 132nd Meeting of the Acoustical Society of America, Dec. 1996, pp. 1-10.
Rane Corp., Halogen Acoustic Echo Cancellation Guide, AEC Guide Version 2, Nov. 2013, 16 pgs.
Sao et al., Fast LMS/Newton Algorithms for Sterophonic Acoustic Echo Cancellation, IEEE Transactions on Signal Processing, vol. 57, No. 8, Aug. 2009, pp. 2919-2930.
Reuven et al., Joint Acoustic Echo Cancellation and Transfer Function GSC in the Frequency Domain, 23rd IEEE Convention of Electrical and Electronics Engineers in Israel, Sep. 2004, pp. 412-415.
Reuven et al., Joint Noise Reduction and Acoustic Echo Cancellation Using the Transfer-Function Generalized Sidelobe Canceller, Speech Communication, vol. 49, 2007, pp. 623-635.
Reuven et al., Multichannel Acoustic Echo Cancellation and Noise Reduction in Reverberant Environments Using the Transfer-Function GSC, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing—ICASSP 07, Apr. 2007, pp. I-81-I-84.
Ristimaki, Distributed Microphone Array System for Two-Way Audio Communication, Helsinki Univ. of Technology, Masters Thesis, Jun. 15, 2009, 73 pgs.
Rombouts et al., An Integrated Approach to Acoustic Noise and Echo Cancellation, Signal Processing 85, 2005, pp. 849-871.
Sasaki et al., A Predefined Command Recognition System Using a Ceiling Microphone Array in Noisy Housing Environments, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep. 2008, pp. 2178-2184.
Sennheiser, New microphone solutions for ceiling and desk installation, https://en-us.sennheiser.com/news-new-microphone-solutions-for-ceiling-and-desk-installation, Feb. 2011, 2 pgs.
Sennheiser, TeamConnect Ceiling, https://en-us.sennheiser.com/conference-meeting-rooms-teamconnect-ceiling, 7 pgs.
Shure AMS Update, vol. 1, No. 1, 1983, 2 pgs.
Shure AMS Update, vol. 1, No. 2, 1983, 2 pgs.
Shure AMS Update, vol. 4, No. 4, 1997, 8 pgs.
Shure Inc., Microflex Advance, http://www.shure.com/americas/microflex-advance, 12 pgs.
Shure Inc., MX395 Low Profile Boundary Microphones, 2007, 2 pgs.
Shure Inc., MXA910 Ceiling Array Microphone, http://www.shure.com/americas/products/microphones/microflex-advance/mxa910-ceiling-array-microphone, 7 pgs.
Silverman et al., Performance of Real-Time Source-Location Estimators for a Large-Aperture Microphone Array, IEEE Transactions on Speech and Audio Processing, vol. 13, No. 4, Jul. 2005, pp. 593-606.
Sinha, Ch. 9: Noise and Echo Cancellation, in Speech Processing in Embedded Systems, Springer, 2010, pp. 127-142.
Soda et al., Introducing Multiple Microphone Arrays for Enhancing Smart Home Voice Control, The Institute of Electronics, Information and Communication Engineers, Technical Report of IEICE, Jan. 2013, 6 pgs.
Symetrix, Inc., SymNet Network Audio Solutions Brochure, 2008, 32 pgs.
Tandon et al., An Efficient, Low-Complexity, Normalized LMS Algorithm for Echo Cancellation, 2nd Annual IEEE Northeast Workshop on Circuits and Systems, Jun. 2004, pp. 161-164.
Tetelbaum et al., Design and Implementation of a Conference Phone Based on Microphone Array Technology, Proc. Global Signal Processing Conference and Expo (GSPx), Sep. 2004, 6 pgs.
Tiete et al., SoundCompass: A Distributed MEMS Microphone Array-Based Sensor for Sound Source Localization, Sensors, Jan. 23, 2014, pp. 1918-1949.
TOA Corp., Ceiling Mount Microphone AN-9001 Operating Instructions, http://www.toaelectronics.com/media/an9001_mtle.pdf, 1 pg.
Van Compemolle, Switching Adaptive Filters for Enhancing Noisy and Reverberant Speech from Microphone Array Recordings, Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Apr. 1990, pp. 833-836.
Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002, 54 pgs., pp. i-xxv, 90-95, 201-230.
Van Veen et al., Beamforming: A Versatile Approach to Spatial Filtering, IEEE ASSP Magazine, vol. 5, issue 2, Apr. 1988, pp. 4-24.
Wang et al., Combining Superdirective Beamforming and Frequency-Domain Blind Source Separation for Highly Reverberant Signals, EURASIP Journal on Audio, Speech, and Music Processing, vol. 2010, pp. 1-13.
Weinstein et al., LOUD: A 1020-Node Microphone Array and Acoustic Beamformer, 14th International Congress on Sound & Vibration, Jul. 2007, 8 pgs.
Wung, A System Approach to Multi-Channel Acoustic Echo Cancellation and Residual Echo Suppression for Robust Hands-Free Teleconferencing, Georgia Institute of Technology, May 2015, 167 pgs.
Yamaha Corp., MRX7-D Signal Processor Product Specifications, 2016, 12 pgs.
Yamaha Corp., PJP-100H IP Audio Conference System Owner's Manual, Sep. 2006, 59 pgs.
CTG Audio, White on White—Introducing the CM-02 Ceiling Microphone, https://ctgaudio.com/white-on-white-introducing-the-cm-02-ceiling-microphone/, Feb. 20, 2014, 3 pgs.
Dahl et al., Acoustic Echo Cancelling with Microphone Arrays, Research Report 3/95, Univ. of Karlskrona/Ronneby, Apr. 1995, 64 pgs.
Desiraju et al., Efficient Multi-Channel Acoustic Echo Cancellation Using Constrained Sparse Filter Updates in the Subband Domain, ITG-Fachbericht 252: Speech Communication, Sep. 2014, 4 pgs.
DiBiase et al., Robust Localization in Reverberent Rooms, in Brandstein, ed., Microphone Arrays: Techniques and Applications, 2001, Springer-Verlag Berlin Heidelberg, pp. 157-180.
Do et al., A Real-Time SRP-PHAT Source Location Implementation using Stochastic Region Contraction (SRC) on a Large-Aperture Microphone Array, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing—ICASSP '07, Apr. 2007, pp. I-121-I-124.
Fan et al., Localization Estimation of Sound Source by Microphones Array, Procedia Engineering 7, 2010, pp. 312-317.
Flanagan et al., Autodirective Microphone Systems, Acustica, vol. 73, 1991, pp. 58-71.
Flanagan et al., Computer-Steered Microphone Arrays for Sound Transduction in Large Rooms, J. Acoust. Soc. Am. 18 (5), Nov. 1985, pp. 1508-1518.
Frost, III, An Algorithm for Linearly Constrained Adaptive Array Processing, Proc. IEEE, vol. 60, No. 8, Aug. 1972, pp. 926-935.
Gannot et al., Signal Enhancement using Beamforming and Nonstationarity with Applications to Speech, IEEE Trans. On Signal Processing, vol. 49, No. 8, Aug. 2001, pp. 1614-1626.
Gansler et al., A Double-Talk Detector Based on Coherence, IEEE Transactions on Communications, vol. 44, No. 11, Nov. 1996, pp. 1421-1427.
Gazor et al., Robust Adaptive Beamforming via Target Tracking, IEEE Transactions on Signal Processing, vol. 44, No. 6, Jun. 1996, pp. 1589-1593.
Gazor et al., Wideband Multi-Source Beamforming with Adaptive Array Location Calibration and Direction Finding, 1995 International Conference on Acoustics, Speech, and Signal Processing, May 1995, pp. 1904-1907.
Gentner Communications Corp., AP400 Audio Perfect 400 Audioconferencing System Installation & Operation Manual, Nov. 1998, 80 pgs.
Gentner Communications Corp., XAP 800 Audio Conferencing System Installation & Operation Manual, Oct. 2001, 152 pgs.
Gil-Cacho et al., Multi-Microphone Acoustic Echo Cancellation Using Multi-Channel Warped Linear Prediction of Common Acoustical Poles, 18th European Signal Processing Conference, Aug. 2010, pp. 2121-2125.
Gritton et al., Echo Cancellation Algorithms, IEEE ASSP Magazine, vol. 1, issue 2, Apr. 1984, pp. 30-38.
Hamalainen et al., Acoustic Echo Cancellation for Dynamically Steered Microphone Array Systems, 2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, Oct. 2007, pp. 58-61.
Herbordt et al., A Real-time Acoustic Human-Machine Front-End for Multimedia Applications Integrating Robust Adaptive Beamforming and Stereophonic Acoustic Echo Cancellation, 7th International Conference on Spoken Language Processing, Sep. 2002, 4 pgs.
Herbordt et al., GSAEC—Acoustic Echo Cancellation embedded into the Generalized Sidelobe Canceller, 10th European Signal Processing Conference, Sep. 2000, 5 pgs.
Herbordt et al., Multichannel Bin-Wise Robust Frequency-Domain Adaptive Filtering and Its Application to Adaptive Beamforming, IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, No. 4, May 2007, pp. 1340-1351.
Herbordt, Combination of Robust Adaptive Beamforming with Acoustic Echo Cancellation for Acoustic Human/Machine Interfaces, Friedrich-Alexander University, 2003, 293 pgs.
Herbordt, et al., Joint Optimization of LCMV Beamforming and Acoustic Echo Cancellation for Automatic Speech Recognition, IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar. 2005, pp. III-77-III-80.
Huang et al., Immersive Audio Schemes: The Evolution of Multiparty Teleconferencing, IEEE Signal Processing Magazine, Jan. 2011, pp. 20-32.
International Search Report and Written Opinion for PCT/US2016/029751 dated Nov. 28, 2016, 21 pp.
InvenSense Inc., Microphone Array Beamforming, Dec. 31, 2013, 12 pgs.
Ishii et al., Investigation on Sound Localization using Multiple Microphone Arrays, Reflection and Spatial Information, Japanese Society for Artificial Intelligence, JSAI Technical Report, SIG-Challenge-B202-11, 2012, pp. 64-69.
Ito et al., Aerodynamic/Aeroacoustic Testing in Anechoic Closed Test Sections of Low-speed Wind Tunnels, 16th AIAA/CEAS Aeroacoustics Conference, 2010, 11 pgs.
Johansson et al., Robust Acoustic Direction of Arrival Estimation using Root-SRP-PHAT, a Realtime Implementation, IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar. 2005, 4 pgs.
Johansson, et al., Speaker Localisation using the Far-Field SRP-PHAT in Conference Telephony, 2002 International Symposium on Intelligent Signal Processing and Communication Systems, 5 pgs.
Julstrom et al., Direction-Sensitive Gating: A New Approach to Automatic Mixing, J. Audio Eng. Soc., vol. 32, No. 7/8, Jul./Aug. 1984, pp. 490-506.
Kahrs, Ed., The Past, Present, and Future of Audio Signal Processing, IEEE Signal Processing Magazine, Sep. 1997, pp. 30-57.
Kallinger et al., Multi-Microphone Residual Echo Estimation, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 2003, 4 pgs.
Kammeyer, et al., New Aspects of Combining Echo Cancellers with Beamformers, IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar. 2005, pp. III-137-III-140.
Kellermann, A Self-Steering Digital Microphone Array, 1991 International Conference on Acoustics, Speech, and Signal Processing, Apr. 1991, pp. 3581-3584.
Kellermann, Acoustic Echo Cancellation for Beamforming Microphone Arrays, in Brandstein, ed., Microphone Arrays: Techniques and Applications, 2001, Springer-Verlag Berlin Heidelberg, pp. 281-306.
Kellermann, Integrating Acoustic Echo Cancellation with Adaptive Beamforming Microphone Arrays, Forum Acusticum, Berlin, Mar. 1999, pp. 1-4.
Kellermann, Strategies for Combining Acoustic Echo Cancellation and Adaptive Beamforming Microphone Arrays, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 1997, 4 pgs.
Knapp, et al., The Generalized Correlation Method for Estimation of Time Delay, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-24, No. 4, Aug. 1976, pp. 320-327.
Kobayashi et al., A Hands-Free Unit with Noise Reduction by Using Adaptive Beamfomier, IEEE Transactions on Consumer Electronics, vol. 54, No. 1, Feb. 2008, pp. 116-122.
Kobayashi et al., A Microphone Array System with Echo Canceller, Electronics and Communications in Japan, Part 3, vol. 89, No. 10, Feb. 2, 2006, pp. 23-32.
Lebret, et al., Antenna Array Pattern Synthesis via Convex Cptimization, IEEE Trans. on Signal Processing, vol. 45, No. 3, Mar. 1997, pp. 526-532.
Lectrosonics, LecNet2 Sound System Design Guide, Jun. 2006, 28 pgs.
Lee et al., Multichannel Teleconferencing System with Multispatial Region Acoustic Echo Cancellation, International Workshop on Acoustic Echo and Noise Control (IWAENC2003), Sep. 2003, pp. 51-54.
Lindstrom et al., An Improvement of the Two-Path Algorithm Transfer Logic for Acoustic Echo Cancellation, IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, No. 4, May 2007, pp. 1320-1326.
Liu et al., Adaptive Beamforming with Sidelobe Control: A Second-Order Cone Programming Approach, IEEE Signal Proc. Letters, vol. 10, No. 11, Nov. 2003, pp. 331-334.
Lobo, et al., Applications of Second-Order Cone Programming, Linear Algebra and its Applications 284, 1998, pp. 193-228.
Luo et al., Wideband Beamforming with Broad Nulls of Nested Array, Third Int'l Conf. on Info. Science and Tech., Mar. 23-25, 2013, pp. 1645-1648.
Marquardt et al., Aa Natural Acoustic Front-End for Interactive TV in the EU-Project DICIT, IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Aug. 2009, pp. 894-899.
Martin, Small Microphone Arrays with Postfilters for Noise and Acoustic Echo Reduction, in Brandstein, ed., Microphone Arrays: Techniques and Applications, 2001, Springer-Verlag Berlin Heidelberg, pp. 255-279.
Advanced Network Devices, IPSCM Ceiling Tile IP Speaker, Feb. 2011, 2 pgs.
Advanced Network Devices, IPSCM Standard 2′ by 2′ Ceiling Tile Speaker, 2 pgs.
Affes et al., A Signal Subspace Tracking Algorithm for Microphone Array Processing of Speech, IEEE Trans. On Speech and Audio Processing, vol. 5, No. 5, Sep. 1997, pp. 425-437.
Affes et al., A Source Subspace Tracking Array of Microphones for Double Talk Situations, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, May 1996, pp. 909-912.
Affes et al., An Algorithm for Multisource Beamforming and Multitarget Tracking, IEEE Trans. On Signal Processing, vol. 44, No. 6, Jun. 1996, pp. 1512-1522.
Affes et al., Robust Adaptive Beamforming via LMS-Like Target Tracking, Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 1994, pp. IV-269-IV-272.
Armstrong World Industries, Inc., I-Ceilings Sound Systems Speaker Panels, 2002, 4 pgs.
Arnold et al., A Directional Acoustic Array Using Silicon Micromachined Piezoresistive Microphones, Journal of the Acoustical Society of America, 113(1), Jan. 2003, pp. 289-298.
Arnold, et al., “A directional acoustic array using silicon micromachined piezoresistive microphones,” Journal of Acoustical Society of America, 113 (1), pp. 289-298, Jan. 2003 (10 pp.).
Atlas Sound, I128SYSM IP Compliant Loudspeaker System with Microphone Data Sheet, 2009, 2 pgs.
Atlas Sound,1′X2′ IP Speaker with Micophone for Suspended Ceiling Systems, https://www.atlasied.com/i128sysm, retrieved Oct. 25, 2017, 5 pgs.
Audio Technica, ES945 Omnidirectional Condenser Boundary Microphones, https://eu.audio-technica.com/resources/ES945%20Specifications.pdf, 2007, 1 pg.
Audix Microphones, Audix Introduces Innovative Ceiling Mics, http://audixusa.com/docs_12/latest_news/EFpIFkAAkIOtSdolke.shtml, Jun. 2011, 6 pgs.
Audix Microphones, M70 Flush Mount Ceiling Mic, May 2016, 2 pgs.
Beh et al., Combining Acoustic Echo Cancellation and Adaptive Beamforming for Achieving Robust Speech Interface in Mobile Robot, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep. 2008, pp. 1693-1698.
Benesty et al., A New Class of Doubletalk Detectors Based on Cross-Correlation, IEEE Transactions on Speech and Audio Processing, vol. 8, No. 2, Mar. 2000, pp. 168-172.
Benesty et al., Adaptive Algorithms for Mimo Acoustic Echo Cancellation, https://publik.tuwien.ac.at/files/pub-et_9085.pdf, 2003, pp. 1-30.
Benesty et al., Frequency-Domain Adaptive Filtering Revisited, Generalization to the Multi-Channel Case, and Application to Acoustic Echo Cancellation, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing Proceedings, Jun. 2000, pp. 789-792.
Beyer Dynamic, Classis BM 32-33-34 DE-EN-FR 2016, 1 pg.
Beyer Dynamic, Classis-BM-33-PZ A1, 1 pg.
Boyd, et al., Convex Optimization, Mar. 15, 1999, 216 pgs.
Brandstein et al., Eds., Microphone Arrays: Signal Processing Techniques and Applications, Digital Signal Processing, Springer-Verlag Berlin Heidelberg, 2001, 401 pgs.
Bruel & Kjaer, by J.J. Christensen and J. Hald, Technical Review: Beamforming, No. 1, 2004, 54 pgs.
BSS Audio, Soundweb London Application Guides, 2010, 120 pgs.
Buchner et al., An Acoustic Human-Machine Interface with Multi-Channel Sound Reproduction, IEEE Fourth Workshop on Multimedia Signal Processing, Oct. 2001, pp. 359-364.
Buchner et al., Full-Duplex Communication Systems Using Loudspeaker Arrays and Microphone Arrays, IEEE International Conference on Multimedia and Expo, Aug. 2002, pp. 509-512.
Buchner et al., An Efficient Combination of Multi-Channel Acoustic Echo Cancellation with a Beamforming Microphone Array, International Workshop on Hands-Free Speech Communication (HSC2001), Apr. 2001, pp. 55-58.
Buchner et al., Generalized Multichannel Frequency-Domain Adaptive Filtering: Efficient Realization and Application to Hands-Free Speech Communication, Signal Processing 85, 2005, pp. 549-570.
Buchner et al., Multichannel Frequency-Domain Adaptive Filtering with Application to Multichannel Acoustic Echo Cancellation, Adaptive Signal Processing, 2003, pp. 95-128.
Buchner, Multichannel Acoustic Echo Cancellation, http://www.buchner-net.com/mcaec.html, Jun. 2011.
Buck, Aspects of First-Order Differential Microphone Arrays in the Presence of Sensor Imperfections, Transactions on Emerging Telecommunications Technologies, vol. 13, No. 2, Mar.-Apr. 2002, pp. 115-122.
Buck, et al., Self-Calibrating Microphone Arrays for Speech Signal Acquisition: A Systematic Approach, Signal Processing, vol. 86, 2006, pp. 1230-1238.
Burton et al., A New Structure for Combining Echo Cancellation and Beamforming in Changing Acoustical Environments, IEEE International Conference on Acoustics, Speech and Signal Processing, 2007, pp. 1-77-1-80.
Campbell, Adaptive Beamforming Using a Microphone Array for Hands-Free Telephony, Virginia Polytechnic Institute and State University, Feb. 1999, 154 pgs.
Chan et al., Uniform Concentric Circular Arrays with Frequency-Invariant Characteristics—Theory, Design, Adaptive Beamforming and DOA Estimation, IEEE Transactions on Signal Processing, vol. 55, No. 1, Jan. 2007, pp. 165-177.
Chen et al., Design of Robust Broadband Beamformers with Passband Shaping Characteristics using Tikhonov Regularization, IEEE Transactions on Audio, Speech, and Language Processing, vol. 17, No. 4, May 2009, pp. 665-681.
Chen, et al., A General Approach to the Design and Implementation of Linear Differential Microphone Arrays, Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, 2013, 7 pgs.
Chou, “Frequency-Independent Beamformer with Low Response Error,” 1995 International Conference on Acoustics, Speech, and Signal Processing, pp. 2995-2998, May 9, 1995, 4 pp.
Chou, Frequency-Independent Beamformer with Low Response Error, 1995 International Conference on Acoustics, Speech, and Signal Processing, May 1995, pp. 2995-2998.
Chu, Desktop Mic Array for Teleconferencing, 1995 International Conference on Acoustics, Speech, and Signal Processing, May 1995, pp. 2999-3002.
ClearOne Communications, XAP Audio Conferencing White Paper, Aug. 2002, 78 pgs.
ClearOne, Beamforming Microphone Array, Mar. 2012, 6 pgs.
ClearOne, Ceiling Microphone Array Installation Manual, Jan. 9, 2012, 20 pgs.
Cook, et al., An Alternative Approach to Interpolated Array Processing for Uniform Circular Arrays, Asia-Pacific Conference on Circuits and Systems, 2002, pp. 411-414.
Cox et al., Robust Adaptive Beamforming, IEEE Trans. Acoust., Speech, and Signal Processing, vol. ASSP-35, No. 10, Oct. 1987, pp. 1365-1376.
CTG Audio, Ceiling Microphone CTG CM-01, Jun. 5, 2008, 2 pgs.
CTG Audio, CM-01 & CM-02 Ceiling Microphones Specifications, 2 pgs.
CTG Audio, CM-01 & CM-02 Ceiling Microphones, 2017, 4 pgs.
CTG Audio, Expand Your IP Teleconferencing to Full Room Audio, http://www.ctgaudio.com/expand-your-ip-teleconferencing-to-full-room-audio-while-conquering-echo-cancellation-issues.html, Jul. 29, 2014, 3 pgs.
CTG Audio, Installation Manual, Nov. 21, 2008, 25 pgs.
Yamaha Corp., PJP-EC200 Conference Echo Canceller, Oct. 2009, 2 pgs.
Yan et al., Convex Optimization Based Time-Domain Broadband Beamforming with Sidelobe Control, Journal of the Acoustical Society of America, vol. 121, No. 1, Jan. 2007, pp. 46-49.
Yensen et al., Synthetic Stereo Acoustic Echo Cancellation Structure with Microphone Array Beamforming for VOIP Conferences, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, Jun. 2000, pp. 817-820.
Zhang et al., Multichannel Acoustic Echo Cancellation in Multiparty Spatial Audio Conferencing with Constrained Kalman Filtering, 11th International Workshop on Acoustic Echo and Noise Control, Sep. 2008, 4 pgs.
Zhang et al., Selective Frequency Invariant Uniform Circular Broadband Beamformer, EURASIP Journal on Advances in Signal Processing, vol. 2010, pp. 1-11.
Zheng et al., Experimental Evaluation of a Nested Microphone Array with Adaptive Noise Cancellers, IEEE Transactions on Instrumentation and Measurement, vol. 53, No. 3, Jun. 2004, p. 777-786.
Order, Conduct of the Proceeding, Clearone, Inc. v. Shure Acquisition Holdings, Inc., Nov. 2, 2020, 10 pp.
Petitioners Motion for Sanctions, Clearone, Inc. v. Shure Acquisition Holdings, Inc., Aug. 24, 2020, 20 pp.
Office Action issued for Japanese Patent Application No. 2015-023781 dated Jun. 20, 2016.
“VSA 2050 II Digitally Steerable Column Speaker,” Web page https://www.rcf.it/en_US/products/product-detail/vsa-2050-ii/972389, 15 pages, Dec. 24, 2018.
Ahonen, et al., “Directional Analysis of Sound Field with Linear Microphone Array and Applications in Sound Reproduction,” Audio Engineering Socity, Convention Paper 7329, May 2008, 11 pp.
AVNetwork, “Top Five Conference Room Mic Myths,” Feb. 25, 2015, 14 pp.
Benesty, et al., “Adaptive Algorithms for Mimo Acoustic Echo Cancellation,” AI2 Allen Institute for Artifical Intelligence, 2003.
Benesty, et al., “Differential Beamforming,” Fundamentals of Signal Enhancement and Array Signal Processing, First Edition, 2017, 39 pp.
Berkun, et al., “Combined Beamformers for Robust Broadband Regularized Superdirective Beamforming,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 23, No. 5, May 2015, 10 pp.
Brooks, et al., “A Quantitative Assessment of Group Delay Methods for Identifying Glottal Closures in Voiced Speech,” IEEE Transaction on Audio, Speech, and Language Processing, vol. 14, No. 2, Mar. 2006, 11 pp.
Buck, “Aspects of First-Order Differential Microphone Arrays in the Presence of Sensor Imperfections,” Transactions on Emerging Telecommunications Technologies, 13.2, 2002, 8 pp.
Buck, et al., “First Order Differential Microphone Arrays for Automotive Applications,” 7th International Workshop on Acoustic Echo and Noise Control, Darmstadt University of Technology, Sep. 10-13, 2001, 4 pp.
Cabral, et al., Glottal Spectral Separation for Speech Synthesis, IEEE Journal of Selected Topics in Signal Processing, 2013, 15 pp.
Canetto, et al., “Speech Enhancement Systems Based on Microphone Arrays,” VI Conference of the Italian Society for Applied and Industrial Mathematics, May 27, 2002, 9 pp.
Cech, et al., “Active-Speaker Detection and Localization with Microphones and Cameras Embedded into a Robotic Head,” IEEE-RAS International Conference on Humanoid Robots, Oct. 2013, pp. 203-210.
Chau, et al., “A Subband Beamformer on an Ultra Low-Power Miniature DSP Platform,” 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, 4 pp.
Chen, et al., “A General Approach to the Design and Implementation of Linear Differential Microphone Arrays,” Signal and Information Processing Association Annual Summit and Conference, 2013 Asia-Pacific, IEEE, 7 pp.
Chen, et al., “Design and Implementation of Small Microphone Arrays,” PowerPoint Presentation, Northwestern Polytechnical University and Institut national de la recherche scientifique, Jan. 1, 2014, 56 pp.
ClearOne Introduces Ceiling Microphone Array With Built-In Dante Interface, Press Release; GlobeNewswire, Jan. 3, 2019, 2 pp.
Clearone, Clearly Speaking Blog, “Advanced Beamforming Microphone Array Technology for Corporate Conferencing Systems,” Nov. 11, 2013, 5 pp., http://www.clearone.com/blog/advanced-beamforming-microphone-array-technology-for-corporate-conferencing-systems/.
CTG Audio, Expand Your IP Teleconferencing to Full Room Audio, Obtained from website htt. )://www ct audio com/ex and-, our-i—teleconforencino-to-ful-room-audio-while-conquennc 1-echo-cancelation-issues Mull, 2014.
Desiraju, et al., “Efficient Multi-Channel Acoustic Echo Cancellation Using Constrained Sparse Filter Updates in the Subband Domain,” Acoustic Speech Enhancement Research, Sep. 2014.
Firoozabadi, et al., “Combination of Nested Microphone Array and Subband Processing for Multiple Simultaneous Speaker Localization,” 6th International Symposium on Telecommunications, Nov. 2012, pp. 907-912.
Fohhn Audio New Generation of Beam Steering Systems Available Now, audioXpress Staff, May 10, 2017, 8 pp.
Fox, et al., “A Subband Hybrid Beamforming for In-Car Speech Enhancement,” 20th European Signal recessing Conference, Aug. 2012, 5 pp.
Giuliani, et al., “Use of Different Microphone Array Configurations for Hands-Free Speech Recognition in Noisy and Reverberant Environment,” IRST-Istituto per la Ricerca Scientifica e Tecnologica, Sep. 22, 1997, 4 pp.
ICONYX Gen5, Product Overview; Renkus-Heinz, Dec. 24, 2018, 2 pp.
International Search Report and Written Opinion for PCT/US2018/013155 dated Jun. 8, 2018.
International Search Report and Written Opinion for PCT/US2019/031833 dated Jul. 24, 2019, 16 pp.
International Search Report and Written Opinion for PCT/US2019/033470 dated Jul. 31, 2019, 12 pp.
International Search Report and Written Opinion for PCT/US2019/051989 dated Jan. 10, 2020, 15 pp.
International Search Report and Written Opinion for PCT/US2020/024063 dated Aug. 31, 2020, 18 pp.
International Search Report and Written Opinion for PCT/US2020/035185 dated Sep. 15, 2020, 11 pp.
International Search Report and Written Opinion for PCT/US2020/058385 dated Mar. 31, 2021, 20 pp.
Invensense, “Microphone Array Beamforming,” Application Note AN-1140, Dec. 31, 2013, 12 pp.
LecNet2 Sound System Design Guide, Lectrosonics, Jun. 2, 2006.
Liu, et al., “Frequency Invariant Beamforming in Subbands,” IEEE Conference on Signals, Systems and Computers, 2004, 5 pp.
M. Kolund{tilde over (z)}ija, C. Faller and M. Vetterli, “Baffled circular loudspeaker array with broadband high directivity,” 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, 2010, pp. 73-76.
Microphone Array Primer, Shure Question and Answer Page, <https://service.shure.com/s/article/microphone-array-primer?language=en_US>, Jan. 2019, 5 pp.
Mohan, et al., “Localization of multiple acoustic sources with small arrays using a coherence test,” Journal Acoustic Soc Am., 123(4), Apr. 2008, 12 pp.
Moulines, et al., “Pitch-Synchronous Waveform Processing Techniques for Text-to-Speech Synthesis Using Diphones,” Speech Communication 9, 1990, 15 pp.
Multichannel Acoustic Echo Cancellation, Obtained from website http://www.buchner-net.com/mcaec.html, Jun. 2011.
Nguyen-Ky, et al., “An Improved Error Estimation Algorithm for Stereophonic Acoustic Echo Cancellation Systems,” 1st International Conference on Signal Processing and Communication Systems, Dec. 17-19, 2007.
Olszewski, et al., “Steerable Highly Directional Audio Beam Loudspeaker,” Interspeech 2005, 4 pp.
Parikh, et al., “Methods for Mitigating IP Network Packet Loss in Real Time Audio Streaming Applications,” GatesAir, 2014, 6 pp.
Pasha, et al., “Clustered Multi-channel Dereverberation for Ad-hoc Microphone Arrays,” Proceedings of APSIPA Annual Summit and Conference, Dec. 2015, pp. 274-278.
Phoenix Audio Technologies, “Beamforming and Microphone Arrays—Common Myths”, Apr. 2016, http://info.phnxaudio.com/blog/microphone-arrays-beamforming-myths-1, 19 pp.
Powers, et al., “Proving Adaptive Directional Technology Works: A Review of Studies,” The Hearing Review, Apr. 6, 2004, 5 pp.
Rane Acoustic Echo Cancellation Guide, AEC Guide Version 2, Nov. 2013.
Rao, et al., “Fast LMS/Newton Algorithms for Stereophonic Acoustic Echo Cancelation,” IEEE Transactions on Signal Processing, vol. 57, No. 8, Aug. 2009.
Reuven, et al., “Multichannel Acoustic Echo Cancellation and Noise Reduction in Reverberant Environments Using the Transfer-Function GSC,” IEEE 1-4244-0728, 2007.
Sällberg, “Faster Subband Signal Processing,” IEEE Signal Processing Magazine, vol. 30, No. 5, Sep. 2013, 6 pp.
SerDes, Wikipedia article, last edited on Jun. 25, 2018; retrieved on Jun. 27, 2018, 3 pp., https://en.wikipedia.org/wiki/SerDes.
Sessler, et al., “Directional Transducers,” IEEE Transactions on Audio and Electroacoustics, vol. AU-19, No. 1, Mar. 1971, pp. 19-23.
Signal Processor MRX7-D Product Specifications, Yamaha Corporation, 2016.
Soundweb London Application Guides, BSS Audio, 2010.
SymNet Network Audio Solutions Brochure, Symetrix, Inc., 2008.
Tan, et al., “Pitch Detection Algorithm: Autocorrelation Method and AMDF,” Department of Computer Engineering, Prince of Songkhla University, Jan. 2003, 6 pp.
Tandon, et al., “An Efficient, Low-Complexity, Normalized LMS Algorithm for Echo Cancellation,” IEEE 0-7803-8322, Feb. 2004.
Togami, et al., “Subband Beamformer Combined with Time-Frequency ICA for Extraction of Target Source Under Reverberant Environments,” 17th European Signal Processing Conference, Aug. 2009, 5 pp.
Weinstein, et al., “LOUD: A 1020-Node Modular Microphone Array and Beamformer for Intelligent Computing Spaces,” MIT Computer Science and Artifical Intelligence Laboratory, 2004, 17 pp.
Wung, “A System Approach to Multi-Channel Acoustic Echo Cancellation and Residual Echo Suppression for Robust Hands-Free Teleconferencing,” Georgia Institute of Technology, May 2015.
XAP Audio Conferencing Brochure, ClearOne Communications, Inc., 2002.
Yamaha Conference Echo Canceller PJP-EC200 Brochure, Yamaha Corporation, Oct. 2009.
Yermeche, et al., “Real-Time DSP Implementation of a Subband Beamforming Algorithm for Dual Microphone Speech Enhancement,” 2007 IEEE International Symposium on Circuits and Systems, 4 pp.
Zavarehei, et al., “Interpolation of Lost Speech Segments Using LP-HNM Model with Codebook Post-Processing,” EEE Transactions on Multimedia, vol. 10, No. 3, Apr. 2008, 10 pp.
Zhang, et al., “Multichannel Acoustic Echo Cancelation in Multiparty Spatial Audio Conferencing with Constrained Kalman Filtering,” 11 h International Workshop on Acoustic Echo and Noise Control, Sep. 14, 2008.
Zheng, et al., “Experimental Evaluation of a Nested Microphone Array With Adaptive Noise Cancellers,” IEEE Transactions on Instrumentation and Measurement, vol. 53, No. 3, Jun. 2004, 10 pp.
“Philips Hue Bulbs and Wireless Connected Lighting System,” Web page https://www.philips-hue.com/en-in, 8 pp, Sep. 23, 2020, retrieved from Internet Archive Wayback Machine, <https://web.archive.Org/web/20200923171037/https://www.philips-hue.com/en-in> on Sep. 27, 2021.
Alarifi, et al., “Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances,” Sensors 2016, vol. 16, No. 707, 36 pp.
Automixer Gated, Information Sheet, MIT, Nov. 2019, 9 pp.
Bng055, Intelligent 9-axis absolute orientation sensor, Data sheet, Bosch, Nov. 2020, 118 pp.
ClearOne, Converge/Converge Pro, Manual, 2008, 51 pp.
ClearOne, Professional Conferencing Microphones, Brochure, Mar. 2015, 3 pp.
Coleman, “Loudspeaker Array Processing for Personal Sound Zone Reproduction,” Centre for Vision, Speech and Signal Processing, 2014, 239 pp.
Decawave, Application Note: APR001, UWB Regulations, A Summary of Worldwide Telecommunications Regulations governing the use of Ultra-Wideband radio, Version 1.2, 2015, 63 pp.
Dormehl, “HoloLens concept lets you control your smart home via augmented reality,” digitaltrends, Jul. 26, 2016, 12 pp.
Hayo, Virtual Controls for Real Life, Web page downloaded from https://hayo.io/ on Sep. 18, 2019, 19 pp.
Holm, “Optimizing Microphone Arrays for use in Conference Halls,” Norwegian University of Science and Technology, Jun. 2009, 101 pp.
International Search Report and Written Opinion for PCT/US2016/022773 dated Jun. 10, 2016.
International Search Report and Written Opinion for PCT/US2021/070625 dated Sep. 17, 2021, 17 pp.
International Search Report for PCT/US2020/024005 dated Jun. 12, 2020, 12 pp.
New Shure Microflex Advance MXA910 Microphone With Intellimix Audio Processing Provides Greater Simplicity, Flexibility, Clarity, Press Release, Jun. 12, 2019, 4 pp.
Office Action for Taiwan Patent Application No. 105109900 dated May 5, 2017.
Palladino, “This App Lets You Control Your Smarthome Lights via Augmented Reality,” Next Reality Mobile AR News, Jul. 2, 2018, 5 pp.
Pfeifenberger, et al., “Nonlinear Residual Echo Suppression using a Recurrent Neural Network,” Interspeech 2020, 5 pp.
Polycom, Inc., Vortex EF2280 Reference Manual, 2001, 60 pp.
U.S. Appl. No. 16/598,918, filed Oct. 10, 2019, 50 pp.
Zhang, et al., “F-T-LSTM based Complex Network for Joint Acoustic Echo Cancellation and Speech Enhancement,” Audio, Speech and Language Processing Group, Jun. 2021, 5 pp.
Amazon webpage for Metalfab MFLCRFG (last visited Apr. 22, 2020) available at <https://www.amazon.com/RETURN-FILTERGRILLE-Drop-Ceiling/dp/B0064Q9A7l/ref=sr 12? dchild=1&keywords=drop+ceiling+return+air+grille&qid=1585862723&s=hi&sr=1-2>, 11 pp.
Armstrong “Walls” Catalog available at <https://www.armstrongceilings.com/content/dam/armstrongceilings/commercial/north-america/catalogs/armstrong-ceilings-wallsspecifiers-reference.pdf>, 2019, 30 pp.
Armstrong Tectum Ceiling & Wall Panels Catalog available at <https://www.armstrongceilings.com/content/dam/armstrongceilings/commercial/north-america/brochures/tectum-brochure.pdf>, 2019, 16 pp.
Armstrong Woodworks Concealed Catalog available at <https://sweets.construction.com/swts_content_files/3824/442581.pdf>, 2014, 6 pp.
Armstrong Woodworks Walls Catalog available at <https://www.armstrongceilings.com/pdbupimagescig/220600.pdf/download/data-sheet-woodworks-walls.pdf>, 2019, 2 pp.
Armstrong, Acoustical Design: Exposed Structure, available at <https://www.armstrongceilings.com/pdbupimagesclg/217142.pdf/download/acoustical-design-exposed-structurespaces-brochure.pdf>, 2018, 19 pp.
Armstrong, Ceiling Systems, Brochure page for Armstrong Softlook, 1995, 2 pp.
Armstrong, Excerpts from Armstrong 2011-2012 Ceiling Wall Systems Catalog, available at <https://web.archive.org/web/20121116034120/http://www.armstrong.com/commceilingsna/en_us/pdf/ceilings_catalog_screen-2011 .pdf>, as early as 2012, 162 pp.
Armstrong, i-Ceilings, Brochure, 2009, 12 pp.
Benesty, et al., “Microphone Array Signal Processing,” Springer, 2010, 20 pp.
BZ-3a Installation Instructions, XEDIT Corporation, Available at <chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/viewer.html?pdfurl=https%3A%2F%2Fwww.servoreelers.com %2Fmt-content%2Fuploads%2F2017%2F05%2Fbz-a-3universal-2017c.pdf&clen=189067&chunk=true>, 1 p.
Cao, “Survey on Acoustic Vector Sensor and its Applications in Signal Processing” Proceedings of the 33rd Chinese Control Conference, Jul. 2014, 17 pp.
Circuit Specialists webpage for an aluminum enclosure, available at <https://www.circuitspecialists.com/metal-instrument-enclosure-la7.html? otaid=gpl&gclid=EAIalQobChMI2JTw-Ynm6AIVgbblCh3F4QKuEAkYBiABEgJZMPD_BwE>, 3 pp.
ClearOne Launches Second Generation of its Groundbreaking Beamforming Microphone Array, Press Release, Acquire Media, Jun. 1, 2016, 2 pp.
ClearOne to Unveil Beamforming Microphone Array with Adaptive Steering and Next Generation Acoustic Echo Cancellation Technology, Press Release, InfoComm, Jun. 4, 2012, 1 p.
CTG Audio, Ctg FS-400 and RS-800 with “Beamforming” Technology, Datasheet, As early as 2009, 2 pp.
CTG Audio, CTG User Manual for the FS- 400/800 Beamforming Mixers, Nov. 2008, 26 pp.
CTG Audio, Frequently Asked Questions, As early as 2009, 2 pp.
CTG Audio, Installation Manual and User Guidelines for the Soundman SM 02 System, May 2001, 29 pp.
CTG Audio, Introducing the Ctg FS-400 and FS-800 with Beamforming Technology, As early as 2008, 2 pp.
CTG Audio, Meeting the Demand for Ceiling Mics in the Enterprise 5 Best Practices, Brochure, 2012, 9 pp.
Diethorn, “Audio Signal Processing For Next-Generation Multimedia Communication Systems,” Chapter 4, 2004, 9 pp.
Digikey webpage for Converta box (last visited Apr. 22, 2020) <https://www.digikey.com/product-detail/en/bud-industries/CU-452-A/377-1969-ND/439257?utm_adgroup=Boxes&utm_source=google&utm_medium=cpc&utm_campaign=Shopping_Boxes%2C%20Enclosures%2C%20Racks_NEW&utm term=&utm content=Boxes&gclid=EAIalQobChMI2JTw-Ynm6AIVgbblCh3F4QKuEAkYCSABEgKybPD_BwE>, 3 pp.
Digikey webpage for Pomona Box (last visited Apr. 22, 2020) available at <https://www.digikey.com/product-detail/en/pomonaelectronics/3306/501 -2054-ND/736489>, 2 pp.
Digital Wireless Conference System, MCW-D 50, Beyerdynamic Inc., 2009, 18 pp.
Dominguez, et al., “Towards an Environmental Measurement Cloud: Delivering Pollution Awareness to the Public,” International Journal of Distributed Sensor Networks, vol. 10, Issue 3, Mar. 31, 2014, 17 pp.
Double Condenser Microphone SM 69, Datasheet, Georg Neumann GmbH, available at <https://ende.neumann.com/product_files/7453/download>, 8 pp.
Eargle, “The Microphone Handbook,” Elar Publ. Co., 1st ed., 1981, 4 pp.
Enright, Notes From Logan, June edition of Scanlines, Jun. 2009, 9 pp.
Hald, et al., “A class of optimal broadband phased array geometries designed for easy construction,” 2002 Int'l Congress & Expo. on Noise Control Engineering, Aug. 2002, 6 pp.
Invensense, Recommendations for Mounting and Connecting InvenSense MEMS Microphones, Application Note AN-1003, 2013, 11 pp.
Johnson, et al., “Array Signal Processing: Concepts and Techniques,” p. 59, Prentice Hall, 1993, 3 p.
Klegon, “Achieve Invisible Audio with the MXA910 Ceiling Array Microphone,” Jun. 27, 2016, 10 pp.
Lai, et al., “Design of Robust Steerable Broadband Beamformers with Spiral Arrays and the Farrow Filter Structure,” Proc. Intl. Workshop Acoustic Echo Noise Control, 2010, 4 pp.
Li, “Broadband Beamforming and Direction Finding Using Concentric Ring Array,” Ph.D. Dissertation, University of Missouri-Columbia, Jul. 2005, 163 pp.
Liu, et al., “Wideband Beamforming,” Wiley Series on Wireless Communications and Mobile Computing, pp. 143-198, 2010, 297 p.
MFLCRFG Datasheet, Metal_Fab Inc., Sep. 7, 2007, 1 p.
Milanovic, et al., “Design and Realization of FPGA Platform for Real Time Acoustic Signal Acquisition and Data Processing” 22nd Telecommunications Forum TELFOR, 2014, 6 pp.
Pomona, Model 3306, Datasheet, Jun. 9, 1999, 1 p.
Prime, et al., “Beamforming Array Optimisation Averaged Sound Source Mapping on a Model Wind Turbine,” ResearchGate, Nov. 2014, 10 pp.
Sessler, et al., “Toroidal Microphones,” Journal of Acoustical Society of America, vol. 46, No. 1, 1969, 10 pp.
Shure Debuts Microflex Advance Ceiling and Table Array Microphones, Press Release, Feb. 9, 2016, 4 pp.
Shure Inc., A910-HCM Hard Ceiling Mount, retrieved from website <http://www.shure.com/en-US/products/accessories/a910hcm> on Jan. 16, 2020, 3 pp.
Shure, MXA910 With IntelliMix, Ceiling Array Microphone, available at <https://www.shure.com/en-US/products/microphones/mxa910>, as early as 2020, 12 pp.
Shure, New MXA910 Variant Now Available, Press Release, Dec. 13, 2019, 5 pp.
Shure, Q&A in Response to Recent US Court Ruling on Shure MXA910, Available at <https://www.shure.com/en-US/meta/legal/q-and-a-inresponse-to-recent-US-court-ruling-on-shure-mxa910-response>, As early as 2020, 5 pp.
Shure, RK244G Replacement Screen and Grille, Datasheet, 2013, 1 p.
Shure, The Microflex Advance MXA310 Table Array Microphone, Available at <https://www.shure.com/en-US/products/microphones/mxa310>, As early as 2020, 12 pp.
SM 69 Stereo Microphone, Datasheet, Georg Neumann GmbH, Available at <https://ende.neumann.com/product_files/6552/download>, 1 p.
Vicente, “Adaptive Array Signal Processing Using the Concentric Ring Array and the Spherical Array,” Ph.D. Dissertation, University of Missouri, May 2009, 226 pp.
Warsitz, et al., “Blind Acoustic Beamforming Based on Generalized Eigenvalue Decomposition,” IEEE Transactions on Audio, Speech and Language Processing, vol. 15, No. 5, 2007, 11 pp.
PTAB, ClearOne v. Shure, IPR2019-00683, Paper 91 (Aug. 14, 2020) (“IPR2019-00683 FWD”).
Brandstein & Ward, “Microphone Arrays: Signal Proc. Techs. & Appls.” Springer-Verlag Berling Heidelberg (2001) (Brandstein).
PTAB, ClearOne v. Shure, IPR2019-00683, Paper 49 (Jan. 31, 2020) (“IPR2020-00683 Petitioner's Reply”).
Christensen & Hald, “Tech. Rev.: Beamforming,” in Bruel & Kjaer, No. 1 (2004) (“Christensen”).
McCowan, “Microphone Arrays: A Tutorial” (Apr. 2001) (“McCowan”).
Related Publications (1)
Number Date Country
20200288237 A1 Sep 2020 US
Continuations (4)
Number Date Country
Parent 15833404 Dec 2017 US
Child 16598918 US
Parent 15631310 Jun 2017 US
Child 15833404 US
Parent 15403765 Jan 2017 US
Child 15631310 US
Parent 14701376 Apr 2015 US
Child 15403765 US