The present disclosure claims priority of China Patent application filed with the National Intellectual Property Administration on Dec. 10, 2019, application number is 201911259335.0 and the title is “ARRAY SUBSTRATE AND DISPLAY PANEL”. The content of the application is cited and incorporated in the present disclosure.
The present disclosure relates to the field of display technologies, and more particularly, to an array substrate and a display panel.
Thin-film transistors, which adopt low-temperature polysilicon as an active layer, account for a major proportion in the field of display devices. Due to the properties of low-temperature polysilicon, array substrates which adopt low-temperature polysilicon thin-film transistors in the active layer region cannot be flexible.
That is, the flexibility of the array substrate is restricted by the properties of low-temperature polysilicon.
The present disclosure provides an array substrate and a display device to improve the flexibility of array substrates which is restricted by the properties of low-temperature polysilicon.
That is, the array substrate is restricted by the properties of low-temperature polysilicon.
To solve the problems above, the present disclosure provides the following technical solutions.
The present disclosure provides an array substrate, comprising:
A base.
A driving circuit layer provided with a first thin-film transistor (TFT) and a second TFT.
A material of an active layer of the first TFT is organic conductive polymer material.
In the array substrate of the present disclosure, a source of the first TFT, a drain of the first TFT, and the active layer of the first TFT are formed on a same side of a first insulating layer.
In the array substrate of the present disclosure, a gate of the first TFT is formed on another side of the first insulating layer.
In the array substrate of the present disclosure, an active layer of the second TFT comprises stacked layers of indium and indium selenide.
In the array substrate of the present disclosure, the active layer of the second TFT is located in a first concave penetrating though a second insulating layer.
In the array substrate of the present disclosure, a gate of the second TFT is located in a second concave penetrating though the second insulating layer.
In the array substrate of the present disclosure, the gate of the second TFT, a source of the second TFT, and the gate of the first TFT are disposed in a same layer.
In the array substrate of the present disclosure, the array substrat further comprising a pixel electrode, wherein a drain of the second TFT and the pixel electrode are disposed in a same layer.
In the array substrate of the present disclosure, the organic conductive polymer material comprises triphenylamine or triphenylamine derivative.
The present disclosure provides a display device, comprising:
An array substrate.
A luminous unit.
In the array substrate comprises:
A base.
A driving circuit layer provided with a first thin-film transistor (TFT) and a second TFT.
A material of an active layer of the first TFT is organic conductive polymer material.
In the display device of the present disclosure, the gate of the second TFT, a source of the second TFT, and the gate of the first TFT are disposed in a same layer.
In the display device of the present disclosure, a source of the first TFT, a drain of the first TFT, and the active layer of the first TFT are formed on a same side of a first insulating layer.
In the display device of the present disclosure, a gate of the first TFT is formed on another side of the first insulating layer.
In the display device of the present disclosure, an active layer of the second TFT comprises stacked layers of indium and indium selenide.
In the display device of the present disclosure, the active layer of the second TFT is located in a first concave penetrating though a second insulating layer.
In the display device of the present disclosure, a gate of the second TFT is located in a second concave penetrating though the second insulating layer.
In the display device of the present disclosure, the display panel further comprising a pixel electrode, wherein a drain of the second TFT and the pixel electrode are disposed in a same layer.
In the display device of the present disclosure, the organic conductive polymer material comprises triphenylamine.
In the display device of the present disclosure, the organic conductive polymer material comprises triphenylamine derivative.
The present disclosure provides an array substrate and a display panel. The driving circuit layer of the array substrate is provided with a first TFT and a second TFT. An exemplified active layer of a P-type TFT is formed by organic conductive polymer material. Based on this structure, by using the organic conductive polymer materials as the active layer material of the first TFT, the technical problems of the flexibility of the display substrate resulting from the characteristics of the low temperature polysilicon material are solved. The flexibility of the array substrate is enhanced. The size of the display device is reduced, the aperture ratio is increased, and a leakage current is reduced because high mobility of the first TFT is achieved due to the high mobility of the organic conductive polymer materials.
DESCRIPTION OF DRAWINGS
The present disclosure provides an array substrate and a display device. In order to clarify the technical solutions of embodiments of the present disclosure, the present disclosure is described by the embodiments in detail accompany with drawings. Obviously, the mentioned embodiments are utilized to clarify the present discloser rather than limit the present disclosure.
Directional terms mentioned in the present disclosure, such as upper, lower, front, back, left, right, inside, outside, lateral, etc., are only referring to the direction of the drawing. Therefore, the directional terms used to describe and clarify the present disclosure should not be viewed as limitations of the present disclosure. The terms “first”, “second”, etc. are used for descriptive purposes only instead of indicating or implying their relative importance or the number of indicated technical features. Thus, features defined as “first”, “second”, etc. may explicitly or implicitly include one or more of the features.
The present disclosure improves the flexibility of the array substrate which is restricted by the properties of low-temperature polysilicon in the existing array substrates.
In one of the embodiments, as shown in
A base.
A driving circuit layer is provided with a first thin-film transistor (TFT) 11 and a second TFT 12.
A material of an active layer 111 of the first TFT 11 is an organic conductive polymer material.
In one of the embodiments, the first TFT 11 is a P-type TFT and the second TFT 12 is an N-type TFT while the array substrate is a composite semiconductor component.
The present disclosure provides an array substrate. The driving circuit layer of the array substrate is provided with a first TFT and a second TFT. An exemplified active layer of a P-type TFT is formed organic conductive polymer material. Based on this structure, by using organic conductive polymer materials as the active layer material of the first TFT, the technical problems of the flexibility of the display substrate resulted by the characteristics of the low temperature polysilicon material are solved. The flexibility of the array substrate is enhanced. The size of the display device is reduced, the aperture ratio is increased, and a leakage current is reduced because high mobility of the first TFT is achieved due to the high mobility of the organic conductive polymer materials.
Please refer to
In one embodiment, as shown in
In one embodiment, as shown in
In an embodiment, a material of the first insulating layer M1 is an organic insulating material or a multilayer inorganic insulating material.
In one embodiment, the active layer 124 of the second TFT 12 includes stacked layers of indium, indium selenide, etc. This embodiment uses indium selenide-based materials which have higher mobility characteristics than single crystal silicon at room temperature and combines organic conductive polymer materials having high mobility, such as triphenylamine to achieve flexible composite devices.
In one embodiment, as shown in
In one embodiment, as shown in
In one embodiment, the material of the second insulating layer M2 is an organic insulating material, or a multilayer inorganic insulating material.
In an embodiment, as shown in
In one embodiment, as shown in
In one embodiment, as shown in
In one embodiment, the organic conductive polymer material includes a triphenylamine or a triphenylamine derivative.
In order to obtain the array substrate shown in
In step a, the pixel electrode 13 and the drain electrode 122 are formed on the base substrate S.
In step b, the second insulating layer M2, the first concave, and the second concave are formed.
As shown in
In step c, an active layer 124 is formed.
As shown in
In step d, the gate electrode 123, the gate electrode 113, and the source electrode 121 are formed.
As shown in
Step e: forming the first insulating layer M1.
As shown in
Step f: forming the source 111, the drain 112, the data line, and the common electrodes.
As shown in
In step g, an active layer 113 is formed.
As shown in
Step h, forming a third insulating layer M3.
As shown in
In one embodiment, the display device provided in this embodiment of the present application includes following components.
As shown in
A light emitting unit is driven by the array substrate to emit light or control a backlight source.
In one embodiment, the display device can be a liquid crystal panel, an organic light-emitting diode panel, a mini light-emitting diode panel, etc.
In one embodiment, the first TFT 11 is a P-type thin film transistor, and the second TFT 12 is an N-type thin film transistor while the array substrate is a composite semiconductor device.
The present d embodiment provides a display device. The driving circuit layer of the array substrate is provided with a first TFT and a second TFT. An exemplified active layer of a P-type TFT is formed by an organic conductive polymer material. Based on this structure, by using the organic conductive polymer materials as the active layer material of the first TFT, the technical problems of the flexibility of the display substrate resulted by the characteristics of the low temperature polysilicon material are solved. The flexibility of the array substrate is enhanced. The size of the display device is reduced, the aperture ratio is increased, and a leakage current is reduced because high mobility of the first TFT is achieved due to the high mobility of the organic conductive polymer materials.
As shown in
In one embodiment, as shown in
In one embodiment, as shown in
In an embodiment, a material of the first insulating layer M1 is an organic insulating material or a multilayer inorganic insulating material.
In one embodiment, the active layer 124 of the second TFT 12 includes stacked layers of indium, indium selenide, etc. This embodiment uses indium selenide-based materials which have higher mobility characteristics than single crystal silicon at room temperature This embodiment uses indium selenide-based materials which have higher mobility characteristics than single crystal silicon at room temperature and combines organic conductive polymer materials having high mobility, such as triphenylamine, to achieve flexible composite devices.
In one embodiment, as shown in
In one embodiment, as shown in
In one embodiment, the material of the second insulating layer M2 is an organic insulating material, or a multilayer inorganic insulating material.
In an embodiment, as shown in
In one embodiment, as shown in
In one embodiment, as shown in
In one embodiment, the organic conductive polymer material includes a triphenylamine or a triphenylamine derivative.
The embodiments above provide following effects.
The present disclosure provides an array substrate and a display panel. The driving circuit layer of the array substrate is provided with a first TFT and a second TFT. An exemplified active layer of a P-type TFT is formed by an organic conductive polymer material. Based on this structure, by using organic conductive polymer materials as the active layer material of the first TFT, the technical problems of the flexibility of the display substrate restricted by the characteristics of the low temperature polysilicon material are solved. The flexibility of the array substrate is enhanced. The size of the display device is reduced, the aperture ratio is increased, and a leakage current is reduced because high mobility of the first TFT is achieved due to the high mobility of the organic conductive polymer materials.
To conclude, although the present disclosure has been illustrated above with preferred embodiments, the above preferred embodiments are not intended to limit the present disclosure. A skilled person in the art can make obtain variation or modifications without departing from the aspect and scope of the present disclosure. Therefore, the protection scope of the present disclosure shall be subject to the scope defined by the claims.
Number | Date | Country | Kind |
---|---|---|---|
201911259325.0 | Dec 2019 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2019/126204 | 12/18/2019 | WO | 00 |