The present application is a 35 U.S.C. 371 national stage application of PCT International Application No. PCT/CN2018/083182, filed on Apr. 16, 2018, which claims the benefit of Chinese patent application No. 201710344166.9, filed on May 16, 2017, the contents of which are incorporated herein by reference in their entireties.
This disclosure relates to the field of display technology, particularly to an array substrate and a display device.
Thin film transistor liquid crystal display panels have been widely applied in apparatus such as mobile devices, notebook PC, liquid crystal televisions, and have become the mainstream in panel display.
Rubbing is an indispensable step in the process of manufacturing the thin film transistor liquid crystal display panel. During this process, the friction between the rubbing cloth and the glass substrate often produces static electricity. If the static electricity could not be released effectively, it will be accumulated on the glass substrate. Various undesirable phenomena involving the static electricity may occur if the static electricity exceeds a product tolerance threshold.
In particular, in case the static electricity generated in the rubbing process could not be released effectively, it can only be conducted to the display area of the display panel through data lines, breaking down the conducting channel of one or more thin film transistors in the display area, thereby resulting in defects finally, e.g., as shown in
An embodiment of the disclosure provides an array substrate comprising a display area and a non-display area outside the display area. The non-display area is provided with a first transistor and a first conductive region electrically connected with the first transistor. A control terminal, and one of a source and a drain of the first transistor are both electrically connected to a data line in the display area, the other of the source and the drain of the first transistor is electrically connected to the first conductive region.
In some embodiments, the first transistor is a first thin film transistor, the display area is provided with a second thin film transistor for image display, a threshold voltage of the first thin film transistor is higher than that of the second thin film transistor.
In some embodiments, a first current value for turning on the first thin film transistor is greater than or equal to a second current value for breaking down the second thin film transistor.
In some embodiments, a channel breadth length ratio of the first thin film transistor is smaller than that of the second thin film transistor.
In some embodiments, the non-display area surrounds the display area and the non-display area is provided with a plurality of the first transistors, which are electrically connected with a plurality of data lines in one-to-one correspondence respectively, a plurality of first conductive regions electrically connected with the plurality of first transistors are connected successively to form a conductive band around the display area.
In some embodiments, the data line extends from the display area to the non-display area, each data line is electrically connected with at least two first transistors, and the at least two first transistors are connected in parallel with each other, the at least two first transistors are arranged in the non-display area successively along an extending direction of the data line towards the non-display area.
In some embodiments, all first conductive regions electrically connected with respective first transistors are connected with each other.
In some embodiments, a material of the first conductive region includes ITO.
A further embodiment of the disclosure provides a display device, comprising the array substrate according to any one of the above embodiments.
In the following, technical solutions of embodiments of this disclosure will be described clearly and completely in conjunction with the drawings. The embodiments described herein are only a part, rather than all of the possible embodiments of the invention. Based on the embodiments herein, all other embodiments obtained by the ordinary skilled person in the art without any inventive effort belong to the scope of the present application.
Referring to
The first transistor 21 and the first conductive region 22 connected thereto in the non-display area 2 can also be referred to as a virtual pixel unit. In an embodiment, the non-display area of the array substrate comprises a plurality of such virtual pixel units. For the array substrate provided by the embodiments of the disclosure, when static electricity accumulates on the substrate during the rubbing process, the static electricity will be transmitted through the data lines D, hence, the first transistor 21 can receive the static electricity so as to be turned on, thereby leading the static electricity to the first conductive region 22. In this way, the possibility that the static electricity is transmitted to the display area can be lowered or avoided, which may influence or even destroy the switch devices in the display area.
In the process of manufacturing the liquid crystal display panel, the rubbing to the array substrate is generally performed along a direction from a peripheral area to a central area of the array substrate. The roller together with the rubbing cloth passes through the peripheral area of the array substrate firstly, and then moves to the display area of the array substrate. Hence, the static electricity is generally generated in the peripheral area of the array substrate, i.e., the non-display area firstly, and then transmitted to the display area after being accumulated in the non-display area. The first transistor in the array substrate provided in the embodiment of this disclosure can conduct the static electricity to the first conductive region in the non-display area before it reaches the display area of the array substrate.
In an embodiment, the first conductive region is a reference potential region with zero potential (e.g., grounded), thus the static electricity can be released effectively.
In an embodiment, the non-display area 2 comprises a single or a plurality of virtual pixel units, and these virtual pixel units may be located at any side or sides of the display area 1.
The above-mentioned first transistor can be called a first thin film transistor, the thin film transistor 11 for image display in the display area can be referred to as a second thin film transistor, and the threshold voltage of the first thin film transistor is higher than the threshold voltage of the second thin film transistor. In
In an embodiment, in order to further avoid influence on the second thin film transistor for image display in the display area, a first current value for turning on the first thin film transistor is greater than or equal to a second current value for breaking down the second thin film transistor. In this way, when the second thin film transistor in the display area works normally (i.e., not being broken down), the first thin film transistor in the non-display area must be in a turned-off state. Only when a relatively strong static electricity is generated, would the first thin film transistor be turned on due to receipt of the relatively strong static electricity. However, the first thin film transistor being turned on would enable the static electricity to be released to the first conductive region, thereby being capable of protecting the second thin film transistor in the display area effectively.
In an embodiment of this disclosure, the non-display area 2 can be arranged to surround the display area 1. The non-display area 2 is provided with virtual pixel units. Each of the virtual pixel unit includes a first thin film transistor 21 and a first conductive region 22. The first thin film transistor is connected with the data line and the first conductive region respectively. The first conductive regions 22 of the virtual pixel units are connected successively to form a conductive band surrounding the display area 1. For example,
Therefore, when the static electricity generated in the rubbing process for the substrate is transmitted along the data lines D, it will be transmitted to the first conductive regions through the first thin film transistors 21. The static electricity on each data line will be led to a first conductive region connected with a corresponding first thin film transistor, thereby leading the static electricity onto the conductive band formed by the first conductive regions, and avoiding transmission of the static electricity to the display area 2, which could have destroyed the second thin film transistor device in the display area.
In an embodiment of this disclosure, a channel breadth length ratio (i.e., a breadth length ratio of the channel) of the first thin film transistor 21 is smaller than that of the second thin film transistor 11. In this way, it is advantageous to realize that the threshold voltage of the first thin transistor is higher than the threshold voltage of the second thin film transistor, thereby enabling the first thin film transistor not to be turned on when receiving the data voltage.
According to another embodiment of this disclosure, the data line extends from the display area 1 to the non-display area 2. Each data line D is electrically connected with at least two first transistors 21. The at least two first transistors are connected in parallel with each other. These first transistors are arranged in the non-display area 2 along an extending direction of the data line D towards the non-display area, as shown in
Further, in an embodiment, the first conductive regions electrically connected with respective first transistors are connected with each other. In such an embodiment, a larger static electricity releasing area can be provided for each first transistor, which is advantageous for releasing the static electricity more quickly. The first conductive region can be formed using any appropriate conductive material, including but not limited to indium tin oxide (ITO). In the embodiment as shown in
Another embodiment of this disclosure further comprises a display device. The display device comprises the array substrate as described in any of the preceding embodiments. The display device can be any devices or components having an image display function, including but not limited to a liquid crystal display panel, a portable mobile device, a navigation device, a television etc.
The embodiments in the description are described in a progressive way. The subsequent embodiments mainly illustrate differences from the former embodiments. The same or similar points between the embodiments may make reference to each other.
Although these embodiments have been described, once the skilled person in the art learns the inventive concept revealed in these embodiments, further modifications and amendments can be made to them. Therefore, the appended claims intend to be interpreted as including the embodiments described and all modifications and amendments that fall within the scopes of the claims.
Finally, it should be further noted that in this text, the relationship terms such as “first” and “second” and the like are only used for distinguishing one entity or operation from another entity or operation, while not necessarily requiring or implying presence of any such actual relationship or order between these entities or operations. Moreover, the term “comprise”, “include” or any other variants thereof intends to cover nonexclusive inclusion, so a process, a method, an article or a terminal device that includes a series of elements not only includes those elements, but also includes other elements not listed explicitly, or further includes elements inherent for the process, method, article or terminal device. Unless otherwise specified, the element defined by the wording “including . . . ” does not exclude presence of a further same element in the process, method, article or terminal device that includes the element.
What are stated above are only embodiments of this disclosure, however, the scope of the present application is not so limited. Any modifications or replacements that can be easily conceived by the skilled person familiar with the present technical field within the scope disclosed herein should all fall into the scope of the application. Therefore, the scope of the present application shall be subject to the scopes of the claims.
Number | Date | Country | Kind |
---|---|---|---|
2017 1 0344166 | May 2017 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/083182 | 4/16/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/210083 | 11/22/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5521728 | Kodate | May 1996 | A |
5521783 | Wolfe | May 1996 | A |
5751525 | Olney | May 1998 | A |
5811857 | Assaderaghi | Sep 1998 | A |
6175394 | Wu | Jan 2001 | B1 |
6756834 | Tong | Jun 2004 | B1 |
6759866 | Mori | Jul 2004 | B2 |
6812528 | Uchida | Nov 2004 | B2 |
6999290 | Takikawa | Feb 2006 | B1 |
7365773 | Takayanagi | Apr 2008 | B2 |
7372495 | Takayanagi | May 2008 | B2 |
7420790 | Takikawa | Sep 2008 | B2 |
7511930 | Apfel | Mar 2009 | B2 |
7525588 | Takayanagi | Apr 2009 | B2 |
7804669 | Worley | Sep 2010 | B2 |
7880791 | Takayanagi | Feb 2011 | B2 |
8373348 | Liu | Feb 2013 | B2 |
8654053 | Gao | Feb 2014 | B2 |
8692823 | Toyotaka | Apr 2014 | B2 |
8890859 | Toyotaka | Nov 2014 | B2 |
9013846 | Duan | Apr 2015 | B2 |
9019666 | Bourgeat | Apr 2015 | B2 |
9035923 | Kimura | May 2015 | B2 |
9054519 | Kitchener | Jun 2015 | B2 |
9236377 | Kimura | Jan 2016 | B2 |
9418989 | Kimura | Aug 2016 | B2 |
9439265 | Fan | Sep 2016 | B1 |
9552761 | Kimura | Jan 2017 | B2 |
20010050835 | Uchida | Dec 2001 | A1 |
20020101547 | Lee et al. | Aug 2002 | A1 |
20020175607 | Hofmann | Nov 2002 | A1 |
20040195625 | Ichikawa | Oct 2004 | A1 |
20060022274 | Hasegawa | Feb 2006 | A1 |
20060145951 | Watanabe | Jul 2006 | A1 |
20060187330 | Takayanagi | Aug 2006 | A1 |
20070096214 | Chen | May 2007 | A1 |
20070146564 | Wu et al. | Jun 2007 | A1 |
20070235809 | Hayano | Oct 2007 | A1 |
20080135846 | Shin | Jun 2008 | A1 |
20080218652 | Kim | Sep 2008 | A1 |
20080225133 | Takayanagi | Sep 2008 | A1 |
20080259009 | Gao | Oct 2008 | A1 |
20080259511 | Worley | Oct 2008 | A1 |
20080309649 | Kojima | Dec 2008 | A1 |
20080315934 | Engl | Dec 2008 | A1 |
20090200455 | Takayanagi | Aug 2009 | A1 |
20090296011 | Yoon | Dec 2009 | A1 |
20100097538 | Ota | Apr 2010 | A1 |
20100182226 | Umezaki | Jul 2010 | A1 |
20100245304 | Umezaki | Sep 2010 | A1 |
20100245307 | Kimura | Sep 2010 | A1 |
20110057190 | Kimura | Mar 2011 | A1 |
20110090184 | Yamazaki | Apr 2011 | A1 |
20110095290 | Koo | Apr 2011 | A1 |
20110285690 | Li | Nov 2011 | A1 |
20120032942 | Toyotaka | Feb 2012 | A1 |
20120062528 | Kimura | Mar 2012 | A1 |
20120086081 | Moriwaki | Apr 2012 | A1 |
20120224291 | Kitchener | Sep 2012 | A1 |
20120292624 | Lv | Nov 2012 | A1 |
20130050173 | Koo | Feb 2013 | A1 |
20130127360 | Liu | May 2013 | A1 |
20140126093 | Duan | May 2014 | A1 |
20140204073 | Toyotaka | Jul 2014 | A1 |
20140306227 | Yu | Oct 2014 | A1 |
20150171116 | Okazaki | Jun 2015 | A1 |
20150185519 | Kimura | Jul 2015 | A1 |
20150243215 | Kim | Aug 2015 | A1 |
20150309380 | Xu | Oct 2015 | A1 |
20150339971 | Kimura | Nov 2015 | A1 |
20160152843 | Hwang | Jun 2016 | A1 |
20160351587 | Kimura | Dec 2016 | A1 |
20160358994 | Tamonoki | Dec 2016 | A1 |
20170010704 | Chen | Jan 2017 | A1 |
20170047353 | Kimura | Feb 2017 | A1 |
20170102594 | Hu | Apr 2017 | A1 |
20170116942 | Kimura | Apr 2017 | A1 |
20170132965 | Hsu | May 2017 | A1 |
20190155113 | Zeng | May 2019 | A1 |
Number | Date | Country |
---|---|---|
101566772 | Oct 2009 | CN |
101726895 | Jun 2010 | CN |
102655145 | Sep 2012 | CN |
102983134 | Mar 2013 | CN |
103676370 | Mar 2014 | CN |
106019735 | Oct 2016 | CN |
106950775 | Jul 2017 | CN |
200727058 | Jul 2007 | TW |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority corresponding to International Patent Application No. PCT/CN2018/083182, dated Jun. 29, 2018. (14 pages with English translation). |
Office Action and English language translation, CN Application No. 201710344166.9, dated Apr. 29, 2019, 14 pp. |
Number | Date | Country | |
---|---|---|---|
20190155113 A1 | May 2019 | US |