The present invention relates to a liquid crystal display, and more particularly to an array substrate and a method of fabricating the same.
As shown in
In order to induce the transparent conductive layer to contact with the second metal layer, the through hole is formed in the color resist layer and the light shield layer respectively. Further, after the through hole is formed in the color resist layer, the light shield layer in the through hole is relatively thick accordingly, and the through hole in the light shield layer is unfavorable to fabricate. Next, it will induce a deviation of a position between the through hole in the color resist layer and that in the light shield layer, so as to induce cracks in the subsequent transparent conductive layer easily and influence the display effect.
As a result, it is necessary to provide an array substrate and a method of fabricating the same to solve the problems existing in the conventional technologies.
An object of the present invention is to provide an array substrate and a method of fabricating the same, so as to solve a technique problem of the poor display effect due to that a deviation of a position between the through hole in the color resist layer and that in the light shield layer is easily induced and the cracks in the transparent conductive layer is easily generated.
In order to solve the technique problem described above, the present invention is constructed of a method of fabricating an array substrate, which comprises steps of:
fabricating a switch array layer including a first metal layer, an active layer and a second metal layer on a substrate, wherein a plurality of gates are formed by performing a patterning process to the first metal layer, a plurality of sources and drains are formed by performing a patterning process to the second metal layer, and the active layer is used to form a channel;
forming a color resist layer including a red color filter, a green color filter and a blue color filter on the switch array layer, wherein a through hole is formed in the color resist layer;
forming a transparent conductive layer on the color resist layer;
forming a light shield layer on the transparent conductive layer and inside the through hole above the transparent conductive layer; and
forming a first insulating layer on the light shield layer.
In the method of fabricating the array substrate of the present invention, the light shield layer is a black matrix.
In the method of fabricating the array substrate of the present invention, a thickness of the first insulating layer is smaller than or equal to 0.2 μm
In the method of fabricating the array substrate of the present invention, the transparent conductive layer is connected with the second metal layer through the through hole.
In the method of fabricating the array substrate of the present invention, the first insulating layer is made of an inorganic transparent material.
In the method of fabricating the array substrate of the present invention, a second insulating layer is further formed between the switch array layer and the color resist layer.
In order to solve the technique problem described above, the present invention is constructed of a method of fabricating an array substrate, which comprises steps of:
fabricating a switch array layer including a first metal layer, an active layer and a second metal layer on a substrate, wherein a plurality of gates are formed by performing a patterning process to the first metal layer, a plurality of sources and drains are formed by performing a patterning process to the second metal layer, and the active layer is used to form a channel;
forming a color resist layer including a red color filter, a green color filter and a blue color filter on the switch array layer, wherein a through hole is formed in the color resist layer;
forming a transparent conductive layer on the color resist layer; and
forming a light shield layer on the transparent conductive layer.
In the method of fabricating the array substrate of the present invention, the through hole above the transparent conductive layer is also filled with the light shield layer therein.
In the method of fabricating the array substrate of the present invention, the light shield layer is a black matrix.
In the method of fabricating the array substrate of the present invention, the method further comprises a step of: forming a first insulating layer on the light shield layer.
In the method of fabricating the array substrate of the present invention, a thickness of the first insulating layer is smaller than or equal to 0.2 μm.
In the method of fabricating the array substrate of the present invention, the transparent conductive layer is connected with the second metal layer through the through hole.
The present invention further provides an array substrate, comprising:
a substrate;
a switch array layer located on the substrate and including a first metal layer, an active layer and a second metal layer, wherein the first metal layer includes a plurality of gates, the second metal layer includes a plurality of sources and drains, and the active layer is used to form a channel;
a color resist layer located on the switch array layer and including a red color filter, a green color filter and a blue color filter, wherein a through hole is formed in the color resist layer;
a transparent conductive layer located on the color resist layer; and
a light shield layer located on the transparent conductive layer.
In the array substrate of the present invention, the through hole above the transparent conductive layer is also filled with the light shield layer therein.
In the array substrate of the present invention, the light shield layer is a black matrix.
In the array substrate of the present invention, a first insulating layer is further disposed on the light shield layer.
In the array substrate of the present invention, a thickness of the first insulating layer is smaller than or equal to 0.2 μm.
In the array substrate of the present invention, the transparent conductive layer is connected with the second metal layer through the through hole.
According to the array substrate and the method of fabricating the same of the present invention, the black matrix is fabricated after fabricating the transparent conductive layer, so that the transparent conductive layer can be prevented from producing cracks therein.
The following description of the embodiments with reference to the appended drawings is used for illustrating specific embodiments, which may be used for carrying out, of the present invention. The directional terms described by the present invention, such as upper, lower, front, back, left, right, inner, outer, side, and etc., are only directions by referring to the accompanying drawings. Thus, the used directional terms are used to describe and understand the present invention, but the present invention is not limited thereto. In figures, elements with similar structures are indicated as the same numbers.
Please referring to
As shown in
The switch array layer is located on the substrate 21 and includes a plurality of thin film transistors which specifically includes: a first metal layer 22, a gate insulating layer 23, an active layer 24 and a second metal layer 25.
The first metal layer 22 is located on the substrate 21 and may include a plurality of gates. The gate insulating layer 23 is located on the first metal layer 21. The active layer 24 is partly located on the gate insulating layer 23. The second metal layer 25 is located on the active layer 24. The color resist layer 27 is located on the second metal layer 25 and includes a plurality of color filter resist. A through hole may be disposed in the color resist layer 27. The transparent conductive layer 28 is connected with the second metal layer 25 through the through hole.
The transparent conductive layer 28 is located on the color resist layer 27. The light shield layer 29 is located on the transparent conductive layer 28. The light shield layer 29 may be a black matrix.
It is only required to fabricating the through hole in the color resist layer by that the light shield layer is fabricated after fabricating the transparent conductive layer, such that the fabricating process is saved, the problem that the deviation is easily induced by fabricating the through hole simultaneously in the color resist layer and the light shield layer is avoided, and the transparent conductive layer are avoided generating cracks therein.
Preferably, the through hole above the transparent conductive layer 28 is also filled with the light shield layer therein.
Since the transparent conductive layer can be translucent, a light leakage occurs at an edge of the through hole accordingly. The phenomenon that the light leakage occurs at the edge of the through hole may be avoided by which, the through hole is also filled with the light shield layer therein, thereby better improving display effect. It is appreciated that the through hole is filled with the black matrix therein until the through hole being filling-up, which may make a surface of the through hole more smooth and better improve the display effect.
Preferably, a first insulating layer 30 is further disposed on the light shield layer 29. The first insulating layer 30 prevents from the material inside the light shield layer or color resist layer being easily volatilized in high temperature processes to produce bubbles, so as to influence the display effect. The material of the first insulating layer is primary an inorganic material, such as silicon nitride (SiNx), and etc.
Further, a thickness of the first insulating layer 30 is smaller than or equal to 0.2 μm. Since the liquid crystal electric field intensity in vertical direction is reduced along with increasing of the thickness of the first insulating layer, in practice though, it may offset the electric field reducing effect due to the increasing of the thickness of the first insulating layer by adjusting a liquid crystal driving voltage. However, the energy consumption is increased so as to increase the cost of production. Through experiments, it is found that when the thickness of the first insulating layer is provided in the above range, the energy consumption is reduced and the electric field intensity is avoid affecting simultaneously. The thickness of the first insulating layer 30 is preferred smaller than or equal to 0.1 μm.
A schematic diagram of an electric field intensity changing with an insulating layer thickness is as shown in
As shown in
From this, when the thickness of the insulating layer is smaller than and equal to 0.1 μm, the extent of reducing the electric field intensity is very small.
Preferably, a second insulating layer 26 is further formed between the switch array layer and the color resist layer 27. It means that the second insulating layer 26 is disposed between the color resist layer 27 and the second metal layer 25. The second insulating layer 26 is used to isolate the second metal layer from the color resist layer and to prevent from the second metal layer being oxidized.
Please referring to
A method of fabricating an array substrate of the present technique includes the following steps of:
S101: forming a switch array layer on the substrate
The switch array layer includes a plurality of thin film transistors, wherein the specific process method of the switch array layer is:
S111: forming a first metal layer on the substrate, wherein a plurality of gates are formed by performing a patterning process to the first metal layer
The step S111 is specifically that performing an exposure, lithography and etching to the first metal layer to form gates by a mask plate with patterns. The first metal layer in the portion other than the gate portion is etched away. The material of the metal layer may be chromium, molybdenum, aluminum or copper, etc.
S112: forming an active layer on the first metal layer
The active layer is used to form a channel between drains and sources. A material of the active layer is such as amorphous silicon material.
S113: forming a second metal layer on the active layer
The drains and the sources are formed by performing an exposure, lithography and etching to the second metal layer by a mask plate with patterns. The second metal layer in the portion other than the drains and sources portion is etched away, wherein the number of the gates is fitted to that of the sources and the drains.
Preferably, before fabricating the active layer, the method further includes:
Forming a gate insulating layer on the gates and on the substrate which is not covered with the gates.
S102: forming a color resist layer on the switch array layer
A through hole may be formed in the color resist layer, and the transparent conductive layer is connected with the second metal layer through the through hole. The color resist layer may include a red color filter, a green color filter and a blue color filter.
S103: forming a transparent conductive layer on the color resist layer
The sputtering method may be used to form the transparent conductive layer on a black matrix layer. The transparent conductive layer includes a pixel electrode.
S104: forming a light shield layer on the transparent conductive layer
The light shield layer may be a black matrix. The transparent conductive layer is coated with a light shield material by a mask plate with patterns, and an exposure and lithography is performed to the light shield material to form the black matrix.
Please referring to
The liquid crystal display panel of the present invention is shown as
The switch array layer is located on the substrate 21 and includes a plurality of thin film transistors, which specifically includes: a first metal layer 22, a gate insulating layer 23, an active layer 24 and a second metal layer 25.
The first metal layer 22 is located on the substrate 21 and may include a plurality of gates. The gate insulating layer 23 is located on the first metal layer 21. The active layer 24 is partly located on the gate insulating layer 23. The second metal layer 25 is located on the active layer 24. The color resist layer 27 is located on the second metal layer 25 and includes a plurality of color filter resist. A through hole may be disposed in the color resist layer 27. The transparent conductive layer 28 is connected with the second metal layer 25 through the through hole.
The transparent conductive layer 28 is located on the color resist layer 27. The light shield layer 29 is located on the transparent conductive layer 28. The light shield layer 29 may be a black matrix.
It is only required to fabricating the through hole in the color resist layer by that the light shield layer is fabricated after fabricating the transparent conductive layer, such that the fabricating process is saved, the problem that the deviation is easily induced by fabricating the through hole simultaneously in the color resist layer and the light shield layer is avoided, and the transparent conductive layer are avoided generating cracks therein.
Preferably, the through hole above the transparent conductive layer 28 is also filled with the light shield layer therein.
Since the transparent conductive layer can be translucent, a light leakage occurs at an edge of the through hole accordingly. The phenomenon that the light leakage occurs at the edge of the through hole may be avoided by which, the through hole is also filled with the light shield layer therein, thereby better improving display effect. It is appreciated that the through hole is filled with the black matrix therein until the through hole being filling-up, which may make a surface of the through hole more smooth and better improve the display effect.
Preferably, a first insulating layer 30 is further disposed on the light shield layer 29. The first insulating layer 30 prevents from the material inside the light shield layer or color resist layer being easily volatilized in high temperature processes to produce bubbles, so as to influence the display effect.
Further, a thickness of the first insulating layer is smaller than or equal to 0.2 μm, and is preferred smaller than or equal to 0.1 μm.
Preferably, a second insulating layer 26 is further formed between the switch array layer and the color resist layer 27. It means that the second insulating layer 26 is disposed between the color resist layer 27 and the second metal layer 25. The second insulating layer 26 is used to isolate the second metal layer from the color resist layer and to prevent from the second metal layer being oxidized.
In the array substrate and fabricating the same of the present invention, the fabricating process is saved, the cost of production is reduced and the display effect is improved by fabricating the black matrix before fabricating the color resist layer.
According to the above, although the present invention has been described in a preferred embodiment described above, preferred embodiments described above are not intended to limit the invention, one of ordinary skill in the art without departing from the spirit and scope of the invention within, can make various modifications and variations, so the range of the scope of the invention defined by the claims prevail.
Number | Date | Country | Kind |
---|---|---|---|
201510442417.8 | Jul 2015 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2015/085513 | 7/30/2015 | WO | 00 |