This application claims the priority to Chinese Patent Application No. 201710525619.8, filed on Jun. 30, 2017, the content of which is hereby incorporated by reference in its entirety.
The present disclosure relates to the field of display technologies, and particularly to an array substrate, a method for manufacturing the same, and a display panel.
As compared with a traditional Cathode Ray Tube (CRT) display, a Liquid Crystal Display (LCD) display can be made small and lightweight, and has been widely applied at present to a TV set, a mobile phone, and a public-information display device. At present in a liquid crystal display panel, voltage can be applied to two electrodes to create an electric field across a liquid crystal layer, and the intensity of the created electric field can be adjusted to thereby adjust the transmittance of light passing through the liquid crystal layer so as to display an image.
An embodiment of the disclosure provides an array substrate including: a gate, an active layer, a source, and a drain arranged on a base substrate in that order; wherein the array substrate further includes: a light blocking layer; a positive projection of the active layer onto the base substrate overlaps with both of a positive projection of the light blocking layer onto the base substrate, and a positive projection of the gate onto the base substrate; the positive projection of the active layer onto the base substrate lies in positive projections of the light blocking layer and the gate onto the base substrate; and an area of the positive projection of the gate onto the base substrate is smaller than an area of the positive projection of the active layer onto the base substrate.
An embodiment of the disclosure provides a display panel including the array substrate above according to the embodiment of the disclosure.
An embodiment of the disclosure provides a method for manufacturing the array substrate above according to the embodiment of the disclosure, the method including: forming a pattern of a light blocking layer on a base substrate; and forming patterns including a gate, an active layer, a source, and a drain on the base substrate formed with the pattern of the light blocking layer; wherein a positive projection of the active layer onto the base substrate overlaps with both of a positive projection of the light blocking layer onto the base substrate, and a positive projection of the gate onto the base substrate; the positive projection of the active layer onto the base substrate lies in positive projections of the light blocking layer and the gate onto the base substrate; and an area of the positive projection of the gate onto the base substrate is smaller than an area of the positive projection of the active layer onto the base substrate.
In view of this, it is highly desirable for those skilled in the art to lower power consumption of the display panel, and to improve a display effect of the display panel.
Particular implementations of the array substrate, the method for manufacturing the same, and the display panel according to the embodiments of the disclosure will be described below in details with reference to the drawings.
An embodiment of the disclosure provides an array substrate as illustrated in
In the array substrate above according to the embodiment of the disclosure, the light blocking layer 06 is arranged on the base substrate so that there are overlapping areas between the light blocking layer 06 and the active layer 03, and between the gate 02 and the active layer 03 as illustrated in
In a particular implementation, in the array substrate above according to the embodiment of the disclosure, the positive projection of the gate onto the base substrate can be arranged to partially overlap or not overlap with the positive projection of the light blocking layer onto the base substrate. Particularly in the array substrate above according to the embodiment of the disclosure, the gate can be arranged not to overlap with the light blocking layer, so that the overlapping areas of the gate with the source and the drain do not overlap with the overlapping areas of the light blocking layer with the source and the drain. In this way, the overlapping areas with the source and the drain can be shared by the light blocking layer and the gate to thereby reduce the width of the gate so as to reduce the overlapping areas between the gate, and the source and the drain, thus reducing parasitic capacitance between the gate, and the source and the drain, thus lowering power consumption of the display panel; and also the light blocking layer does not overlap with the gate, so that parasitic capacitance can be prevented from being formed between the light blocking layer and the gate.
In a particular implementation, in the array substrate above according to the embodiment of the disclosure, the light blocking layer can be located between the base substrate and the gate, and the shape of the source can be arranged in a U-shape. Particularly in the array substrate in the related art, as illustrated in
In a particular implementation, in the array substrate above according to the embodiment of the disclosure, the material of the light blocking layer can be a metal material through which no light can be transmitted. Particularly in the array substrate above according to the embodiment of the disclosure, the light blocking layer can be made of a metal material through which no light can be transmitted, to thereby shield the active layer from being affected by light rays from the outside so as to prevent photo-induced carriers from being generated by the active layer, and also reduce the overlapping areas between the gate, and the source and drain electrodes so as to reduce parasitic capacitance between the gate, and the source and drain electrodes, thus lowering power consumption of the display panel.
In a particular implementation, in the array substrate above according to the embodiment of the disclosure, the light blocking layer can be floating; or a corresponding signal can be input to the light blocking layer, and for example, a common electrode signal can be input to the light blocking layer which is a common electrode line, or a touch signal can be input to the light blocking layer. As needed in reality, the light blocking layer can be fabricated together with another functional layer, and for example, the light blocking layer can be fabricated together with a common electrode line or a touch lead in the same patterning process, the embodiment of the disclosure will not be limited thereto.
In a particular implementation, in the array substrate above according to the embodiment of the disclosure, as illustrated in
Based upon the same inventive idea, an embodiment of the disclosure further provides a display panel including the array substrate above according to the embodiment of the disclosure. The display panel can be applicable to a mobile phone, a tablet computer, a TV set, a monitor, a notebook computer, a digital camera, a navigator, or any other product or component with a display function. Since the display panel addresses the problem under a similar principle to the array substrate, reference can be made to the implementation of the array substrate above for an implementation of the display panel, so a repeated description thereof will be omitted here.
Based upon the same inventive idea, an embodiment of the disclosure further provides a method for manufacturing the array substrate above according to the embodiment of the disclosure, and as illustrated in
S101 is to form a pattern of the light blocking layer on the base substrate.
S102 is to form patterns including the gate, the active layer, the source, and the drain on the base substrate formed with the pattern of the light blocking layer.
Where a positive projection of the active layer onto the base substrate overlaps with both of a positive projection of the light blocking layer onto the base substrate, and a positive projection of the gate onto the base substrate; and the positive projection of the active layer onto the base substrate lies in positive projections of the light blocking layer and the gate onto the base substrate.
The area of the positive projection of the gate onto the base substrate is smaller than the area of the positive projection of the active layer onto the base substrate.
The manufacturing method above according to the embodiment of the disclosure can further include fabricating the plurality of requisite layers including the pixel electrode, the passivation layer and the common electrode, and particularly the respective layers are fabricated particularly as follows.
The first step is to form the pattern of the light blocking layer 06 on the base substrate 01 in a patterning process, where
The second step is to form the patterns of the gate 02 and the insulation layer 10 on the base substrate 01 formed with the light blocking layer 06 in a patterning process, where
The third step is to form the patterns of the active layer 03 and the gate insulation layers 11 on the base substrate 01 formed with the gate 02 in a patterning process, where
The fourth step is to form the pattern of the pixel electrode 07 on the base substrate 01 formed with the active layer 03 in a patterning process, where
The fifth step is to form the patterns of the source 04 and the drain 05 on the base substrate 01 formed with the pixel electrode 07 in a patterning process, where
The sixth step is to form the pattern of the passivation layer 08 on the base substrate 01 formed with the source 04 and the drain 05 in a patterning process, where
The seventh step is to form the pattern of the common electrode 09 on the base substrate 01 formed with the passivation layer 08 in a patterning process, where
In the manufacturing method above according to the embodiment of the disclosure, the light blocking layer is fabricated on the base substrate so that there are overlapping areas between the light blocking layer and the active layer, and between the gate and the active layer, and in this way, the overlapping area between the gate and the active layer can be reduced, and further the overlapping areas between the gate and the source and drain electrodes can be reduced, that is, the additional light blocking layer can be arranged to thereby reduce the width of the gate so that the overlapping areas between the gate and the source and drain electrodes can be reduced, and parasitic capacitance between the gate and the source and drain electrodes can be reduced, thus lowering power consumption of the display panel; and also the positive projection of the active layer onto the base substrate can be arranged to lie in the area of the positive projections of the gate and the light blocking layer onto the base substrate, so that the active layer can be completely shielded by the gate and the light blocking layer in the direction perpendicular to the base substrate to thereby avoid photo-induced carriers, i.e., optical leakage, from being generated due to optical induction of the active layer.
In a particular implementation, in the manufacturing method above according to the embodiment of the disclosure, the positive projection of the gate onto the base substrate can be arranged to partially overlap or not overlap with the positive projection of the light blocking layer onto the base substrate. Particularly the gate can be arranged not to overlap with the light blocking layer, so that the overlapping areas of the gate with the source and the drain do not overlap with the overlapping areas of the light blocking layer with the source and the drain. In this way, the overlapping areas with the source and the drain can be shared by the light blocking layer and the gate to thereby reduce the width of the gate so as to reduce the overlapping areas between the gate, and the source and the drain, thus reducing parasitic capacitance between the gate, and the source and the drain, thus lowering power consumption of the display panel, thus lowering power consumption of the display panel; and also the light blocking layer does not overlap with the gate, so that parasitic capacitance can be prevented from being formed between the light blocking layer and the gate.
The embodiments of the disclosure provide an array substrate, a method for manufacturing the same, and a display panel, and the array substrate includes a gate, an active layer, a source and a drain arranged on a base substrate in that order; and the array substrate further includes: a light blocking layer, where positive projection of the active layer onto the base substrate overlaps with both of positive projection of the light blocking layer onto the base substrate, and positive projection of the gate onto the base substrate; the positive projection of the active layer onto the base substrate lies in the positive projections of the light blocking layer and the gate onto the base substrate; and the area of the positive projection of the gate onto the base substrate is smaller than the area of the positive projection of the active layer onto the base substrate. In this way, in the embodiments of the disclosure, the light blocking layer is arranged on the base substrate so that there are overlapping areas between the light blocking layer and the active layer, and between the gate and the active layer, so that the overlapping area between the gate and the active layer can be reduced, and further the overlapping areas between the gate and the source and drain electrodes can be reduced, that is, the additional light blocking layer can be arranged to thereby reduce the width of the gate so that the overlapping areas between the gate and the source and drain electrodes can be reduced, and parasitic capacitances between the gate and the source and drain electrodes can be reduced, thus lowering power consumption of the display panel; and also the positive projection of the active layer onto the base substrate can be arranged to lie in the area of the positive projection of the gate and the light blocking layer onto the base substrate, so that the active layer can be completely shielded by the gate and the light blocking layer in the direction perpendicular to the base substrate to thereby avoid photo-induced carriers, i.e., optical leakage, from being generated due to optical induction of the active layer.
Evidently those skilled in the art can make various modifications and variations to this disclosure without departing from the spirit and scope of this disclosure. Thus this disclosure is also intended to encompass these modifications and variations thereto so long as the modifications and variations come into the scope of the claims appended to this disclosure and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
201710525619.8 | Jun 2017 | CN | national |