This application claims the benefit of Korean Patent Application Nos. 10-2009-0083517 and 10-2009-0083522 filed with the Korea Intellectual Property Office on Sep. 4, 2009, the disclosures of which are incorporated herein by references.
1. Field of the Invention
The present invention relates to an array type chip resistor; and, more particularly, to an array type chip resistor, in which a resistor element is disposed below a substrate so that the resistor element can be prevented from being damaged due to external impact.
2. Description of the Related Art
In general, a chip resistor refers to a resistor manufactured in a semiconductor package type by mounting a number of resistors into one body so as to increase a degree of integration of electronic products.
Such a chip resistor is mostly mounted on a semiconductor module. The sizes of personal computers (PC) and servers gradually become small, but there is a limit in downsizing the semiconductor module mounted on the PCs or servers, e.g., memory module.
Therefore, an array type chip resistor integrally configured with a number of resistive elements so as to increase a degree of its integration has been used as the chip resistor mounted on the memory module.
The array type chip resistor has been mostly used in order to reduce noises of signal waves reflected in a semiconductor package on which a memory module is mounted. However, it have been pointed out that the conventional chip resistor has a variety of quality problems due to external environment when mounted on a printed circuit board.
That is, the conventional chip resistor includes a substrate, a resistive element formed on a top surface of the substrate, an external electrode which is connected to the resistive element and is extended from the top surface to side and top surfaces thereof. In this case, the external electrode, which is made of a conductor's terminal, is used as an electrical connection means when the chip resistor is mounted on a PCB.
When mounted on a PCB or moved for mounting, the conventional chip resistor has problems of damages of the substrate and corners thereof due to external impact by worker's carelessness. Further, when external impact is applied to the resistive element exposed to the top surface of the substrate during mounting, the resistive element may be damaged.
In the conventional chip resistor, there may be produced scratch phenomenon that peels coating materials of an external electrode printed on side surfaces thereof due to external friction or contact between chip resistors. Further, there may be also produced short between electrodes due to the scratch phenomenon when soldering is performed for mounting the chip resistor.
Meanwhile, a bearing layer is formed between each electrode at the time of forming an upper electrode connected to the resistive element in order to prevent short of electrodes resulting from scratch of an external electrode in the chip resistor. However, the bearing layer is insufficient for prevention of electrode short.
The present invention has been proposed in order to overcome the above-described problems and it is, therefore, an object of the present invention to provide an array type chip resistor, in which a resistive element is disposed below a substrate so that a resistive element can be prevented from being exposed to outside when the resistive element is mounted, which results in preventing the resistive element from being damaged due to external impact.
Further, another object of the present invention is to provide an array type chip resistor which can prevent short generation due to scratch by allowing upper electrodes exposed to outside of the substrate to have a minimum size.
In accordance with one aspect of the present invention to achieve the object, there is provided an array type chip resistor including: a substrate having a plurality of grooves formed on both sides thereof at equal spaces; lower electrodes formed on both sides of a bottom surface of the substrate; upper electrodes formed on both sides of a top surface of the substrate; side electrodes electrically connected to the upper and lower electrodes; a resistive element interposed between lower electrodes of the bottom surface of the substrate; a protection layer covered on the resistive element, the protection layer having both sides which cover a part of the lower electrodes and the resistive element; leveling electrodes being in contact with the lower electrodes exposed to outside of the protection layer; and a plating layer formed on the leveling electrodes.
It is preferable that the substrate may be formed in a rectangular parallelepiped shape, and the substrate is made of alumina material insulated through an anodizing process of an aluminum's surface, and plays a role of thermal diffusion path through which heat produced from the resistive element 120 is emitted to outside.
Also, it is preferable that the lower electrodes and the upper and side electrodes are formed on a portion where the plurality of grooves on both sides of the substrate are formed.
Also, the protection layer may be made of a silicon material, or a glass material, and the protection layer is covered up to a part of inside of the lower electrodes exposed to both sides of the resistive element.
In this case, after the resistive element covers the protection layer, grooves formed by trimming a part of the resistive element through a laser may be formed so as to implement an accurate resistance value.
It is preferable that the leveling electrodes are for electrodes to enable lower electrodes with effective areas reduced by the protection layer to have expanded effective area, and the leveling electrodes are formed on the lower electrodes exposed to outside of the protection layer.
Also, the plating layer performs protection of the lower electrodes, as well as formation of external electrodes by growing Ni—Sn plating layer on the leveling electrodes so that it can be exposed to outside of the chip resistor.
Also, the chip resistor may further include an insulating layer which covers outside of the protection layer, and the insulating layer is made of polymer and finally protects the resistive element. Further, the insulating layer prevents plating solution from infiltrating to the resistive element when the plating layer for formation of the external electrode is formed.
In this case, it is preferable that the plating layer is formed to have a height higher than that of the insulating layer.
Also, the substrate has an upper insulating layer formed on all top surfaces except for a portion where the upper electrode is formed. In this case, the upper insulating layer covers a part of the upper electrodes, thereby minimizing external exposure of the upper electrodes.
In accordance with another aspect of the present invention to achieve the object, there is provided an array type chip resistor including: a substrate having a plurality of grooves formed on both sides at equal spaces; lower electrodes formed on both sides of a bottom surface of the substrate; side electrodes electrically connected to the lower electrodes, the side electrodes being extended up to a part of a side surface of the substrate; a resistive element interposed between the lower electrodes of the bottom surface of the substrate; a protection layer covered on the resistive element, the protection layer having both sides which covers a part of the lower electrodes and the resistive element; leveling electrodes being in contact with the lower electrodes exposed to outside of the protection layer; and a plating layer formed on the leveling electrodes.
Also, it is preferable that the lower electrodes, and the side electrode extended from the lower electrodes to a side surface of the substrate are formed on a portion where the plurality of grooves on both sides of the substrate are formed.
Also, the side electrodes may be formed along the grooves formed on the side surface of the substrate. It is preferable that the side electrodes are formed to have a height greater than a half, but less than that of a side surface of the substrate.
These and/or other aspects and advantages of the present general inventive concept will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
An array type chip resistor in accordance with the present invention will be described in detail with reference to the accompanying drawings. When describing them with reference to the drawings, the same or corresponding component is represented by the same reference numeral and repeated description thereof will be omitted.
As shown in drawings, the chip resistor 100 in accordance with one embodiment of the present invention includes a substrate 110 having a plurality of grooves formed on both side surfaces thereof, a resistive element 120 formed on a bottom surface of the substrate 110, and a plurality of lower electrodes 130 electrically connected to the resistive element 120.
The substrate 110 may be formed in a thin plate shaped like a rectangular parallelepiped, and may be formed of alumina material insulated through an anodizing process of an aluminum's surface. Further, as the substrate 110 is formed of a material with superior heat conductivity, the substrate 110 serves as thermal diffusion path through which heat produced from the resistive element 120 is emitted to outside at surface-mounting of the chip resistor 100.
A plurality of lower electrodes 130 disposed at a predetermined space are formed on both sides of the bottom surface of the substrate 110. The resistive element 120 composed of RuO as its principal ingredient is printed on a central portion of the bottom surface of the substrate 110 of inside of the lower electrodes 130. In this case, the resistive element 120, and a plurality of lower electrodes 130 disposed on an external side thereof are electrically connected to one another.
The lower electrodes 130 may be formed on a position where a plurality of grooves 111 on both sides of the substrate 110 are formed. When the resistive element 120 is printed on the inside of the lower electrodes 130 formed on both sides of the bottom surface of the substrate 110, the resistive element 120 is printed so that the lower electrodes 130 are partially covered for stably electrical connection between the resistive element 120 and the lower electrodes 130.
Also, a top surface where the grooves are formed at both sides of the substrate 110, i.e., the top surface of the substrate 110 corresponding to a position where the lower electrodes 130 are formed, may have the upper electrodes 140 formed thereon. In this case, the upper electrodes 140 and the lower electrodes 130 are electrically connected to one another through side electrodes 150 formed along the grooves 111 provided at both sides of the substrate 110.
Meanwhile, a protection layer 160 for protecting the resistive element 120 from external impact is covered on the resistive element 120 which is interposed between the lower electrodes 130 and is printed at a predetermined thickness. In this case, it is preferable that the protection layer 160 may be formed of a material composed of SiO2 or glass, which may be formed on the protection layer 160 by over coating.
The protection layer 160 is formed on exposed overall surfaces of the resistive element 120 in order to protect the resistive element 120. However, it is preferable that the protection layer 160 is formed to cover not only a part of the inside of the lower electrodes 130 provided on the outside of the resistive element 120, but also the resistive element 120, in order to entirely seal the resistive element 120.
The resistive element 120 having the protection layer 160 formed thereon aims to implement resistor characteristics by interrupting a current flow through the chip resistor 100 at the time of surface mounting. In this case, the resistive element 120 is required to have an appropriate capacitance. To this end, after having the protection layer 160 formed thereon, the resistive element 120 can be implemented to have an appropriate capacitance value by performing a trimming process through a laser.
In other words, if it is assumed that the chip resistor can implement a resistance value of 100Ω, the resistive element 120 is formed to implement roughly resistance values of 80 to 90Ω because it is impossible to form the resistive element 120 having accurately a resistance value of 100Ω when the resistive element 120 is printed, and the resistive element 120 is formed to have grooves with shapes obtained by undergoing a trimming process through a laser, so that a resistance value is increased, which makes it possible to implement a resistance value of 100Ω corresponding to a deign value in the chip resistor 100.
In this case, the reason why the protection layer 160 is formed on the resistive element 120 and the resistive element 120 is formed to have trimmed grooves is that crack of the resistive element 120 is prevented by using the protection layer 160 when the trimming process is performed through a laser.
The leveling electrodes 170 being in electrical contact with the lower electrodes 130 are formed after the protection layer 160 for covering the resistive element 120 is formed. The leveling electrodes 170 may be formed on a circumference of the protection layer 160 which covers the lower electrodes 130 and a part of the lower electrodes 130. The leveling electrodes 170 play a role of enabling the electrodes to be stably contacted to one another by expanding reduced effective areas of the lower electrodes 130.
Also, the leveling electrodes 170 may be formed on the lower electrodes 130 at a predetermined height. In this case, the reason why the leveling electrodes 170 are additionally formed on the lower electrodes 130 is that a final electrode has a height higher than heights of the resistive element 120, and the insulating layer, as well as the protection layer 160, wherein the resistive element 120 is printed on the bottom surface of the substrate 110, and the insulating layer is to be described below.
That is, the leveling electrodes 170 are adjusted to have a nearly identical height of the protection layer 160 and the resistive element 120 formed on the center of the bottom surface of substrate 110. When the resistive element 120 and the protection layer 160 are formed, the leveling electrodes 170 come into contact with reduced effective areas of the lower electrodes 130 to thereby expand areas of the electrodes, which makes it possible to ensure electrode's safety and easily form a plating layer.
Meanwhile, the plating layer 180 is formed on the leveling electrodes 170 in order to form finally an external electrode. The plating layer 180 may be sequentially subjected to Ni plating and Sn plating, and the plating layer 180 may be formed through electroless plating or electro plating.
In this case, the Ni plating layer may correspond to a plating layer for protection of the leveling electrodes 170 at the time of soldering, and the Sn plating layer may be formed for solders convenient for soldering.
In addition, the chip resistor 100 may further include an insulating layer 190 which covers the entire protection layer 160 when the external electrode is formed by the plating layer 180. It is preferable that the insulating layer 190 is made of a glass material or a polymer material similar to that of the protection layer 160. The insulating layer 190 plays a role of finally protecting the resistive element 120.
Also, the insulating layer 190 protects the resistive element 120 from external impact by perfectly preventing the resistive element 120 from being exposed to the outside. Moreover, the insulating layer 190 prevents plating solution from infiltrating to the resistive element 120 when the plating layer 180 for formation of the external electrode is formed, by covering a part of the leveling electrodes 170 of being additional electrodes and all surfaces of the resistive element 120.
In this case, it is preferable that the plating layer 180 formed on both sides of the insulating layer 190 is formed to have a height higher than that of the central portion of the insulating layer 190. This is because when the chip resistor 100 is mounted on the main substrate PCB, stable mounting can be achieved. In more particular, this is because when the convex-shaped central portion of the insulating layer 190 is formed to have a height higher than that of the plating layer 180, the chip resistor 110 is prevented from being obliquely mounted on the main substrate due to a convex portion of the center of the insulating layer 190 when subjected to soldering, which refers to Tombstone defects.
As shown in
After the chip resistor 100 is mounted, the chip resistor 100 is bonded to the main substrate through soldering. Solders S fused in bonding soldering are bonded through the side electrodes 150 and the upper electrodes 140 of the chip resistor 100, as shown in
In this case, the solders S are bonded on the upper electrodes 140 of the chip resistor 100, so that it is possible to improve a bonding strength between the chip resistor 100 and the main substrate PCB.
As such, when the chip resistor 100 is bonded on the main substrate PCB, an external exposure of the upper electrodes 140 is allowed to be minimized in order to prevent short through the upper electrodes 140.
A part of the top surface of the upper electrodes 140 and the side surface of the upper electrodes 140 are covered by the insulating layer 191, respectively, so that it is possible to minimize exposure of the upper electrodes 140.
In this case, the insulating layer 191 may be made of a polymer material. The insulating layer 191 is extended up to between the upper electrodes 140, thereby preventing short generated during soldering since the solders prevent contact to other electrodes through the insulating layer 191 even if the scratch of the upper electrodes 140 peels electrodes as shown in the perspective view of
Those components that are the same or are in correspondence are rendered the same reference numeral regardless of the figure number, and redundant explanations are omitted.
As shown in drawings, the chip resistor 200 includes a substrate 110, a resistive element 120, a plurality of lower electrodes 130, and side electrodes 150. The substrate 110 has a plurality of grooves formed on both sides thereof, and the resistive element 120 is formed on the bottom surface of the substrate 110. The lower electrodes 130 are electrically connected to the resistive element 120, and the side electrodes 150 are extended from the lower electrodes 130 to the side surface of the substrate 110.
The substrate 110 may be formed in a thin plate shaped like a rectangular parallelepiped, and has a plurality of lower electrodes 130 formed on both sides of the bottom surfaces thereof at a predetermined space.
The resistive element 120 is printed on the central portion of the bottom surface of the inside of the lower electrodes 130. In this case, the resistive element 120 is electrically connected to the lower electrodes 130 disposed on an external side thereof.
The lower electrodes 130 may be formed on a portion where a plurality of grooves 111 formed on both sides of the substrate 110 are to be formed. When the resistive element 120 is printed inside of the lower electrodes 130 formed on both sides of the bottom surface of the substrate 110, the resistive element 120 is printed so that a part of the lower electrodes 130 are covered for stably electrical connection between the resistive element 120 and the lower electrodes 130.
The side electrodes 150 are extended from the lower electrodes 130 along the grooves 111 of the side surface of the substrate 110. It is preferable that the side electrodes 150 are formed to have a height ranging from 50 to 100% in comparison with a height of the side surface of the substrate 110.
That is, the side electrodes 150 are allowed to be extended to a part of the side surface of the substrate 110 instead of the overall side surfaces of the substrate 110, so that the solders being in contact with the side electrodes 150 at soldering of the chip resistor 200 are allowed to be located only on a portion where the side electrodes 150 are formed.
Also, the chip resistor 200 of the present embodiment is not provided with separate upper electrodes connected to the side electrodes 150. Therefore, it is possible to previously prevent scratch of the electrodes due to friction on the exposed portion of the top surface of the substrate 110.
Meanwhile, the protection layer 160 for protecting the resistive element 120 from external impact is covered on the resistive element 120 printed at a predetermined thickness between the lower electrodes 130.
The protection layer 160 is formed on exposed overall surfaces of the resistive element 120 for the purpose of protecting the resistor 12. However, it is preferable that the protection layer 160 covers not only a part of inside of the lower electrodes 130 provided on the external side of the resistive element 120, but also the resistive element 120, so as to entirely seal the resistive element 120.
The resistive element 120 having the protection layer 160 formed thereon is allowed to implement resistor characteristics by interrupting a current flow through the chip resistor 200. The resistor is required to have an appropriate capacitance value. Further, it is possible to allow the resistive element 120 to have an appropriate capacitance value by a trimming process through a laser, after the protection layer 160 is formed.
After the protection layer 160 covering the resistive element 120 is formed, the leveling electrodes 170 are provided that come into electrical contact with the lower electrodes 130. The leveling electrodes 170 may be formed on a circumstance of the protection layer 160 which covers a part of the lower electrodes 130 and the lower electrodes 130. The leveling electrodes 170 play a role of enabling stable contact between the electrodes by expanding reduced effective areas of the lower electrodes 130.
Meanwhile, the plating layer 180 for formation for the final external electrode is formed on the leveling electrodes 170. The plating layer 180 may be sequentially subjected to Ni plating or Sn plating. The plating layer 180 may be formed through electroless plating or electro plating.
In addition, the chip resistor 200 may further include an insulting layer 190 which entirely covers the protection layer 160, when the external electrode is formed by the plating layer. It is preferable that the insulating layer 190 may be made of a glass material or a polymer material similar to that of the protection layer 160. The insulating layer 190 plays a role of finally protecting the resistive element 120.
In this case, it is preferable that the plating layer 180 formed on both sides of the insulating layer 190 is formed to have a height higher than that of the central portion of the insulating layer 190.
As shown in drawings, when the chip resistor 200 is mounted on the main substrate, the plating layer 180 and the insulating layer 190 surrounding the lower electrodes 130 and the resistive element 120 come into contact with the main substrate PCB, so that it is possible to prevent the resistive element 120 from being exposed to outside.
Bonding of the chip resistor 200 to the main substrate PCB after mounted is made through soldering. Solders S fused in soldering boding come into contact with the side electrodes 150 of the chip resistor 200 to thereby flow up to a place where the side electrodes 150 is formed, which is bonded in shown in
In this case, the solders S are not contacted up to the top surface of the chip resistor 200, but it is possible to maintain an enough bonding strength between the main substrate and the chip resistor 200 only through the solder bonding.
As such, when the chip resistor 200 is bonded to the main substrate PCB, the electrodes on the edge of the top surface of the substrate can be previously prevented from being scratched, so that it is possible to prevent short between electrodes at the time of soldering.
According to the chip resistors 100 and 200 of the present invention, the resistive element 120 is disposed on the center of the bottom surface of the substrate 110, so that the resistive element 120 can be prevented from being exposed to outside when mounted on the main substrate. Even if external impact is applied to the chip resistors 100 and 200, the resistive element 120 is prevented from being broken. Further, it is possible to maintain inherent resistor characteristics by preventing damage of the resistive element 120.
As described above, according to the chip register of the present invention, since the resistive element is printed inside of the lower electrodes on the bottom surface of the substrate, the resistive element can be prevented from being damaged due to external impact.
Moreover, according to the present invention, it is possible to minimize exposure of the upper electrode formed on the top surface of the substrate, or to prevent short between electrodes due to scratch of edges of the substrate at the time of soldering by forming only side electrodes without having to form upper electrodes.
Furthermore, according to the present invention, it is possible to minimize a size of an upper electrode exposed to the top surface of the substrate, or to reduce usage of paste for electrode formation since it is unnecessary to separately form an upper electrode. A plating layer on the bottom surface of the substrate is formed to have a height higher than an insulating layer, thereby stably mounting a chip resistor on a main substrate.
As described above, although the preferable embodiments of the present invention have been shown and described, it will be appreciated by those skilled in the art that substitutions, modifications and variations may be made in these embodiments without departing from the principles and spirit of the general inventive concept, the scope of which is defined in the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2009-0083517 | Sep 2009 | KR | national |
10-2009-0083522 | Sep 2009 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
4486738 | Sadlo et al. | Dec 1984 | A |
5285184 | Hatta et al. | Feb 1994 | A |
5334968 | Negoro | Aug 1994 | A |
5844468 | Doi et al. | Dec 1998 | A |
5907274 | Kimura et al. | May 1999 | A |
6005474 | Takeuchi et al. | Dec 1999 | A |
6150920 | Hashimoto et al. | Nov 2000 | A |
6304167 | Nakayama | Oct 2001 | B1 |
6563214 | Yamada et al. | May 2003 | B2 |
6856234 | Kuriyama et al. | Feb 2005 | B2 |
Number | Date | Country |
---|---|---|
1338890 | Mar 2002 | CN |
10-125503 | May 1998 | JP |
2000-173802 | Jun 2000 | JP |
2000-306711 | Nov 2000 | JP |
2004-134559 | Apr 2004 | JP |
2005-011929 | Feb 2005 | JP |
2007-088162 | Apr 2007 | JP |
10-0498876 | Oct 2005 | KR |
10-2008-0053735 | Jun 2008 | KR |
Number | Date | Country | |
---|---|---|---|
20110057765 A1 | Mar 2011 | US |