The instant disclosure relates generally to the field of arrow systems, such as hunting and target arrow systems.
Over the years, various arrows and arrow systems have been developed for use in hunting and sport archery. Conventional arrow systems typically comprise an arrow shaft, an arrow point (such as a field point or a broadhead) permanently or removably attached to the leading or distal end of the arrow shaft, and a nock provided at the trailing or proximate end of the arrow shaft. A plurality of vanes or other fletching are also typically secured to the trailing end of the arrow shaft to facilitate proper arrow flight.
In conventional field point arrow systems, a field point may be removably attached to the arrow shaft using one or more insert components. For example, an insert having a shank portion, a lip portion, and a threaded end portion may be affixed within a hollow arrow shaft by inserting the shank portion into the hollow arrow shaft until the lip portion of the insert abuts an end wall of the arrow shaft. A field point having a threaded aperture defined therein may then be threaded onto the threaded end of the insert until the end wall of the field point seats against the lip portion of the insert. Removably attaching the field point to the arrow shaft in this manner enables archers to mix and match various field points and arrow shafts as may be required for differing hunting or sport archery applications.
Similarly, in conventional broadhead arrow systems, a broadhead may be removably attached to the arrow shaft using a component commonly known as a “ferrule.” Conventional broadhead ferrules may comprise a shank portion having a threaded trailing end, a threaded leading end, and a conically shaped lip portion disposed between the leading and trailing ends. The ferrule may be attached to the arrow shaft by threading the threaded trailing end of the shank portion into a threaded bore located in the hollow arrow shaft until the flat end of the conically shaped lip portion abuts an end wall of the arrow shaft. A broadhead (which may comprise a plurality of blades extending from a common frontal point to a base, a tapered base collar connected to the base of each blade, and a threaded aperture defined in a central hub structure provided on the underside of each blade) may then be threaded onto the threaded leading end of the ferrule until the outer surface of the conically shaped lip portion is brought to bear against the inner surface of the tapered base collar, resulting in a tight engagement between the broadhead and the ferrule secured within the arrow shaft. As with conventional field point arrow systems, removably attaching the broadhead to the arrow shaft in this manner enables archers to mix and match various broadheads and arrow shafts as may be required for differing hunting or sport archery applications.
In certain conventional arrow systems (including both field point and broadhead arrow systems), the precise axial alignment of the arrow point with the arrow shaft depends upon at least four different sets of interfacing surfaces, all of which have the potential to adversely affect the axial alignment of the arrow point with the arrow shaft. For example, in field point arrow systems, a first interfacing surface set may comprise the trailing end wall of the field point and the flat leading end surface of the lip portion of the insert. Another set may comprise the flat trailing end surface of the lip portion of the insert and the end wall of the leading end of the arrow shaft. An additional set may comprise the cylindrical outer surface of the insert and the inside surface of the arrow shaft. Finally, the threaded end of the insert and the threaded aperture defined in the field point may comprise a further set of interfacing surfaces. Similarly, in broadhead arrow systems, a first interfacing surface set may comprise the flat trailing end surface of the conically shaped lip portion of the ferrule and the end wall of the leading end of the arrow shaft. Another set may comprise the outer surface of the conically shaped lip portion and the inner surface of the tapered base collar. An additional set may comprise the threaded trailing end of the ferrule and the threaded bore defined in the arrow shaft. Finally, the threaded leading end of the ferrule and the threaded aperture defined in the central hub structure of the broadhead may comprise a further set of interfacing surfaces.
Because any one of the foregoing interfacing surfaces may adversely affect the axial alignment of the arrow point with the arrow shaft (and thus potentially adversely affect arrow flight and accuracy), significant costs may be expended in an attempt to precisely manufacture and align each respective component in conventional arrow systems. Accordingly, there exists a need for a simple, accurate, reliable, and cost-effective apparatus and method for aligning an arrow point with an arrow shaft arrow in an arrow apparatus.
According to at least one embodiment, an arrow apparatus comprises an arrow shaft having an outer surface, an inner surface, a leading end, and a trailing end, an arrow point alignment structure comprising a tapered leading end disposed on the outer surface of the arrow shaft proximate the leading end of the arrow shaft, and an arrow point attached to the leading end of the arrow shaft. In certain embodiments, at least a portion of the arrow point attached to the arrow shaft may contact at least a portion of the tapered leading end of the arrow point alignment structure disposed on the outer surface of the arrow shaft. The arrow point alignment structure may either be integrally formed with the outside surface of the arrow shaft or affixed to the outside surface of the arrow shaft. In an additional embodiment, the arrow point alignment structure may be affixed to a portion of the arrow point.
The arrow apparatus may also comprise an insert at least partially disposed within the arrow shaft. In at least one embodiment, the insert may be integrally formed with the arrow point alignment structure. The insert may also comprise a first insert portion removably attached to a second insert portion that weighs less than the first insert portion. In an additional embodiment, the arrow apparatus may comprise an insert completely disposed within the arrow shaft and an adapter having a first end removably attached to the insert within the arrow shaft and a second end removably attached to the arrow point.
In certain embodiments, the arrow point alignment structure comprises a lip portion that surrounds at least a portion of the leading end of the arrow shaft. The arrow point alignment structure may also comprise a tapered trailing end. In addition, the arrow apparatus may comprise a spacing structure disposed between the arrow point alignment structure and the outer surface of the arrow shaft, with the spacing structure comprising a first lip structure that surrounds at least a portion of the leading end of the arrow shaft and a second lip structure that surrounds the tapered trailing end of the arrow point alignment structure.
In at least one embodiment, the arrow point may be a field point having a tapered aperture defined therein that is configured to contact at least a portion of the tapered leading end of the arrow point alignment structure. In an additional embodiment, the arrow point may be a broadhead that comprises a tapered collar configured to contact at least a portion of the tapered leading end of the arrow point alignment structure. In many embodiments, the arrow point alignment structure brings the arrow point into axial alignment with the arrow shaft.
In an additional embodiment, an arrow point for attachment to an arrow shaft comprises a leading end, a trailing end, a threaded aperture defined within the arrow point proximate the leading end, and a tapered aperture defined within the arrow point proximate the trailing end. In certain embodiments, the tapered aperture may be configured to contact at least a portion of an arrow point alignment structure disposed on an outer surface of an arrow shaft. The arrow point may be a field point or a broadhead that comprises a tapered collar that defines the tapered aperture.
According to at least one embodiment, a method of making an arrow apparatus comprises providing an arrow shaft having an inner surface, an outer surface, a leading end, and a trailing end, disposing an arrow point alignment structure having a tapered leading end on the outer surface of the arrow shaft, and axially aligning the arrow point alignment structure with the arrow shaft. The method may also comprise mating the tapered leading end of the arrow point alignment structure with a tapered aperture defined within an arrow point. In addition, the method may comprise disposing at least a portion of an insert within the arrow shaft and attaching an arrow point to the insert. In an additional embodiment, the method may comprise completely disposing an insert within the arrow shaft, attaching an adapter to the insert, and attaching an arrow point to the adapter. The method may also further comprise affixing the arrow point alignment structure to a portion of the arrow point.
In certain embodiments, disposing an arrow point alignment structure on the outer surface of the arrow shaft comprises integrally forming the arrow point alignment structure with the outer surface of the arrow shaft. Alternatively, disposing an arrow point alignment structure on the outer surface of the arrow shaft may comprise affixing the arrow point alignment structure to the outer surface of the arrow shaft. In addition, disposing an arrow point alignment structure on the outer surface of the arrow shaft may also comprise spacing the arrow point alignment structure a predetermined distance from the leading end of the arrow shaft.
In an additional embodiment, an arrow point apparatus comprises an arrow shaft having an outer surface, an inner surface, a leading end, and a trailing end, an arrow point alignment structure comprising a tapered leading end disposed on the outer surface of the arrow shaft proximate the leading end of the arrow shaft, and an arrow point attached to the leading end of the arrow shaft. In certain embodiments, at least a portion of the arrow point attached to the arrow shaft extends over both the leading end of the arrow shaft and the tapered leading end of the arrow point alignment structure disposed on the outer surface of the arrow shaft to provide internal structural support for the arrow point.
In least one embodiment, an arrow apparatus may comprise an arrow shaft having an outer surface, an inner surface, a leading end, and a trailing end, and an arrow point alignment structure comprising a tapered leading end disposed on the outer surface of the arrow shaft proximate the leading end of the arrow shaft. An insert comprising a threaded end may also be affixed to the inner surface of the arrow shaft. The arrow apparatus may also comprise an arrow point comprising a threaded aperture configured to mate with the threaded end of the insert and a tapered aperture configured to contact at least a portion of the tapered leading end of the arrow point alignment structure. In at least one embodiment, the arrow point alignment structure brings the arrow point into axial alignment with the arrow shaft.
In certain embodiments, a broadhead arrow point apparatus may comprise an arrow shaft having an outer surface, an inner surface, a leading end, and a trailing end and a broadhead arrow point attached to the leading end of the arrow shaft. In at least one embodiment, the broadhead arrow point may comprise an arrow point alignment structure disposed about at least a portion of the arrow shaft proximate the leading end of the arrow shaft. In certain embodiments, this arrow point alignment structure may bring the broadhead arrow point into axial alignment with the arrow shaft.
Features from any of the above-mentioned embodiments may be used in combination with one another in accordance with the general principles described herein. These and other embodiments, features and advantages will be more fully understood upon reading the following detailed description in conjunction with the accompanying drawings and claims.
The accompanying drawings illustrate a number of exemplary embodiments and are a part of the specification. Together with the following description, these drawings demonstrate and explain various principles of the instant disclosure.
Throughout the drawings, identical reference characters and descriptions indicate similar, but not necessarily identical, elements. While the exemplary embodiments described herein are susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. However, one of skill in the art will understand that the exemplary embodiments described herein are not intended to be limited to the particular forms disclosed. Rather, the instant disclosure covers all modifications, equivalents, and alternatives falling within the scope defined by the appended claims.
As seen in
In addition, inner surface 36 of alignment structure 30 and outer surface 26 of arrow shaft 20 may be shaped such that, when arrow shaft 20 is disposed within alignment structure 30, alignment structure 30 may be brought into axial alignment with arrow shaft 20. In other words, the cylindrically shaped inner surface 36 of alignment structure 30 may be proportional to, and just slightly larger than, the cylindrically shaped outer surface 26 of arrow shaft 20 so that the longitudinal axes of arrow shaft 20 and alignment structure 30 are brought into alignment with one another when arrow shaft 20 is inserted and disposed within alignment structure 30.
In at least one embodiment, and as seen in
As detailed above, tapered leading end 32 may taper from a diameter approximately equal to the outer diameter of arrow shaft 20 to a diameter that is greater than or approximately equal to an outer diameter of arrow point 50. In at least one embodiment, alignment structure 30 may be positioned on arrow shaft 20 so as to prevent threaded end 41 of insert 40 from being completely threaded into threaded portion 52 of arrow point 50. In other words, the distance between the tapered leading end 32 of alignment structure 30 and the leading end 22 of arrow shaft 20 may be chosen such that, as insert 40 is threaded into arrow point 50, the outer surface of tapered leading end 32 may bear against the inner surface of tapered portion 58 of the internal aperture defined within arrow point 50 to prevent lip portion 43 from contacting shoulder portion 54 of arrow point 50. Alternatively, the distance between the tapered leading end 32 of alignment structure 30 and the leading end 22 of arrow shaft 20 may be chosen so that lip portion 43 bears against shoulder portion 54 of arrow point 50 at the same time that the outer surface of tapered leading end 32 bears against the tapered portion 58 of the internal aperture defined within arrow point 50.
In at least one embodiment, tapered leading end 32 of alignment structure 30 may be shaped so as to bring arrow point 50 into axial alignment with alignment structure 30. In other words, as seen in
Because in certain embodiments the shortened distance between the tapered leading end 32 of alignment structure 30 and the leading end 22 of arrow shaft 20 may prevent threaded end 41 of insert 40 from being completely threaded into threaded portion 52 of arrow point 50, many of the axial alignment difficulties experienced in conventional arrow systems may be eliminated. In addition, because arrow point 50 extends over and surrounds at least a portion of arrow shaft 20, as opposed to being cantilevered off the leading end 22 of arrow shaft 20, as with conventional arrow points, arrow point 50 may receive internal structural support from arrow shaft 20, thereby strengthening the attachment of arrow point 50 to arrow shaft 20. Thus, arrow point 50 may be axially aligned with arrow shaft 20 with greater accuracy and reliability than is possible with conventional arrow systems, resulting in improved arrow flight and accuracy. Additionally or alternatively, in certain embodiments where the distance between the tapered leading end 32 of alignment structure 30 and the leading end 22 of arrow shaft 20 is chosen to allow lip portion 43 to bear against shoulder portion 54 of arrow point 50, alignment structure 30 may help negate any alignment problems generated by the engagement of lip portion 43 with shoulder portion 54.
As illustrated in the perspective views of
In the exemplary embodiment illustrated in
Gauge 60 may be formed of any number or combination of materials, such as plastic, aluminum, steel, brass, or any other suitable material. Gauge 60 may also be formed in any number of shapes and sizes. For example, as illustrated in
The preceding description has been provided to enable others skilled in the art to best utilize various aspects of the exemplary embodiments described herein. This exemplary description is not intended to be exhaustive or to be limited to any precise form disclosed. Many modifications and variations are possible without departing from the spirit and scope of the instant disclosure. For example, as illustrated in
Broadhead 150 generally represents any form or type of broadhead; including, for example, unitary, expandable, and replaceable fixed-blade broadheads. In at least one embodiment, broadhead 150 comprises a plurality of blades 152 that each extend from a common frontal point to a base. In certain embodiments, the base of each blade 152 may be connected to a tapered collar 154. Tapered collar 154 may define a central aperture (also referred to as a collar aperture having a tapered surface) that is in axial alignment with a central hub structure 156 provided on the underside of each blade 152 and positioned between the common frontal point and tapered collar 154. Similar to threaded portion 52 of arrow point 50, central hub structure 156 may comprise a plurality of internal threads configured to receive and threadably mate with threaded end 141 of insert 140.
In at least one embodiment, the inner surface of tapered collar 154 may embody the inverse of the generally frustoconical shape of tapered leading end 132 of alignment structure 130. In addition, the diameter of tapered leading end 132 of alignment structure 130 may taper from a diameter approximately equal to the outer diameter of arrow shaft 120 to a diameter that is greater than or substantially equal to an outer diameter of tapered collar 154. Thus, as seen in
As with exemplary arrow apparatus 10, alignment structure 130 in exemplary arrow apparatus 100 may be positioned on arrow shaft 120 so as to prevent threaded end 141 of insert 140 from being completely threaded into central hub structure 156. In other words, the distance between the tapered leading end 132 of alignment structure 130 and the leading end of arrow shaft 120 may be chosen such that, as insert 140 is threaded into central hub structure 156, the outer surface of tapered leading end 132 may bear against the inner surface of tapered collar 154 to prevent the lip portion of insert 140 from abutting a shoulder portion defined in central hub structure 156. Alternatively, the distance between the tapered leading end 132 of alignment structure 130 and the leading end of arrow shaft 120 may be chosen so that the lip portion of insert 140 bears against a shoulder portion defined in central hub structure 156 at the same time that the outer surface of tapered leading end 132 bears against the inner surface of tapered collar 154.
Similar to alignment structure 30, tapered leading end 132 of alignment structure 130 may be shaped so as to bring broadhead 150 into axial alignment with alignment structure 130. In other words, as seen in
Because in certain embodiments the shortened distance between the tapered leading end 132 of alignment structure 130 and the leading end of arrow shaft 120 may prevent threaded end 141 of insert 140 from being completely threaded into central hub structure 156, many of the axial alignment difficulties experienced in conventional broadhead arrow systems may be eliminated. In addition, because broadhead 150 extends over and surrounds at least a portion of arrow shaft 120, as opposed to being cantilevered off the leading end of arrow shaft 120, as with conventional broadheads, broadhead 150 may receive internal structural support from arrow shaft 120, thereby strengthening the attachment of broadhead 150 to arrow shaft 120, and thus the entire arrow/broadhead assembly. Exemplary arrow apparatus 100 may also eliminate the need for the use of conventional ferrules and ferrule assemblies, and accordingly comprises a ferruleless broadhead system. Thus, broadhead 150 may be axially aligned with arrow shaft 120 with greater accuracy and reliability than is possible with conventional broadhead arrow systems, resulting in improved arrow flight and accuracy. Additionally or alternatively, in certain embodiments where the distance between the tapered leading end 132 of alignment structure 130 and the leading end of arrow shaft 120 is chosen to allow the lip portion of insert 140 to bear against the shoulder portion defined in central hub structure 156, alignment structure 130 may help negate any alignment problems generated by the engagement of the lip portion of insert 140 with the shoulder portion of central hub structure 156.
As detailed above, the weight of the exemplary inserts described and/or illustrated herein may be adjusted by varying the materials used to form the insert or by varying the size and shape of the insert.
As with insert 40, insert portions 240A and 240B may be formed in any number of shapes and sizes and of any combination of materials, such as aluminum, stainless steel, brass, or the like. In certain embodiments, first insert portion 240A may be formed to have a weight that is different from the weight of second insert portion 240B. For example, first insert portion 240A may be formed to have a granular weight of 42 grains, while second insert portion 240B may be formed to have a granular weight of 15 grains. Other weights for first and second insertion portions 240A and 240B may also be chosen as desired. In at least one embodiment, a user of exemplary arrow apparatus 200 may reduce the total weight of insert 240 by breaking the connection 242 between first insert portion 240A and second insert portion 240B and removing second insert portion 240B. For example, in one embodiment the total weight of insert 240 may be reduced from 57 grains to 42 grains by breaking connection 242 (before installation, of course) between first insert portion 240A (which may have a granular weight of 42 grains) and second insert portion 240B (which may have a granular weight of 15 grains) and disposing of second insert portion 240B. Those skilled in the art will understand that more than two insert portions may be used, as desired and appropriate.
Weight-adjustable insert 240 thus provides a simple and effective means for adjusting the weight of the insert used in exemplary arrow apparatus 240, which insert accounts for a portion of the front-end weight of the assembled arrow. Thus, a user of exemplary arrow apparatus 240 may adjust the front-end weight of the arrow apparatus simply by breaking the connection 242 between first insert portion 240A and second insert portion 240B and disposing of second insert portion 240B. Advantageously, weight-adjustable insert 240 may be adapted for use in connection with multiple types and sizes of arrow shafts and arrow points; including, for example, both field point and broadhead arrow points.
In at least one embodiment, such as the embodiment shown in
After at least a portion of insert 440 has been positioned within arrow shaft 420, insert 440 and arrow shaft 420 may be inserted into the trailing end of spacing structure 470 until lip portion 443 of insert 440 abuts first lip portion 472 of spacing structure 470. If desired, spacing structure 470 may be adhered, bonded, or otherwise affixed to the outer surface of arrow shaft 420. Alignment structure 430 may then be slid over the leading end of spacing structure 470 and the tapered trailing end 434 of alignment structure 430 may be brought into abutment with second lip portion 474 of spacing structure 470. Alignment structure 430 may (or may not) then be adhered, bonded, or otherwise affixed to the outer surface of spacing structure 470. Accordingly, in at least one embodiment, spacing structure 470 may serve to position alignment structure 430 a preferred distance (discussed in greater detail above) from the end wall of the leading end of arrow shaft 420, and may also provide some reinforcement to prevent the whole tip assembly from sliding backward during target impact.
In at least one embodiment, and as seen in
In at least one embodiment, and as seen in
In at least one embodiment, and as seen in
In at least one embodiment, the inner surface 836 of alignment structure 830 may be disposed about and contact an outer surface 826 of arrow shaft 820 without being adhered, bonded, or otherwise affixed to this outer surface 826. Thus, in certain embodiments, alignment structure 830 may be disposed about, but remain movable relative to, arrow shaft 820. Instead, in some embodiments, the tapered leading end 832 of arrow point alignment structure 830 may be adhered, bonded, or otherwise affixed to the tapered portion 858 of arrow point 850 to effectively secure alignment structure 830 to arrow apparatus 800.
In the exemplary embodiment illustrated in
In addition, as with certain previous embodiments, inner surface 836 of alignment structure 830 and outer surface 826 of arrow shaft 820 may be shaped such that, when arrow shaft 820 is disposed within alignment structure 830, alignment structure 830 may be brought into axial alignment with arrow shaft 820. In other words, the cylindrically shaped inner surface 836 of alignment structure 830 may be proportional to, and just slightly larger than, the cylindrically shaped outer surface 826 of arrow shaft 820 so that the longitudinal axes of arrow shaft 820 and alignment structure 830 are brought into alignment with one another when arrow shaft 820 is inserted and disposed within alignment structure 830. Similarly, the tapered leading end 832 of alignment structure 830 may be shaped so as to bring arrow point 850 into axial alignment with alignment structure 830. In other words, as seen in
As with previous embodiments, arrow point alignment structure 830 may be manufactured in any number of shapes and sizes and may be adapted for use with arrow shafts of differing diameters. For example, arrow point 850 may be adapted to fit or mate with an arrow shaft 820 of any outer diameter simply by choosing an arrow point alignment structure 830 that comprises an inner surface 836 having a diameter that is just slightly larger than the outer diameter of the desired arrow shaft 820. In many embodiments, after an appropriate alignment structure 830 is selected, the tapered leading end 832 of alignment structure 830 may be adhered, bonded, or otherwise affixed to the tapered portion 858 of arrow point 850 to effectively secure alignment structure 830 to arrow point 850. In this exemplary embodiment, the inner surface 836 of alignment structure 830 may be disposed about and contact an outer surface 826 of arrow shaft 820 without being adhered, bonded, or otherwise affixed to this outer surface 826. Thus, in the exemplary embodiment illustrated in
As detailed above, any of the various arrow apparatuses described and/or illustrated herein may comprise a broadhead-type arrow point, as opposed to the field point-type arrow points previously described and illustrated. For example, as illustrated in the cross-sectional view of
In at least one embodiment, the inner surface of tapered collar 954 may embody the inverse of the generally frustoconical shape of a tapered leading end 932 of alignment structure 930. In addition, the diameter of tapered leading end 932 of alignment structure 930 may taper from a diameter approximately equal to the outer diameter of arrow shaft 920 to a diameter that is greater than or substantially equal to an outer diameter of tapered collar 954. Similar to the exemplary embodiment illustrated in
As mentioned above, any one of the various arrow apparatuses described and/or illustrated herein may adapted for use with so-called hidden insert technology, such as the hidden insert embodiments described and illustrated in U.S. Pat. Nos. 7,004,859 and 7,115,055. For example, as illustrated in the cross-sectional side view of
Adapter 1040 generally represents any type or form of structure capable of removably attaching an arrow point, such as arrow point 1050, to an insert disposed within an arrow shaft, such as hidden insert 1060. Adapter 1040 may be formed in any number of shapes and sizes and of any combination of materials, such as aluminum, stainless steel, brass, or the like. The size of adapter 1040 may also be adapted as necessary for use with arrow shafts of varying sizes and diameters. In the exemplary embodiment illustrated in
Hidden insert 1060 generally represents any type or form of insert capable of being completely disposed within the shaft of an arrow, such as arrow shaft 1020. In many embodiments, the outer surface of insert 1060 may be adhered, bonded, or otherwise affixed to the inner surface of arrow shaft 1020 to securely affix insert 1060 within arrow shaft 1020. In at least one embodiment, insert 1060 comprises a threaded portion 1062 configured to threadably receive an opposing structure, such as the second threaded end 1045 of adapter 1040. For example, as illustrated in
In the exemplary embodiment illustrated in
In at least one embodiment, alignment structure 1030 may be positioned on arrow shaft 1020 so as to prevent threaded end 1041 of insert 1040 from being completely threaded into threaded portion 1052 of arrow point 1050. In other words, the distance between the tapered leading end 1032 of alignment structure 1030 and the leading end of arrow shaft 1020 may be chosen such that, as insert 1040 is threaded into arrow point 1050, the outer surface of tapered leading end 1032 may bear against the inner surface of tapered portion 1058 of the internal aperture defined within arrow point 1050 to prevent lip portion 1043 from contacting shoulder portion 1054 of arrow point 1050. Alternatively, the distance between the tapered leading end 1032 of alignment structure 1030 and the leading end of arrow shaft 1020 may be chosen so that lip portion 1043 bears against shoulder portion 1054 of arrow point 1050 at the same time that the outer surface of tapered leading end 1032 bears against the tapered portion 1058 of the internal aperture defined within arrow point 1050.
The exemplary adapter illustrated in
In addition, in the exemplary embodiment illustrated in
As with previous embodiments, alignment structure 1130 may be positioned on arrow shaft 1120 so as to prevent threaded end 1141 of insert 1140 from being completely threaded into central hub structure 1156 of arrow point 1150. In other words, the distance between the tapered leading end 1132 of alignment structure 1130 and the leading end of arrow shaft 1120 may be chosen such that, as insert 1140 is threaded into central hub structure 1156 of arrow point 1150, the outer surface of tapered leading end 1132 may bear against the inner surface of tapered collar 1154 of arrow point 1150 to prevent lip portion 1143 from contacting the bottom face 1157 of central hub structure 1156. Alternatively, the distance between the tapered leading end 1132 of alignment structure 1130 and the leading end of arrow shaft 1120 may be chosen so that lip portion 1143 bears against face 1157 of central hub structure 1156 at the same time that the outer surface of tapered leading end 1132 bears against the inner surface of tapered collar 1154 of arrow point 1150.
Although the various arrow point alignment structures described and/or illustrated herein have been characterized as discrete and separately formed elements, in at least one embodiment the alignment structure may be integrally formed with the arrow point. For example, as illustrated in the cross-sectional side view of
Alignment structure 1230 generally represents any type or form of structure capable of axially aligning arrow point 1250 with arrow shaft 1220. In at least one embodiment, alignment structure 1230 may be sized to contact, and more specifically receive and mate with, at least a portion of arrow shaft 1220. In addition, an inner surface 1236 of alignment structure 1230 may be shaped such that, when arrow shaft 1220 is disposed within alignment structure 1230, alignment structure 1230 (and thus, in turn, arrow point 1250) may be brought into axial alignment with arrow shaft 1220. In other words, the cylindrically shaped inner surface 1236 of alignment structure 1230 may be proportional to, and just slightly larger than, the cylindrically shaped outer surface 1226 of arrow shaft 1220 so that the longitudinal axes of arrow shaft 1220 and alignment structure 1230 are brought into axial alignment with one another when arrow shaft 1220 is inserted and disposed within alignment structure 1230. Arrow point 1250, and alignment structure 1230 integrally formed therewith, may also be manufactured in any number of sizes so as to be adapted for use with arrow shafts of differing diameters.
Similar to the exemplary embodiments illustrated in
It is desired that the embodiments described herein be considered in all respects illustrative and not restrictive and that reference be made to the appended claims and their equivalents for determining the scope of the instant disclosure. For ease of use, the words “including” and “having,” as used in the specification and claims, are interchangeable with and have the same meaning as the word “comprising.”
This is a continuation of U.S. patent application Ser. No. 11/613,104 filed on 19 Dec. 2006, now pending, the disclosure of which is incorporated, in its entirety, by this reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11613104 | Dec 2006 | US |
Child | 12815311 | US |