The present invention relates generally to arrows suitable for use with bowfishing and in particular to an arrow tip suitable for use in bowfishing.
Bowfishing is an archery technique using specialized bows and arrows for fishing. A bowfishing bow may have a lower draw weight than a standard bows as well as a constant draw to allow rapid and frequent shooting without tiring the archer. The bowfishing bow may have bowfishing line stored in a canister or reel attached to the bow. One end of the bowfishing line is attached to the arrow so that when the arrow is released, the line pays out allowing the arrow and fish to be retrieved by reeling the line in. A bowfishing reel suitable for use in this purpose is described in U.S. Pat. Nos. 4,383,516 and 6,634,350 by the inventor of the present invention and hereby incorporated, by reference. The line may be attached to the arrow using a slide that moves freely up and down the arrow shaft. Before the arrow is released, the slide may be positioned in front of the arrow rest and bowstring and may remain in front of the arrow rest as the arrow is released to reduce risk of entangling either the bow or the bowstring. Slides suitable for this purpose are described in U.S. Pat. No. 6,517,453 also by the inventor of the present invention and hereby incorporated by reference.
The arrows used for bowfishing are normally fashioned out of high-strength fiberglass or carbon fiber composites to better survive impact with a stony bottom of a lake or stream. For similar reasons, the arrow tips used for bowfishing are designed with the expectation that they may strike hard surfaces. A common arrow tip for bowfishing, provides a compact cylindrical body of hardened steel or the like having a pyramidal tip formed of 3-6 flat or hollow ground faces tapering to a point. The faces abut each other at sharp edges to provide a cutting action as the arrow tip passes into the fish.
The arrow tip may attach to the fiberglass arrow shaft by means of a threaded adapter, the latter providing an interface between the arrow tip and the arrow shaft. Generally the threaded adapter receives the arrow shaft in a blind bore in the rear of the threaded adapter.
The arrow shaft is held within the bore, for example, with epoxy or the like. An opposite end of the threaded adapter provides a threaded stud or socket that may engage a corresponding socket or stud on the arrow tip. This threaded connection allows damaged arrow tips to be readily replaced by unthreading the arrow tip from the threaded adapter and threading a new arrow tip in its place.
The threaded adapter may provide sidewardly extending barbs that help retain the fish when the arrow is retrieved. In some cases, the barbs are held extended by the presence of the arrow tip as attached to the threaded adapter. In these cases, the arrow tip may be unscrewed to allow the barbs to be retracted or reversed to assist in removing the fish from the arrow.
It will be understood that it is important that the arrow tip be readily removable for replacement when it is damaged and in some cases for a resetting of the barbs for extraction of the arrow from the fish. Yet the vibration of impact after repeated shots can cause the arrow tip to become unthreaded and lost.
The present invention provides an arrow tip suitable for bowfishing having spiral cut faces and edges. In one embodiment, the spiral coordinates with the threaded engagement between the arrow tip and the adapter so that impact of the arrow tip against stones or the like and passage of the arrow tip through the water tend to tighten the arrow tip to prevent its loss.
Specifically one embodiment of the invention provides an arrow tip having a tip body with an outer wall extending about a central axis. A point is formed at a front end providing a tapering inward of the outer walls towards the central axis to an apex on the central axis, wherein the point is formed from a plurality of faces joined at circumferentially abutting edges, the faces and edges extending about the axis in a helical path. A threaded attachment at a rear end of the tip extends along the axis to receive a second threaded attachment on an arrow shaft to releasably attach the arrow tip to the arrow shaft by rotationally threading the threaded attachment on the second threaded attachment.
It is thus a feature of one embodiment of the invention to provide a substantially new form of sharpened point on an arrow.
The apex may be a point of convergence of the helical faces and edges.
It is thus a feature of at least one embodiment of the invention to provide an arrow tip that converges to a point for superior penetration.
The helical faces and helical edges may run counterclockwise with respect to the central axis of the tip body viewed from the front end.
It is thus a feature of at least one embodiment of the invention to provide a helical form that conforms to standard right-handed threads.
The faces may be hollow wound.
It is thus a feature of at least one embodiment of the invention to permit multiple faces while preserving relatively sharp edges that resist dulling.
The helical faces and helical edges may have a rotational sense relative to the threaded attachment tending to tighten the threaded attachment when the tip passes through a resisting material with the apex in a leading position.
It is another feature of at least one embodiment of this invention to provide an arrow tip with helical faces that tend to tighten the arrow tip onto the arrow shaft when the arrow tip strikes a surface.
The tip may be part of an arrow providing a linear shaft, a nock, an adapter, and at least one arrow barbs that are retained against some range of movement by the tip.
It is thus one feature of at least one embodiment of the invention to provide a tip that may be retained on the arrow with only finger tightening so that it may be loosened for release of the barbs and yet which will resist dislodgment when the arrow strikes water, fish, or a hard surface.
These particular features and advantages may apply to only some embodiments falling within the claims and thus do not define the scope of the invention.
a and 2b are front and rear views of the arrow tip of
Referring now to
A front end of the arrow shaft 12 may attach to an adapter 14 by being received within a blind bore socket 16 of equal diameter in the adapter 14. The arrow shaft 12 may be held, within the socket 16 with epoxy 18 or the like.
The adapter 14 may provide a generally cylindrical metal body supporting the bore socket 16 at a rear end and extending along an axis 20 common to the arrow shaft 12 to terminate at a threaded boss 22 at a front end. An arrow tip 24 also extending generally along axis 20 and having a rearwardly-threaded bore 26 (also shown in
Pivoting barbs 28 may be attached to the adapter 14 to extend outwardly from the adapter 14 and back toward the arrow shaft 12. These barbs 28 help retain a fish on the arrow 10 after the arrow tip 24 and the adapter 14 and barbs 28 have passed through a fish. In order to remove the fish from the barbs 28, the barbs 28 may fold flat against the adapter 14 (when the arrow tip 24 has been loosened or removed from the threaded boss 22). When the arrow tip 24 is attached to the threaded boss 22, the barbs 28 may rest against the adapter 14 or may extend such that they are perpendicular to the adapter 14. However, the barbs 28 are prevented from extending further than perpendicular to the adapter 14 as long as the arrow tip 24 is attached to the threaded boss 22. An arrow and barb system suitable for the present invention is described in U.S. patent application Ser. No. 14/457,677 hereby incorporated by reference.
One or both of the threaded boss 22 and threaded bore 26 may be coated with a locking polymer 31 (or may incorporate a polymer insert) serving to lock, the threads together by deformation of the polymer 31 coupled with engaging of the threads of the threaded boss 22 and threaded bore 26 together. The locking polymer 31 allows the arrow tip 24 to better resist vibration induced when the arrow is shot, preventing unthreading from the threaded boss 22.
Referring now to
In one embodiment, the spiral faces 34 and spiral edges 36 curve in a counterclockwise direction as viewed from the point 32. In this case the thread of the threaded boss 22 may be a standard right-hand thread allowing the arrow tip 24 to tighten on the boss 22 with clockwise rotation of the arrow tip 24 as viewed from the point 32. It will be appreciated that as the arrow 10 flies, impacts with a stationary surface or passage through a medium such as water will cause the spiral faces 34 or spiral edges 36 to impart a clockwise torsion on the arrow tip 24 tending to tighten the arrow tip 24 onto the adapter 14.
Referring now to
A pyramidal tapering of the faces 34 to the point 32 may be provided by an angled translation of the center of rotation of the cutter 40 along a taper path 46 following an angle of a taper of the arrow tip 24 while preserving a parallel alignment between the axis 42 and axis 20. A spiraling of the faces 34 is provided by slight rotation 48 of the cylindrical body 30 about axis 20 as the arc of the cutter 40 is translated along path 46. The amount of rotation 48 during the full translation along path 46 is preferably between two and 30 degrees. In order to provide the desired spiraling described above, the rotation 48 may be counterclockwise as the cutter 40 moves upward along path 46 as depicted in
It will be appreciated that the spiral faces 34 are at all times circumscribed by the cylinder defined by the cylindrical body 30 and that the arrow tip 24 may be of unitary construction machined from a single cylinder of metal.
Certain terminology is used herein for purposes of reference only, and thus is not intended to be limiting. For example, terms such as “upper”, “lower”, “above”, and “below” refer to directions in the drawings to which reference is made. Terms such as “front”, “back”, “rear”, “bottom” and “side”, describe the orientation of portions of the component within a consistent but arbitrary frame of reference which is made clear by reference to the text and the associated drawings describing the component under discussion. Such terminology may include the words specifically mentioned above, derivatives thereof, and words of similar import. Similarly, the terms “first”, “second” and other such numerical terms referring to structures do not imply a sequence or order unless clearly indicated by the context.
When introducing elements or features of the present disclosure and the exemplary embodiments, the articles “a”, “an”. “the” and “said” are intended to mean that there are one or more of such elements or features. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements or features other than those specifically noted. It is further to be understood that the method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
It is specifically intended that the present invention not be limited to the embodiments and illustrations contained herein and the claims should be understood to include modified forms of those embodiments including portions of the embodiments and combinations of elements of different embodiments as come within the scope of the following claims. All of the publications described herein, including patents and non-patent publications are hereby incorporated herein by reference in their entireties.
This application claims priority from U.S. Provisional Patent Application Ser. No. 61/870,986, filed on Aug. 28, 2013, the contents of which are herein incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61870986 | Aug 2013 | US |