The present invention relates to an arrowhead configured to project a laser beam, and more particularly, an arrowhead having a penetrating tip with a centrally located aperture that permits an axially aligned laser to project therefrom.
Accurate aiming in archery/cross bow and bow hunting of game is highly desired. Efforts have been made to utilize lasers to assist the user in improving aiming accuracy. One such attempt is disclosed in U.S. Pat. No. 6,134,793 to Sauers. The '793 patent discloses a laser aided alignment system wherein a laser tip is placed on an arrow shaft and the user can adjust the bow's sights to correspond to the projection of the laser on a given target. However, the laser tip disclosed in the '793 patent is only for alignment of the bow sight. It is not for aiming a shot and is not for being shot from the bow as a projectile.
U.S. Pat. No. 7,231,721 to Minica et al. discloses a laser projecting arrowhead that can be shot as a projectile. However, the aperture through which the laser projects is offset from the center axis of the arrow. Thus, the laser beam projected on the target will not correspond to the exact spot that the tip of the arrow will first contact. The '721 patent also does not disclose any method or means for turning the laser beam on or off. Thus, the battery may be more quickly drained and the beam could be unintentionally aimed in potentially dangerous directions, such as at aircraft or other persons, while the user is on the move.
Therefore, there remains a need to provide an improved arrowhead that facilitates aiming and addresses certain disadvantages of the prior art.
The present disclosure teaches various example embodiments that address certain disadvantages in the prior art. An arrow, arrowhead and method of shooting an arrowhead are disclosed. In one example embodiment, an arrowhead includes a body. The body includes an internal cavity. A plurality of blades extend outwardly from the body. A sharpened tip extends forwardly from the body, with the tip having a center axis, and an aperture formed in the tip that extends outward along the center axis of the tip. A battery housing extends rearwardly from the body and includes a rearwardly extending threaded portion. The threaded portion includes a hole defined longitudinally therethrough. The threaded portion is sectioned longitudinally into first and second halves with a slot defined between the first and second halves. A battery is disposed in the battery housing. A front laser diode is disposed in the internal cavity of the body. The front laser diode is arranged so that the laser beam emitted by the diode projects forward from the arrowhead through the aperture in the tip. The laser beam is coaxial with the center axis of the tip.
In another example embodiment, an arrow is provided. The arrow includes a hollow shaft having a front end and a rear end. A nock is disposed on the rear end of the shaft. An arrowhead is disposed at the front end of the shaft. The arrowhead includes a body having a forward end and a rearward end. It also includes a tip disposed on the forward end of the body. The tip includes a plurality of sharpened points and cutting edges. The arrowhead further includes a housing disposed on the rearward end of the body. The housing including a rearwardly extending threaded portion. The threaded portion is sectioned longitudinally into first and second halves with a slot defined between the first and second halves.
In a further example embodiment, a method of shooting an arrow is provided. The method includes indexing the arrowhead to the plurality of vanes by tightening a set screw disposed in a portion of the arrowhead. A magnet is disposed on the bow. The arrow is engaged with the bow and drawn back until a forward facing laser beam in the arrowhead turns on in response to a hall effect sensor sensing the presence of the magnet. The forward facing laser beam is turned off when the hall effect sensor does not sense the presence of the magnet.
The detailed technology and preferred embodiments implemented for the subject invention are described in the following paragraphs accompanying the appended drawings for people skilled in this field to well appreciate the features of the claimed invention. It is understood that the features mentioned hereinbefore and those to be commented on hereinafter may be used not only in the specified combinations, but also in other combinations or in isolation, without departing from the scope of the present invention.
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular example embodiments described. On the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
In the following description, the present invention will be explained with reference to example embodiments thereof. However, these example embodiments are not intended to limit the present invention to any specific environment, applications or particular implementations described in these example embodiments. Therefore, description of these example embodiments is only for purpose of illustration rather than limitation. It should be appreciated that, in the following example embodiments and the attached drawings, elements unrelated to the present invention are omitted from depiction; and dimensional relationships among individual elements in the attached drawings are illustrated only for ease of understanding, but not to limit the actual scale.
Referring to
Referring to
The collimating lens 110 focuses and concentrates the light beam provided by laser diode 112 so that it projects from the center axis of the arrowhead. The lens 110 also seals out water and debris from entering the body of the arrowhead. The lens 110 is disposed adjacent the first end of the body 102 and adjacent to, or partially within, the tip 104.
The lens 110 in
The front laser diode 112 provides a laser beam that projects through the lens 110 and creates a single spot on the selected target. Persons skilled in the art will recognize that a variety of suitable laser diodes may be used, including, for example a 532 nm (green laser diode) 635 nm or 650 nm (red laser diode) or other visible light wavelengths. The front laser diode 112 is disposed adjacent to the lens 110 and faces the first end of the body 102 so that the laser beam projects forward from the tip 104.
The circuit board 114 is disposed between the front laser diode 112 and the spring contact 118. The circuit board 114 includes a hall effect sensor, an accelerometer and a microprocessor. The hall effect sensor responds to a change in magnetic field, so that it can function as an on/off switch when a magnet is placed on the user's bow. For example, the magnet can be placed on the shelf of the bow near the arrow rest. Then the hall effect sensor will cause the forward laser to turn on when the archer is at full draw. The hall effect sensor will also act as a draw length check because the laser will only activate when the bow is pulled back to a specific spot. The use of a hall effect sensor in this application will eliminate the need for a kisser button to verify that the arrow has been pulled back to the proper location prior to the shot. Once the arrow is released, the hall effect sensor will sense that the magnet is no longer present, and will then turn off the front laser diode 112, thereby saving battery power.
The accelerometer included in the circuit board 114 is responsive to acceleration forces. One suitable accelerometer is a 3-axis accelerometer, model CMA 3000 from VTI Technologies or the model ADXL-345 from Analog Devices. However, other types of accelerometers may be used without departing from the scope of the invention. Using information from the accelerometer, a rear laser or light emitting diode (“led”) 122 (indicated in
The microprocessor on the circuit board includes memory and programming to carry out the various functions described in this specification. Various flight data can be recorded in the memory, including flight time, acceleration, velocity and flight distance. This data can be useful to assist a user in fine-tuning or aligning a sighting/aiming system.
The alignment screws 116 are used to secure the circuit board. The positive terminal of the batteries contacts the battery housing 106 and then the arrowhead body 102. This configuration permits the screws 116 to transfer battery power from the arrowhead body 102 to the circuit board 114. The screws 116 will also ensure that the Hall Effect sensor on the circuit board 114 will remain in a given position to the outer body of the arrowhead to allow the hall effect sensor to properly detect the small magnetic field created by the magnet that is placed on the shelf of the bow on or near the arrow rest. The screws 116 further permit the user to align the arrow head 100 with the magnet on the bow.
A spring contact 118 is disposed between the circuit board 114 and the battery 120. The spring contact 118 makes contact with the negative side of the battery 120 and completes the circuit between the battery 120 and the circuit board 114. The compression resistance of the spring 118 also aids in keeping the battery 120 and circuit board 114 restrained.
The battery 120 is disposed within the battery cavity 122 portion of the battery housing 106. One suitable battery is an encasement of three 1.2V rechargeable Ni—MH button-cell batteries, totaling 3.6V, available from VARTA. However other suitable battery configurations may be selected by one of skill in the art without departing from the scope of the invention. The battery may comprise either a single battery unit, or a multi-unit configuration.
As can be seen in
As described previously, the rear laser or led 122 will shine through the hollow shaft of the arrow and illuminate the transparent nock. Illuminating the nock using this method and configuration does not add additional weight to the rear of the arrow, which is an advantage over conventional lighted nocks. Illuminating the nock using a collimated laser diode allows the nock to become much brighter than conventional lighted nocks, which is an advantage over conventional devices.
In one particular variation, the circuit board 114, front laser diode 112 and spring contact 118 may be encased in a molding to protect the components from high g-forces. The molding can be a plastic material molded over the above-mentioned components.
Referring to
A front aperture 134 in the tip 104 of the arrowhead extends from the front of the laser diode 112 through the tip 104. This front aperture 134 permits the collimated laser light to emit from the arrowhead in a forward direction.
A rear aperture 136 in the battery housing extends from the rear laser through the end of the battery housing. This rear aperture 136 in the battery housing 106 permits the light from rear laser or led 122 to travel through the hollow shaft of the arrow to illuminate the nock.
Referring to
A slot, channel or groove 144 is defined in the outer longitudinal surface of the body 102 and spans between the front threaded portion 138 and rear threaded portion 140. Groove 144 is configured and sized to receive a blunt side edge of the blades. The grooves are disposed radially in between the facets 126.
Three set screws 146 are provided in their respective apertures in the front beveled portions 130 to permit adjustment of the aim of the front laser diode 112. Thus, the laser beam direction can be adjusted to ensure that it is co-axial with the center axis of the arrow shaft.
Referring to
The tip 104 further includes a plurality of facets or beveled portions 150 that start at the outer diameter of the converge as they approach the forward-most portion of the tip 104. The facets 150 terminate at the intersection with the front aperture 134 in three peaks or points and define a sharpened hollow tip. The hollow tip configuration is advantageous because the entire cutting diameter is sharpened, unlike tips that form a single point.
The hollow tip configuration punches a hole in the target surface, instead of the conventional 3 cut lines created by a single tip configuration. In addition, blood in target prey is less able to coagulate due to the wound shape compared to a conventional configuration. As a result, a faster bleedout is achieved from both entry and exit wounds of the prey. A faster bleedout creates an improved blood trail and a faster kill. A faster kill is more humane and makes the wounded prey easier to track. The tip 104 comprises a stainless steel material, although other materials, for example plastics and metals, can be used without departing from the scope of the invention.
Referring to
Referring to
Referring to
Referring to
Referring to
In
The magnet and hall effect sensor combination provides certain additional benefits. For example, the laser turning on indicates to the archer that a correct full draw for their arrow length has been achieved and can be used to establish good shooting habits. When hunting, the archer can purposefully over draw or under draw the bow to prevent the laser from turning on until they are ready to take a shot. This conserves battery power and prevents the laser from being on when stalking game so not to alarm the game until a shot is desired. Also, the magnet or magnets help keep the arrowhead in the correct position when at full draw. This is due to the magnetic force exerted on the ferrite material in the arrowhead blades. This stabilizing feature is particularly desired when the user is located, for example, in a tree stand and must hold the bow at a downward or rotated angle where the bow may not be level with the ground.
Referring to
Referring to
The slot permits each half 142a and 142b to flex slightly outward from the center bore 136. Thus, the thread halves are configured to expand when a set-screw 137 is inserted into the bore and tightened. The bore can be threaded to facilitate use of the set-screw. As the set screw is tightened down, the side walls of the threaded portion expand laterally outward to lock the broadhead assembly 100 into the arrow shaft.
The set screw locking feature makes the broadhead rotation adjustable or indexable with respect to the rotational orientation of the vanes of the arrow. In contrast, conventional inserts are typically glued into the arrow shaft, so existing broadheads are tightened down until they stop against the front of the insert. This does not allow the end user to align the broadhead to the arrow shaft. The present invention thus allows the end user to make fine adjustments to their broadhead to help tune the arrow and provide for better flight characteristics. For example, aligning the broadhead blades rotationally with the arrow vanes helps with arrow flight and permits the broadhead to remain in the same position (and be repeatedly used in that same orientation) after the laser beam has been aligned so that the arrow can best hit the target at a given distance.
Various embodiments of the present invention can be used in conjunction with the electronic archery sighting system disclosed in co-pending U.S. patent application Ser. No. 12/757,893, entitled, “ELECTRONIC ARCHERY SIGHTING SYSTEM AND BORE SIGHTING ARROW”, filed on Apr. 9, 2010, inventor Larry Bay, the disclosure of which is hereby incorporated by reference.
The above disclosure is related to the detailed technical contents and inventive features thereof. People skilled in this field may proceed with a variety of modifications and replacements based on the disclosures and suggestions of the invention as described without departing from the characteristics thereof. For example, the invention is also applicable to cross bows, spear fishing guns and other projectiles that would benefit from a laser aiming pointed tip. Nevertheless, although such modifications and replacements are not fully disclosed in the above descriptions, they have substantially been covered in the following claims as appended.
This application is a continuation-in-part of U.S. patent application Ser. No. 12/757,401, filed on Apr. 9, 2010, which claims priority benefit of U.S. Provisional Patent Application No. 61/168,105, filed on Apr. 9, 2009, the disclosure of each of the foregoing are hereby incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3641675 | Funk, Jr. | Feb 1972 | A |
4340930 | Carissimi | Jul 1982 | A |
4547837 | Bennett | Oct 1985 | A |
RE32123 | Knight | Apr 1986 | E |
4621817 | Musacchia | Nov 1986 | A |
5134552 | Call et al. | Jul 1992 | A |
5141229 | Roundy | Aug 1992 | A |
5175651 | Marron et al. | Dec 1992 | A |
5419050 | Moore | May 1995 | A |
5634278 | London | Jun 1997 | A |
5871410 | Simo et al. | Feb 1999 | A |
6005719 | Rando | Dec 1999 | A |
6027421 | Adams, Jr. | Feb 2000 | A |
6040566 | Rioland et al. | Mar 2000 | A |
6077179 | Liechty, II | Jun 2000 | A |
6123631 | Ginder | Sep 2000 | A |
6134793 | Sauers | Oct 2000 | A |
6165086 | Liechty, II | Dec 2000 | A |
6171206 | Liechty, II | Jan 2001 | B1 |
6258000 | Liechty, II | Jul 2001 | B1 |
6287223 | Liechty, II | Sep 2001 | B1 |
6287224 | Liechty, II | Sep 2001 | B1 |
6306053 | Liechty, II | Oct 2001 | B1 |
6366344 | Lach | Apr 2002 | B1 |
6390642 | Simonton | May 2002 | B1 |
6409617 | Armold | Jun 2002 | B1 |
6428433 | Liechty, II | Aug 2002 | B1 |
6428434 | Liechty, II | Aug 2002 | B1 |
6490060 | Tai et al. | Dec 2002 | B1 |
6526666 | Lastinger, Jr. | Mar 2003 | B1 |
6622392 | Bourget | Sep 2003 | B1 |
6743128 | Liechty, II | Jun 2004 | B2 |
6755758 | Liechty, II | Jun 2004 | B2 |
6758774 | Liechty, II | Jul 2004 | B2 |
6851197 | Terry et al. | Feb 2005 | B2 |
6997716 | Skala et al. | Feb 2006 | B2 |
7216643 | Pellerite | May 2007 | B2 |
7231721 | Minica et al. | Jun 2007 | B2 |
7241236 | Chen | Jul 2007 | B1 |
7313871 | Lines et al. | Jan 2008 | B2 |
7314419 | Grace et al. | Jan 2008 | B2 |
7316625 | Takahashi | Jan 2008 | B2 |
7409770 | Jones | Aug 2008 | B2 |
7837580 | Huang et al. | Nov 2010 | B2 |
7927240 | Lynch | Apr 2011 | B2 |
7931550 | Lynch | Apr 2011 | B2 |
7972230 | Donahoe | Jul 2011 | B2 |
7993224 | Brywig | Aug 2011 | B2 |
8221273 | Donahoe | Jul 2012 | B2 |
20020197584 | Kendir et al. | Dec 2002 | A1 |
20030063959 | Kao | Apr 2003 | A1 |
20040014010 | Swensen et al. | Jan 2004 | A1 |
20050278964 | Minica et al. | Dec 2005 | A1 |
20110172039 | Donahoe et al. | Jul 2011 | A1 |
Entry |
---|
U.S. Appl. No. 61/293,504, filed Jan. 8, 2010; 56 pages. |
U.S. Appl. No. 61/293,757, filed Jan. 11, 2010; 104 pages. |
Number | Date | Country | |
---|---|---|---|
20120035006 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
61168105 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12757401 | Apr 2010 | US |
Child | 13273932 | US |