1. Field of the Invention
This invention relates generally to methods and medical apparatuses for non-invasive monitoring of arterial blood pressure, and specifically to the devices and methods that use inflatable cuffs.
2. Description of Related Art
Blood pressure monitoring has rapidly become an accepted and, in many cases, essential aspect of human and veterinary treatment. Such monitors are now a conventional part of the patient environment in emergency rooms, intensive and critical care units, and in the operating theatre, as well as in homes.
Four well known techniques have been used to non-invasively monitor a subject's arterial blood pressure waveform, namely, auscultation, oscillometric, tonometry and flowmetry. The auscultation, oscillometric and flowmetry techniques use a standard inflatable cuff that occludes an artery, e.g., the subject's brachial artery. The auscultatory technique determines the subject's systolic and diastolic pressures by monitoring certain Korotkoff sounds that occur as the cuff is slowly deflated or inflated. The oscillometric technique, on the other hand, determines these pressures, as well as the subject's mean pressure, by measuring the small pressure oscillations that occur in the cuff as the cuff is deflated or inflated. The flowmetric technique relies on detecting the variations in blood flow downstream from the cuff.
The oscillometric method of measuring blood pressure is the most popular method in commercially available automatic systems. This method relies on measuring changes in arterial counter pressure, such as imposed by an inflatable cuff, which is controllably relaxed or inflated. In some cases the cuff pressure change is continuous, and in others it is incremental. In substantially all oscillometric systems, a transducer (pressure sensor) monitors arterial counter pressure oscillations, and the processing electronics converts select parameters of these oscillations into blood pressure data.
In the oscillometric method, the mean blood pressure value is the mean of the cuff pressure that corresponds in time to the peak of the envelope of the pressure oscillations. Systolic blood pressure is generally estimated as pressure of the decaying pressure slope prior to the peak of the pressure oscillations envelope that corresponds in time to where the amplitude of the envelope is equal to a fraction of the peak amplitude. Generally, systolic blood pressure is the pressure on the decaying pressure of the cuff prior to the peak of the envelope where the amplitude of the envelope is 0.57 to 0.45 of the peak amplitude. Similarly, diastolic blood pressure is the pressure on the decaying pressure of the cuff after the peak of the envelope that corresponds in time to where the amplitude of the envelope is equal to a different fraction of the peak amplitude. Often, diastolic blood pressure is conventionally estimated as the pressure on the decaying pressure of the cuff after the peak where the amplitude of the envelope is equal to 0.82 to 0.74 of the peak amplitude. Other algorithms are also known in the art.
The auscultatory method also involves inflation of a cuff placed around a cooperating artery of the patient. Systolic pressure is indicated when Korotkoff sounds disappear as the cuff is inflated above the highest pressures exerted by the heart onto the arterial walls. Diastolic pressure is indicated when the Korotkoff sounds first appear when the cuff pressure is elevated above the atmospheric pressure. The auscultatory method can only be used to determine systolic and diastolic pressures, and it does not determine mean pressure.
Often, both the oscillometric and auscultatory methods lack accuracy and consistency for determining systolic and diastolic pressure values. The oscillometric method applies an arbitrary ratio to determine systolic and diastolic pressure values. As a result, the oscillometric method sometimes does not produce blood pressure values that agree with the more direct and generally more accurate blood pressure values obtained from the arterial-line method (e.g., catheter inserted). Furthermore, because the oscillating signal amplitudes detected from the cuff are very low compared to the mean pressure of the cuff, even a small amount of noise can result in inaccurately measured blood pressure values. Similarly, the auscultatory method requires a judgment to be made as to when the Korotkoff sounds start and when they stop. This detection is made when the Korotkoff sound is at its very lowest. This is especially apparent due to traveling of the acoustic waves through media of different densities, such as biological tissues, air, inflatable bladder, cuff fabric, microphone components, etc. As a result, both the oscillometric and auscultatory methods are subject to inaccuracies due to low signal-to-noise ratios.
The third method used to determine arterial blood pressure has been tonometry. The tonometric method typically involves a transducer including an array of pressure sensitive elements positioned over a superficial artery. Hold-down forces are applied to the transducer so as to flatten the wall of the underlying artery without occluding the artery. The blood pressure is sensed by measuring forces exerted by blood pressure pulses in a direction perpendicular to the underlying artery.
The fourth method used to determine the arterial blood pressure has been the flowmetric method. This method relies on detecting changes in the blood flow downstream from the cuff and relating such changes to the cuff pressure.
As an alternative to measuring arterial pressure in the brachial artery (upper arm), the forearm (below the elbow) and the wrist monitors are also feasible and practical measurement sites. They rely primarily on occlusion of the radial and ulnar arteries. Since blood flow in these arteries is smaller than that in the brachial artery, the signal-to-noise ratio decreases even further. Another problem with the wrist cuffs is difficulty in occluding the radial and ulnar arteries against the radius and ulnar bones since these bones are rather small to serve as a reliable support for compression of the arteries. Furthermore, numerous tendons near the wrist arteries may interfere with the occlusion resulting in a poor mechanical coupling between the cuff and arteries.
When Korotkoff sounds are used in determining the systolic and diastolic pressures, it is imperative to position the microphone directly over the monitored artery, otherwise a signal-to-noise ratio is reduced even more and accuracy will be greatly compromised. To resolve the error problems that arise from the above factors, numerous cuff designs have been proposed. Among these is the use of a liquid-filled invasive cuff applied directly to the artery as described in U.S. Pat. No. 4,256,094 issued to Kapp et. al. which is incorporated by reference herein. U.S. Pat. No. 3,527,204 issued to Lem which is incorporated by reference herein teaches a dual cuff where the liquid-filled chamber is positioned on the top of the air-filled chamber and the pressure exerted over the patient's limb is developed by applying pressure to both air and liquid. A dual-cuff design with side-by-side bladders is described in U.S. Pat. No. 3,752,148 issued to Schmalzbach which is incorporated by reference herein. A dual air chamber design with two chambers positioned in layers is disclosed in U.S. Pat. No. 7,250,030 which is incorporated by reference herein. A semi-rigid outer layer on the outside surface of a cuff is described in U.S. Pat. No. 6,224,558 issued to Clemmons which is incorporated by reference herein. U.S. Pat. No. 7,250,030 issued to Sano et al. describes a dual-chamber bag where both chambers are filled with the same type of fluid. These and other designs have failed to solve many accuracy problems, henceforth further improvements of the cuff system are needed.
The present invention is directed to an inflatable cuff that incorporates a first chamber (bladder) that can be compressed against the patient limb by a pressurizing device superimposed onto its outer surface. In one embodiment, the pressurizing device includes a second chamber filled with gas or air, and is referred to as the AFC (Air-Filled Chamber). The first chamber is positioned between the patient's arm, forearm, wrist or digit and the AFC. The first chamber is filled with a non-compressible substance such as liquid or gel and may be coupled to a pressure sensor and, in some embodiments, to a microphone that picks-up the Korotkoff sounds. The first chamber is referred to as the LFC (Liquid-Filled Chamber). The density of the liquid or gel is relatively close to that of blood. During operation, the AFC compresses the LFC which in turn, compresses the artery against the supporting bone. The mechanical coupling between the blood-filled artery and the LFC of a dual-chamber cuff is improved. Since the LFC to a large degree circumferences the arm or wrist, positioning of the cuff becomes less critical.
Further details and aspects of example embodiments of the present invention are described in more detail with reference to the Figures, in which:
This invention relates to arterial blood pressure noninvasive measurement methods which may include, for example, the oscillometric, auscultatory, and flowmetric methods. All these methods employ pressurizing cuffs. The oscillometric method relies on analyzing oscillations of the cuff pressure, while the auscultatory method is based on analyzing the acoustic waves (Korotkoff sounds) produced inside the compressed artery. A combination of the two systems potentially can be used to improve accuracy.
Alternatively, the cuff 6 may be positioned over the forearm or wrist to compress the radial 12 and/or ulnar 11 arteries against the radius 10 or ulnar 9 bones, respectively. An aspect of this invention is the use of a non-compressible liquid inside the chamber that is part of the cuff. Pressure is applied to the liquid filled chamber which in turn is applied against the patient's arm. This requires the use of a pressurizing device that exerts pressure onto the liquid inside the chamber and subsequently onto the artery in the patient's limb or digit. The pressurizing device may include various components, such as AFC, air pump, hoses, etc. These components may be directly attached to the LFC or can be positioned externally to LFC, depending on their specific functions and purpose. There are numerous ways of designing the pressurizing device as described below.
The LFC 99 is sealed and can neither be additionally filled in nor bleed out its liquid or gel. Note that the LFC 99 is fabricated of a pliant and flexible material, like latex or polyethylene, that can conform to the shape of the patient without forming wrinkles in its envelope. Care should be taken to prevent a “bubbling” effect that could be a result of squeezing the filler material to the peripheral sides of the LFC. This can be accomplished by thickening the peripheral portions 175 and 176 (
Alternatively, the LFC may be molded or otherwise fabricated from a relatively high viscosity resin (over 10,000 cP), as a flat pliant and flexible plate (
Pressure of the liquid inside the LFC 99 (or of the material forming LFC in
The second embodiment of
When the AFC 98 inflates, it compresses the LFC 99 against the arm 1. The LFC 99 via a duct 97 is coupled to the hydrophone 95 and liquid pressure sensor 96, both of which are electrically connected to the controller 22. Alternatively, the pressure sensor 96 may be coupled to the AFC 98. As in other embodiments, the liquid in the LFC 99 may be water, oil, or any other non-compressible liquid or gel. A semi-rigid support 180 is superimposed on the outer surface of the cuff to prevent stretching of the AFC 98 outwardly and to maintain direct pressure toward the patient.
A hydrophone 95 as a separate component may not be required in cases when the pressure sensor 96 has a fast speed response. It is not uncommon to employ a pressure sensor with a response rate on the order of 1 ms. Such a fast sensor, in addition to measuring pressures in the LFC, may also act as a hydrophone to pick up both the low and high frequency ranges of the pressure. The pressure sensor spectrum will contain components related to pressure of the liquid, the pressure oscillations and the Korotkoff sounds. These components can be separated either by hardware or software band-pass filters. The signal filters separate these components before further processing. Typically, a low-pass filter having bandwidth approximately from 0 to 1 Hz would pass the LFC's pressure signal. A band-pass filter with a pass band approximately from 0.5 to 20 Hz carves out the pressure oscillations. The third band-pass filter is for passing the higher frequencies of the Korotkoff sound signals and should have a bandwidth approximately from 10 to 200 Hz. The slowest changing components of the pressure signal correspond to the cuff pressure level, the faster changing components of pressure correspond to the arterial oscillations, while the fastest changing components correspond to the Korotkoff sounds. Relating the faster and fastest components to the slowest component can be used as an indicator of the arterial blood pressure (systolic, diastolic and mean).
In any embodiment described herein, the arterial pressure can be measured either during the cuff pressure increase or decrease, depending on the design and employed algorithm. Thus, the bleed valve 39 (if any) and pumps 20 or 200 operate according to a pre-programmed sequence. All electrical devices in the electronic module 5 are electrically connected to the controller 22, which derives its operating power from the power supply 21. The controller 22 computes the arterial blood pressure and outputs the result of a measurement on the display 23. In some embodiments, the electronic module may be physically decoupled from the cuff and linked to it by a cable or wireless device (
The Korotkoff sounds relate to a changing bladder pressure 26 as shown in
Depending on the actual design of the LFC, the Korotkoff sound amplitude from the LFC may not be sufficiently strong for the signal processing. Thus, a separate microphone 250 (
For the patient's comfort, the maximum pressure exerted on the artery should not be much higher than the systolic pressure. The maximum pressure can be determined from the peak amplitude of the cuff pressure oscillations or the Korotkoff sound as shown in
Before the threshold comparison is performed, it may be useful to multiply the Korotkoff sounds by the oscillometric pressure fluctuation magnitudes. The multiplication may need to be performed after the Korotkoff sound and pressure oscillations have been subjected to a scaling pre-processing which may include an experimentally determined scaling function. This multiplication will increase the signal-to-noise ratio and improve the threshold comparison. In other words, instead of performing a threshold comparison on each of two signals individually where there may be false threshold detections, the two signals are first multiplied together so that the signal level of the resulting signal is much higher than the noise level of the resulting signal. The product resulting from the multiplication then may need to be multiplied by a scaling factor and compared with a pre-selected fixed or variable threshold. The results of comparison correspond to pressure in the cuff that is measured by the pressure sensor. Another way to improve the noise immunity is by way when the cuff pressure oscillations first being compared with a threshold and then the comparator's output pulses are used as the strobes to gate the Korotkoff sounds before their own threshold comparison. In fact, mathematically a gating is a form of multiplication (multiplying by zero or unity, as in a logical AND function). This is illustrated in
The systolic and diastolic pressures can be detected either on the rising or decaying slopes of the cuff pressure. However, because of the pump noise that is often present during the rising slope (inflation), this may be not practical in all designs. If the circuit of
The pressure in the LFC should be distributed uniformly over the entire area of contact with the patient. The support 180 of
An additional embodiment of the present invention is based on flowmetry, that is, detection of the blood flow in a peripheral artery. When pressure is applied to an artery, it impairs the arterial blood flow. Blood can move freely through the artery only when the externally exerted pressure is less than the diastolic pressure. Pressure above the diastolic but less than systolic reduces the blood flow but does not stop it. When the external pressure exerted onto the artery exceeds the systolic pressure, the artery collapses and the blood flow ceases. This consideration permits using known methods of detecting the arterial blood flow to assess the systolic and diastolic pressures. The known methods of blood flow monitoring are: the Doppler ultrasound and laser monitors, the electromagnetic and thermal diffusion monitors, the reographic and photo-plethysmographic methods and several others.
The blood flow sensor 60 of a photo-plethysmographic type as shown in
Note that the similar sensor 60 can be also used as a conventional pulse oximeter sensor, but only when the cuff pressure is below the systolic pressure. To detect the blood oxygenation, a second light source (emitter) 72 is added. The wavelengths of the emitters 70 and 72 may be different, e.g., one is red and another is a near-infrared.
Another problem of accuracy relates to a hydrostatic pressure of blood in the arteries. For medical diagnostic purposes, the arterial pressure has to be measured from an artery that is positioned at the level of the aorta. Pressure measured below the aorta level will appear higher while above the aorta it will appear lower. The cause for this is a gravitational force acting on blood. Usually, this is not a serious issue when the cuff is positioned on the upper arm since that position is naturally on the level close to the aorta. However, when the cuff is located at other places, say on a wrist, the patient's wrist usually is situated well below the aorta level, unless the patient is in a supine position. The hydrostatic pressure adds approximately 0.7 mmHg per every centimeter below the aorta level. As a result, when the cuff is positioned on a wrist that rests on a tabletop with the patient sitting at the table, for an average adult person the cuff is located approximately 15 cm lower than the aorta. This will cause the systolic and diastolic pressures to measure about 10 mmHg higher. This error can be compensated to some degree either by elevating the wrist to the aorta level or mathematically by correcting the measured values of the systolic and diastolic pressures. The mathematical correction is an addition of the offsets to the systolic and diastolic pressures. The values of the offsets may be constant or variable, that is controlled by the level of the cuff in relationship to the aorta level.
To detect the position of the cuff various types of position sensors may be employed. One example of the sensor is a tilt (inclination) sensor that may be physically attached to the cuff. The tilt sensor (detector) will measure the degree of the cuff inclination with respect to the gravitational force. This corresponds to elevation of the arm approximately to the aorta level.
Many types of inclination detectors are known in art and can be employed for this purpose.
If the cuff and the attached tilt detector 150 rotate in direction 157 (
While particular embodiments of the invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects, and, therefore, the aim in the appended claims is to cover all such changes and modifications as fall within the true spirit and scope of the invention.
This patent claims the benefit of U.S. Provisional Patent Application No. 60/920,733 filed on Mar. 28, 2007, which is incorporated by reference herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US08/54299 | 2/19/2008 | WO | 00 | 9/23/2009 |
Number | Date | Country | |
---|---|---|---|
60920733 | Mar 2007 | US |