The present invention relates generally to an article and method for providing a sealing engagement, and more particularly to an article and method for providing a seal for an encapsulated device.
Power transmission and distribution systems may include power system protective, monitoring, and control devices such as protective relays, faulted circuit indicators, and the like. Throughout, the term “power system device” will include any power system protective, monitoring, or control device. Power system device may also be used herein to describe any device associated with devices which protect, monitor or control power systems. For example, faulted circuit indicators and radio interface units associated therewith may be considered a power system device.
Faulted circuit indicators (FCIs) play a vital role in detecting and indicating faults and locations of faulted conductors to decrease the duration of power outages and improve the reliability of power systems throughout the world. Electrical utilities depend on faulted circuit indicators to help their employees quickly locate faulted conductors. Most conventional faulted circuit indicators utilize a mechanical target or an LED to provide a visual indication of a faulted conductor. By visually scanning faulted circuit indicators located at a site, an electrical utility crew can quickly locate a fault. Industry statistics indicate that faulted circuit indicators reduce fault location time by 50%-60% versus the use of manual techniques, such as the “refuse and sectionalize” method. Nonetheless, electrical utilities still spend substantial amounts of time and money determining the locations of faults on their networks.
Electrical utilities rely on a number of additional techniques to further decrease time spent locating faults. For instance, modern faulted circuit indicators frequently have one or more contact outputs that activate on the detection of a fault. These contact outputs can be connected to a Supervisory Control and Data Acquisition (“SCADA”) system, allowing remote monitoring of a given faulted circuit indicator's status. This technique works well for above-ground sites, where a cable from the faulted circuit indicator to a monitoring device can be installed, and the monitoring device can be connected to a remote site by a communications line. However, this technique is expensive for underground sites where an underground communications line must be installed.
Another recent advancement is the use of radio frequency (“RF”) technology within faulted circuit indication systems. In one prior art system, each faulted circuit indicator communicates with a radio interface unit which communicates the occurrence of a fault to an external receiver. The radio interface unit is often located in proximity to an FCI within an underground vault, which is susceptible to external elements. For example, vaults may often be filled with water thereby exposing the radio interface unit located therein to also be exposed to such. In another example, for overhead FCI systems, radio interface units are also exposed to the external elements as they are situated in proximity to the overhead FCI device.
Prior art arrangements of radio interface units typically include a housing filled with an encapsulate material, which is used to environmentally harden the electronic components. Encapsulate material provides a physical barrier around the electronic components. This barrier is malleable, providing increased resistance to shock and vibration. In addition, if the material is properly cured, the barrier will be water-tight.
One such encapsulate material is referred to as potting material. Potting material may include epoxy based materials, urethane based materials, silicone based materials, acrylic based materials, polyester based materials, and others. Urethane and silicone based materials are the types used most often in the electronics industry. Each particular type of potting material has its own strengths and weaknesses.
Ideally, for radio interface units, all electronic components will be completely encapsulated within a water-tight material. However, some components (e.g., cabling, an antenna, etc.) must extend from the encapsulate material to the external environment to facilitate communication with external electronic apparatuses.
In prior art arrangements, the encapsulate material deteriorates due to aging and its own exposure to the elements. This deterioration may be due to thermal cycling or other causes. Deterioration results in the encapsulate material pulling away from the components which extend from the encapsulate material, thereby exposing these components to the external environment. Deterioration can be exacerbated by dissimilar coefficient of thermal expansion of the materials used for polymer housing and the potting compound, which may result in separation and water ingress.
Accordingly, it is an object of the invention to provide a secondary seal when the encapsulate material begins to pull away from the components which extend from inside the encapsulate material.
The object of this invention is accomplished by a novel arrangement of encapsulate material. An article for providing a sealing engagement between an electronic component and an encapsulate material is provided, wherein the electronic component extends from the encapsulate material. The article includes a housing including at least one opening for receiving the electronic component. The housing is filled with an encapsulate material such that it provides a seal between the housing and the electronic component. A sealing member is further disposed between the encapsulate material and the housing. A compression member is provided which exerts force onto the sealing member such that the sealing member engages the encapsulate material to provide a sealing engagement therebetween, and thereby provide a secondary seal between the housing and the electronic component.
In accordance with another aspect of the invention, a method for providing a sealing engagement between an electronic component and an encapsulate material is provided. The method includes the steps of inserting the electronic component into the opening of the housing, filling the housing with an encapsulate material such that the encapsulate material provides a sealing engagement between the electronic component and the housing, disposing a sealing member in relation to the encapsulate material such that the sealing member provides a seal between the encapsulate material and the housing, and exerting force onto the sealing member to improve the engagement between the encapsulate material and the electronic component.
Although the characteristic features of this invention will be particularly pointed out in the claims, the invention itself and the manner in which it can be made and used, can be better understood by referring to the following description taken in connection with the accompanying drawings forming a part hereof, wherein like reference numerals refer to like parts throughout the several views and in which:
Note that the conductors could also be located in an underground vault 200, which may be generally accessible through a manhole 118. As discussed above, the underground vault 200 is often susceptible to external elements and even flooding. Accordingly, its contents are also susceptible to external elements such as water. Faulted circuit indicators 206 attached to the underground conductors are wired to a radio interface unit 400. The electronic components of the radio interface unit 400 are encapsulated by an encapsulate material such as potting material.
As discussed above, some electronic components must extend from inside the encapsulate material to the external environment to facilitate communication with external electronic apparatuses. For example, as illustrated in
Referring to
As discussed above, the encapsulate material often deteriorates due to aging and its own exposure to the elements. In effect, the encapsulate material begins to pull away from the cable over time, which exposes the internal electronic components connected thereto to external elements such as water.
In order to prevent this exposure, a sealing member 422 is disposed between a portion of the encapsulate material and the cable before the encapsulate material cures. In order to effect a seal, the sealing member 422 is positioned such that it engages the housing 402 near the opening 454 for receiving the cable. After the encapsulate material cures, a compression member 424 is further provided to exert a force onto the sealing member 422 such that the sealing member 422 engages a portion of the encapsulate material to provide a sealing engagement therebetween. The compression member 424 may further include at least one coupling opening 460 which corresponds to and engages with latch 458 to secure the compression member 424 onto the housing 402.
The engagement among the housing 402, sealing member 422 and compression member 424 are specifically detailed in
As discussed above, the encapsulate material often deteriorates due to aging and its own exposure to the elements. In effect, the encapsulate material begins to pull away from various areas of the sealing member, cable, and the housing over time. In order to prevent such deterioration, the compression member 424 is placed such that it engages both the sealing member 422 and the housing 402, after the encapsulate material cures. More specifically, the compression member 424 is placed such that its septum wall 425b is placed within the gap 430c formed by the first inner sealing wall 430a and second inner sealing wall 430b of the sealing member 422. The septum wall 425b has a width ‘b’ greater than the width ‘c’ of the gap 430c. Accordingly, when the compression member 424 engages the sealing member 422, the septum wall 425b exerts a lateral force at 434d and 434e. This lateral force prevents the encapsulate material from pulling away from the housing at 434c and the cable at 434f during aging.
The compression member 424 may further provide the added benefit of providing a lateral force at 434a. This provides for a better sealing engagement between the sealing member 422 and the collar wall 426 of the housing 402.
In yet another embodiment, the compression member 424 may further provide the added benefit of providing a longitudinal force. This provides for a better sealing engagement between the sealing member 422 and the upper shoulder 452 of the housing 402 at 434g, the lower shoulder 456 of the housing 402 at 434h, and the encapsulate material near the bottom portion of the gap 430c at 434i.
The foregoing description of the invention has been presented for purposes of illustration and description, and is not intended to be exhaustive or to limit the invention to the precise form disclosed. The description was selected to best explain the principles of the invention and practical application of these principles to enable others skilled in the art to best utilize the invention in various embodiments and various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention not be limited by the specification, but be defined by the claims set forth below.
This application claims benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application entitled “AN APPARATUS AND METHOD FOR PROVIDING A SEAL FOR AN ENCAPSULATED DEVICE,” filed on May 19, 2006, having Ser. No. 60/802,143, naming James R. Kesler and Laurence Virgil Feight as inventors, the complete disclosure thereof being incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2379664 | Stanko | Jul 1945 | A |
2928048 | Postal | Mar 1960 | A |
2967267 | Steinman | Jan 1961 | A |
3292579 | Buchanan | Dec 1966 | A |
3296493 | Whittaker | Jan 1967 | A |
3476997 | Otzipka | Nov 1969 | A |
3525903 | Morris | Aug 1970 | A |
3621334 | Burns | Nov 1971 | A |
3676740 | Schweitzer | Jul 1972 | A |
3702966 | Schweitzer | Nov 1972 | A |
3708724 | Schweitzer | Jan 1973 | A |
3715742 | Schweitzer | Feb 1973 | A |
3781682 | Schweitzer | Dec 1973 | A |
3816816 | Schweitzer | Jun 1974 | A |
3866197 | Schweitzer | Feb 1975 | A |
3876911 | Schweitzer | Apr 1975 | A |
3906477 | Schweitzer | Sep 1975 | A |
3972581 | Oldham | Aug 1976 | A |
3974446 | Schweitzer | Aug 1976 | A |
4029951 | Berry | Jun 1977 | A |
4034360 | Schweitzer | Jul 1977 | A |
4038625 | Tompkins | Jul 1977 | A |
4045726 | Schweitzer | Aug 1977 | A |
4063171 | Schweitzer | Dec 1977 | A |
4086529 | Schweitzer | Apr 1978 | A |
4112292 | Varvel | Sep 1978 | A |
4144485 | Akita | Mar 1979 | A |
4165528 | Schweitzer | Aug 1979 | A |
4186986 | Shoemaker | Feb 1980 | A |
4199741 | Serrus Paulet | Apr 1980 | A |
4234847 | Schweitzer | Nov 1980 | A |
4251770 | Schweitzer | Feb 1981 | A |
4288743 | Schweitzer | Sep 1981 | A |
4375617 | Schweitzer | Mar 1983 | A |
4414543 | Schweitzer | Nov 1983 | A |
4424512 | Schweitzer | Jan 1984 | A |
4438403 | Schweitzer | Mar 1984 | A |
4458198 | Schweitzer | Jul 1984 | A |
4495489 | Schweitzer | Jan 1985 | A |
4536758 | Schweitzer | Aug 1985 | A |
4599487 | Blank | Jul 1986 | A |
4626721 | Ouchi | Dec 1986 | A |
4686518 | Schweitzer | Aug 1987 | A |
4689752 | Fernandes | Aug 1987 | A |
4709339 | Fernandes | Nov 1987 | A |
4794332 | Schweitzer | Dec 1988 | A |
4795982 | Schweitzer | Jan 1989 | A |
4829298 | Fernandes | May 1989 | A |
4940976 | Gastouniotis | Jul 1990 | A |
4996624 | Schweitzer | Feb 1991 | A |
5008651 | Schweitzer | Apr 1991 | A |
5038246 | Durivage | Aug 1991 | A |
5070301 | Schweitzer | Dec 1991 | A |
5089928 | Durivage | Feb 1992 | A |
5136457 | Durivage | Aug 1992 | A |
5136458 | Durivage | Aug 1992 | A |
5150361 | Wieczorek | Sep 1992 | A |
5153565 | Schweitzer | Oct 1992 | A |
5168414 | Horstmann | Dec 1992 | A |
5196682 | Englehardt | Mar 1993 | A |
5220311 | Schweitzer | Jun 1993 | A |
5298894 | Cerney | Mar 1994 | A |
5420502 | Schweitzer | May 1995 | A |
5438329 | Gastouniotis | Aug 1995 | A |
5495239 | Ouellete | Feb 1996 | A |
5519527 | Panton | May 1996 | A |
5542856 | Wood | Aug 1996 | A |
5550476 | Lau | Aug 1996 | A |
5565783 | Lau | Oct 1996 | A |
5648726 | Le | Jul 1997 | A |
5656931 | Lau | Aug 1997 | A |
5659300 | Dresselhuys | Aug 1997 | A |
5677623 | Schweitzer | Oct 1997 | A |
5677678 | Schweitzer | Oct 1997 | A |
5701121 | Murdoch | Dec 1997 | A |
5704799 | Wood | Jan 1998 | A |
5793214 | Wakamatsu | Aug 1998 | A |
5821869 | Schweitzer | Oct 1998 | A |
5825303 | Bloss | Oct 1998 | A |
5877703 | Bloss | Mar 1999 | A |
5889399 | Schweitzer | Mar 1999 | A |
6002260 | Lau | Dec 1999 | A |
6014301 | Schweitzer | Jan 2000 | A |
6016105 | Schweitzer | Jan 2000 | A |
6029061 | Kohlschmidt | Feb 2000 | A |
6072405 | Sears | Jun 2000 | A |
6078785 | Bush | Jun 2000 | A |
6133724 | Schweitzer | Oct 2000 | A |
6177883 | Jannetti | Jan 2001 | B1 |
6188216 | Fromer | Feb 2001 | B1 |
6239722 | Colton | May 2001 | B1 |
6326905 | Walters | Dec 2001 | B1 |
6349248 | Dean | Feb 2002 | B1 |
6366217 | Cunningham | Apr 2002 | B1 |
6380733 | Apel | Apr 2002 | B1 |
6414605 | Walden | Jul 2002 | B1 |
6429661 | Schweitzer | Aug 2002 | B1 |
6433698 | Schweitzer | Aug 2002 | B1 |
6479981 | Schweitzer | Nov 2002 | B2 |
6525504 | Nygren | Feb 2003 | B1 |
6573707 | Kiriyama | Jun 2003 | B2 |
6577608 | Moon | Jun 2003 | B1 |
6617976 | Walden | Sep 2003 | B2 |
6671824 | Hyland | Dec 2003 | B1 |
6736646 | Takahashi | May 2004 | B2 |
6753792 | Bechwth | Jun 2004 | B2 |
6759933 | Fallak | Jul 2004 | B2 |
6796821 | Cairns | Sep 2004 | B2 |
6798211 | Rockwell | Sep 2004 | B1 |
6828906 | Malcolm | Dec 2004 | B2 |
6944555 | Blackett | Sep 2005 | B2 |
7391299 | Bender | Jun 2008 | B2 |
20020089802 | Beckwth | Jul 2002 | A1 |
20030040897 | Murphy | Feb 2003 | A1 |
20030119568 | Menard | Jun 2003 | A1 |
20030153368 | Bussan | Aug 2003 | A1 |
20030174067 | Soliman | Sep 2003 | A1 |
20030178290 | Schilling | Sep 2003 | A1 |
20030179149 | Savage | Sep 2003 | A1 |
20040005809 | Suzuki | Jan 2004 | A1 |
20040032340 | Lingafeldt | Feb 2004 | A1 |
20040036478 | Logvinov | Feb 2004 | A1 |
20040067366 | Gorczyca | Apr 2004 | A1 |
20040113810 | Mason | Jun 2004 | A1 |
20040214616 | Malcom | Oct 2004 | A1 |
20040233159 | Badarneh | Nov 2004 | A1 |
20050040809 | Uber | Feb 2005 | A1 |
20050068193 | Osterloh | Mar 2005 | A1 |
20050068194 | Schleich | Mar 2005 | A1 |
20050079818 | Atwater | Apr 2005 | A1 |
20050087599 | Ward | Apr 2005 | A1 |
20050110656 | Patterson | May 2005 | A1 |
20050132115 | Leach | Jun 2005 | A1 |
20050151659 | Donovan | Jul 2005 | A1 |
20050163432 | Montena | Jul 2005 | A1 |
20050205395 | Dietrich | Sep 2005 | A1 |
20050215280 | Twitchell, Jr | Sep 2005 | A1 |
20060084419 | Rocamora | Apr 2006 | A1 |
20070179547 | Armstrong | Aug 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20070267210 A1 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
60802143 | May 2006 | US |