The present invention is directed to an article and a method of cooling an article. More particularly, the present invention is directed to a cooled article and a method of cooling a cooled article.
Turbine systems are continuously being modified to increase efficiency and decrease cost. One method for increasing the efficiency of a turbine system includes increasing the operating temperature of the turbine system. To increase the temperature, the turbine system must be constructed of materials which can withstand such temperatures during continued use.
In addition to modifying component materials and coatings, one common method of increasing temperature capability of a turbine component includes the use of cooling features. For example, many turbine components include impingement sleeves or impingement plates positioned within an internal cavity thereof. The impingement sleeves or plates include a plurality of cooling channels that direct a cooling fluid towards an inner surface of the turbine component, providing impingement cooling of the turbine component. However, forming separate individual impingement sleeves for positioning within the turbine components increases manufacturing time and cost. Additionally, impingement sleeves typically generate significant cross flow between the impingement sleeve and the turbine component, and require sufficient cooling fluid to provide fluid flow through each of the cooling channels at one time, both of which decrease efficiency of the system.
Another method of cooling turbine components includes the use of serpentine cooling. Serpentine cooling includes passing a cooling fluid through a passage within the turbine component to simultaneously cool both the pressure and suction side walls of the component. The simultaneous cooling of both walls may overcool one wall in order to sufficiently cool the other. The overcooling of one wall leads to thermal gradients as well as unnecessary heat pickup, both of which decrease downstream cooling effectiveness and cooling efficiency.
In an embodiment, an article includes a body portion having an inner surface and an outer surface, the inner surface defining an inner region, a plurality of partitions within the body portion, each of the partitions extending across the inner region, and at least one aperture in each of the plurality of partitions, the at least one aperture arranged and disposed to direct fluid towards the inner surface of the body portion. The plurality of partitions form at least one up-pass cavity and at least one re-use cavity, the at least one re-use cavity being arranged and disposed to receive the fluid from the at least one aperture in one of the partitions.
In another embodiment, an article includes a body portion having an inner surface and an outer surface, the inner surface defining an inner region, a plurality of integral partitions each extending across the inner region from a pressure side wall to a section side wall of the article, the integral partitions forming an up-pass cavity and at least one re-use cavity within the inner region, and at least one aperture formed in each of the integral partitions, the at least one aperture arranged and disposed to direct fluid towards the inner surface of the body portion. The up-pass cavity is arranged and disposed to receive a fluid from outside the article and each of the at least one re-use cavities is arranged and disposed to receive a post-impingement fluid from the at least one aperture in one of the partitions.
In another embodiment, a method of cooling an article includes providing the article comprising a body portion having an inner surface and an outer surface, the inner surface defining an inner region, an up-pass partition extending across the inner region, the up-pass partition forming an up-pass cavity within the inner region, a re-use partition extending across the inner region, the re-use partition forming a re-use cavity within the inner region, and at least one aperture formed in each of the up-pass partition and the re-use partition, the at least one aperture arranged and disposed to direct fluid towards the inner surface of the body portion, directing a fluid into the up-pass cavity, generating a first fluid flow through the at least one aperture in the up-pass partition, contacting the inner surface of the body portion with the first fluid flow, the contacting of the inner surface cooling the inner surface and forming a first post-impingement fluid, receiving the first post-impingement fluid within the re-use cavity, generating a re-use fluid flow through the at least one aperture in the re-use partition, and contacting the inner surface of the body portion with the re-use fluid flow, the contacting of the inner surface cooling the inner surface and forming a re-use post-impingement fluid. The re-use fluid flow is generated from the first post-impingement fluid received within the at least one re-use cavity.
Other features and advantages of the present invention will be apparent from the following more detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
Wherever possible, the same reference numbers will be used throughout the drawings to represent the same parts.
Provided are an article and method of cooling an article. Embodiments of the present disclosure, for example, in comparison to concepts failing to include one or more of the features disclosed herein, decrease overcooling of articles, decrease temperature increases of cooling fluid due to overcooling of articles, increase cooling efficiency, decrease thermal gradient formation, increase downstream cooling effectiveness, facilitate reuse of cooling fluid, facilitate increased control of cooling flow distribution, provide increased stability of article temperatures, reduce cross flow, reduce cross flow degradation, increase article life, facilitate use of increased system temperatures, increase system efficiency, provide increased control over film supply pressure, or a combination thereof.
Referring to
As illustrated in
Returning to
The one or more partitions 210 form at least one up-pass cavity 211 and at least one re-use cavity 213. The at least one up-pass cavity 211 is positioned to receive a fluid from outside the article 100, such as, but not limited to, the fluid directed from the root portion 103 into the airfoil portion 107. Each of the re-use cavities 213 is configured to receive the fluid passing through the aperture(s) 220 in the one or more partitions 210, such as, but not limited to, the fluid passing through the aperture(s) 220 in the partition 210 forming the up-pass cavity 211 and/or any other re-use cavity 213 between the up-pass cavity 211 and the re-use cavity 213. For example, as illustrated in
In one embodiment, the article 100 includes two of the up-pass cavities 211 formed by one of the partitions 210 within the inner region 207. In another embodiment, one of the up-pass cavities 211 extends towards the leading edge 240 and the other up-pass cavity 211 extends towards the trailing edge 250. The up-pass cavity 211 extending towards the leading edge 240, as well as any re-use cavities 213 formed between the up-pass cavity 211 and the leading edge 240, define a leading edge pathway 241. The up-pass cavity 211 extending towards the trailing edge 250, as well as any re-use cavities 213 formed between the up-pass cavity 211 and the trailing edge 250, define a trailing edge pathway 251.
The leading edge pathway 241 and the trailing edge pathway 251 each include any suitable number of the re-use cavities 213. For example, as illustrated in
Referring to
In addition to providing fluid flow therethrough, one or more of the apertures 220 in each of the partitions 210 is configured to direct the fluid towards the inner surface 205 of the body portion 201. For example, each of the apertures 220 may be configured to generate an impingement fluid flow directed towards the inner surface 205. Additionally or alternatively, each of the one or more openings 230 is configured to generate a film flow from the fluid passing therethrough. Suitable shapes and/or geometries of the one or more apertures 220 and/or the one or more openings 230 include, but are not limited to, straight, curved, circular, substantially circular, semi-circular, chevron-shaped, square, triangular, star shaped, irregular, or a combination thereof.
In one embodiment, the aperture(s) 220 are configured to provide a desired wall temperature distribution. For example, the partition 210 may include a comparatively increased number of the apertures 220 directed towards either the suction side 208 or the pressure side 209, the comparatively increased number of apertures 220 directed towards one side providing an increased cooling of that side. Additionally or alternatively, an increased number of the apertures 220 may be formed in one of the partitions 210 as compared to another partition 210, the partition 210 including the increased number of apertures 220 providing increased cooling of a corresponding portion of the article 100. The desired wall temperature provided by the configuration of the aperture(s) 220 decreases overcooling of the article 100, increases downstream cooling efficiency, increases system performance, decreases unnecessary heat pickup in the fluid prior to the formation of the film cooling flow by not overcooling regions of the component, increases article life, decreases fluctuations in wall temperatures, increases uniformity of wall temperatures, or a combination thereof.
In certain embodiments, each of the re-use cavities 213 is configured to receive post-impingement fluid from the aperture(s) 220 in the partition 210 forming the up-pass cavity 211 and/or the re-use cavity 213. As used herein, “post-impingement fluid” refers to fluid directed towards the inner surface 205 of the body portion 201, and includes both the fluid that contacts, or impinges upon, the inner surface 205, as well as the fluid that is directed through the one or more apertures 220 but does not contact the inner surface 205. For example, the two re-use cavities 213 of the airfoil portion 107 illustrated in
According to one or more of the embodiments disclosed herein, the impingement cooling flow generated through the aperture(s) 220 in the partition 210 of each re-use cavity 213 consists of or consists essentially of the post-impingement fluid received by the re-use cavity 213. For example, in the leading edge pathway 241 of the article illustrated in
By generating impingement cooling flow consisting of or consisting essentially of post-impingement fluid, the re-use cavities 213 provide series impingement cooling of the article 100. The series impingement cooling of the article 100 includes one or more flow paths fed substantially or entirely through the fluid received by the at least one up-pass cavity 211, which increases cooling efficiency of the article 100, decreases an amount of fluid directed to the article 100, decreases post-impingement fluid flow, decreases cross-flow degradation, improves film cooling efficiency by providing increased control over film hole pressure ratio, and/or providing increased control over the film row blowing ratio.
While the invention has been described with reference to one or more embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. In addition, all numerical values identified in the detailed description shall be interpreted as though the precise and approximate values are both expressly identified.
Number | Name | Date | Kind |
---|---|---|---|
4056332 | Meloni | Nov 1977 | A |
4252501 | Peill | Feb 1981 | A |
5120192 | Ohtomo | Jun 1992 | A |
5813836 | Starkweather | Sep 1998 | A |
6036441 | Manning et al. | Mar 2000 | A |
6773230 | Bather et al. | Aug 2004 | B2 |
7497655 | Liang | Mar 2009 | B1 |
7556476 | Liang | Jul 2009 | B1 |
8070442 | Liang | Dec 2011 | B1 |
8596976 | Hada | Dec 2013 | B2 |
20090074575 | Propheter-Hinckley | Mar 2009 | A1 |
20140219788 | Nilsson | Aug 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20170167269 A1 | Jun 2017 | US |