Gaensslen et al, IBM Tech Disel Ball vol. 13 No. 11 Apr. 1971 p. 3345.* |
Dodabalapur et al., Appl. Phys, Lett, American Institute of Physics Hybrid Organic/Inorganic Complementary Circuits, vol. 68, 16, pp. 2246-2248, Apr. 15, 1996.* |
Dodabalapur et al., Science, “Organic Heterostructure Field-Effect Transistors”, vol. 269, pp. 1560-1562, Sep. 15, 1995.* |
Katz et al., Proceedings of the PMSE Division of the American Chemical Society, “Synthesis and Superior Transistor Performance of Dopant-Free Thiophene Hexamers”, vol. 72, pp. 467-469, 1995.* |
Kanicki, “Amorphous and Microcrystalline Semiconductor Devices: Optoel; ectronic Devices”, pp. 102-103, 1991.* |
“All-Polymer Field-Effect Transistor Realized by Printing Techniques”, by F. Garnier et al., Science, vol. 265, Sep. 16, 1994, pp. 1684-1688. |
“Polythiophene Field-Effect Transistor With Polypyrrole Worked As Source And Drain Electrodes”, by H. Koezuka et al., Applied Physics Letters, vol. 61 (15), Apr. 12, 1993, pp. 1794-1796. |
“Polythienylenevinylene Thin-Film Transistor With High Carrier Mobility”, by H. Fuchigami et al., Applied Physics Letters, vol. 63 (10), Sep. 6, 1993, pp. 1372-1374. |
“An Analytical Model For Organic-Based Thin-Film Transistors”, by G. Horowitz, Journal of Applied Physics, vol. 70 (1), Jul. 1, 1991, pp. 469-475. |
“Thin-Film Transistors Based on Alpha-Conjugated Oligomers”, by G. Horowitz et al., Synthetic Metals, 41-43 (1991), pp. 1127-1130. |
“Junction Field-Effect Transistor Using Polythiophene As An Active Component”, by S. Miyauchi, Synthetic Metals, 41-43 (1991), pp. 1155-1158. |
“Organic Transistors: Two-Dimensional Transport And Improved Electrical Characteristics”, by A. Dodabalapur, Science, vol. 268, Apr. 14, 1995, pp. 270-271. |
Chapter 5, Fullerenes: Synthesis, Properties, and Chemistry, Conductivity and Superconductivity in Alkali Metal Doped C60, by R. C. Haddon et al., ACS Symposium Ser. No. 481 (1992) pp. 71-89. |