The following relates to an article for use in a non-combustible aerosol provision system, a method of forming an article and a non-combustible aerosol provision system including an article.
Certain tobacco industry products produce an aerosol during use, which is inhaled by a user. For example, tobacco heating devices heat an aerosol generating substrate such as tobacco to form an aerosol by heating, but not burning, the substrate. Such tobacco industry products commonly include mouthpieces through which the aerosol passes to reach the user's mouth.
In some embodiments described herein, in a first aspect there is provided an article for use as or as part of a non-combustible aerosol provision system, the article comprising:
In some embodiments described herein, in a second aspect there is provided a method of forming an article for use as or as part of a non-combustible aerosol provision system, the method comprising providing an aerosol generating material comprising at least one aerosol forming material; and disposing a cylindrical body downstream of the aerosol-generating material, such that the upstream end of the cylindrical body is less than about 22 mm from the downstream end of the aerosol generating material.
In some embodiments described herein, in a third aspect there is provided a system comprising: an article according to the first aspect above, and a non-combustible aerosol provision device comprising a heater.
In some embodiments described herein, in a fourth aspect there is provided a system comprising a non-combustible aerosol provision device, and an article according to the first aspect above, wherein the aerosol generating material is provided with an amount of nicotine, and wherein the aerosol generated by the system, in use, comprises at least 30% of the amount of nicotine provided in the aerosol generating material prior to use, or at least 35% of the amount of nicotine provided in the aerosol generating material prior to use, or at least 40% of the amount of nicotine provided in the aerosol generating material prior to use.
In some embodiments described herein, in a fifth aspect there is provided system comprising a non-combustible aerosol provision device, and an article according to the first aspect above, wherein the aerosol generating material is provided with an amount of glycerol, and wherein the aerosol generated by the system, in use, comprises at least 15% of the amount of glycerol provided in the aerosol generating material prior to use, or at least 20% of the amount of glycerol provided in the aerosol generating material prior to use.
In some embodiments described herein, in a sixth aspect there is provided an article for us as or as part of a non-combustible aerosol provision system, the article comprising: an aerosol generating material comprising at least one aerosol forming material; a hollow tubular body disposed downstream of the aerosol generating material, the hollow tubular body comprising one or more ventilation areas; and a substantially cylindrical body disposed downstream of the hollow tubular body, the downstream end of the substantially cylindrical body forming the downstream end of the article, and the distance between the downstream end of the article and the downstream end of the hollow tubular body being at least 8 mm, wherein the one or more ventilation areas are provided between 12 mm and 21 mm from the downstream end of the article.
In some embodiments described herein, in a seventh aspect there is provided a method of forming an article according to the sixth aspect, the method comprising: providing an aerosol-generating material comprising at least one aerosol forming material; and disposing a hollow tubular body downstream of the aerosol generating material; disposing a substantially cylindrical body downstream of hollow tubular body, the downstream end of the cylindrical body forming the downstream end of the article, and the distance between the downstream end of the cylindrical body and the downstream end of the hollow tubular body being at least 8 mm; and providing at least one ventilation area between 12 mm and 21 mm from the downstream of the article.
According to an eighth aspect there is provided an article for use as or as part of a non-combustible aerosol provision system, the article comprising: an aerosol generating material comprising at least one aerosol forming material; a hollow tubular member disposed downstream of the aerosol generating material, the hollow tubular member comprising one or more ventilation areas; and a substantially cylindrical body disposed downstream of the hollow tubular member, the downstream end of the substantially cylindrical body forming the downstream end of the article, and the distance between the downstream end of the article and the downstream end of the hollow tubular member being at least 8 mm, wherein the one or more ventilation areas are provided less than 3.5 mm from the downstream end of the hollow tubular member.
In some embodiments described herein, in a ninth aspect there is provided a system comprising: an article according to the sixth or eighth aspect above, and a non-combustible aerosol provision device comprising a heater.
Embodiments will now be described, by way of example only, with reference to the accompanying drawings, in which:
As used herein, the term “delivery system” is intended to encompass systems that deliver at least one substance to a user, and includes:
According to the present disclosure, a “combustible” aerosol provision system is one where a constituent aerosol-generating material of the aerosol provision system (or component thereof) is combusted or burned during use in order to facilitate delivery of at least one substance to a user.
According to the present disclosure, a “non-combustible” aerosol provision system is one where a constituent aerosol-generating material of the aerosol provision system (or component thereof) is not combusted or burned in order to facilitate delivery of at least one substance to a user.
In embodiments described herein, the delivery system is a non-combustible aerosol provision system, such as a powered non-combustible aerosol provision system.
In some embodiments, the non-combustible aerosol provision system is an electronic cigarette, also known as a vaping device or electronic nicotine delivery system (END), although it is noted that the presence of nicotine in the aerosol-generating material is not a requirement.
In some embodiments, the non-combustible aerosol provision system is an aerosol-generating material heating system, also known as a heat-not-burn system. An example of such a system is a tobacco heating system.
In one embodiment, the non-combustible aerosol provision system is a hybrid system to generate aerosol using a combination of aerosolizable materials, one or a plurality of which may be heated. Each of the aerosolizable materials may be, for example, in the form of a solid, liquid or gel and may or may not contain nicotine. In one embodiment, the hybrid system comprises a liquid or gel aerosolizable material and a solid aerosolizable material. The solid aerosolizable material may comprise, for example, tobacco or a non-tobacco product.
Typically, the non-combustible aerosol provision system may comprise a non-combustible aerosol provision device and a consumable for use with the non-combustible aerosol provision device.
In some embodiments, the disclosure relates to consumables comprising aerosol-generating material and configured to be used with non-combustible aerosol provision devices. These consumables are sometimes referred to as articles throughout the disclosure. The aerosol-generating material, also referred to as aerosol generating material, can be tobacco material as described herein.
A consumable is an article comprising or consisting of aerosol-generating material, part or all of which is intended to be consumed during use by a user. A consumable may comprise one or more other components, such as an aerosol-generating material storage area, an aerosol-generating material transfer component, an aerosol generation area, a housing, a wrapper, a mouthpiece, a filter and/or an aerosol-modifying agent. A consumable may also comprise an aerosol generator, such as a heater, that emits heat to cause the aerosol-generating material to generate aerosol in use. The heater may, for example, comprise combustible material, a material heatable by electrical conduction, or a susceptor.
In some embodiments, the non-combustible aerosol provision system, such as a non-combustible aerosol provision device thereof, may comprise a power source and a controller. The power source may, for example, be an electric power source or an exothermic power source. In some embodiments, the exothermic power source comprises a carbon substrate which may be energised so as to distribute power in the form of heat to an aerosol-generating material or to a heat transfer material in proximity to the exothermic power source.
In some embodiments, the non-combustible aerosol provision system may comprise an area for receiving the consumable, an aerosol generator, an aerosol generation area, a housing, a mouthpiece, a filter and/or an aerosol-modifying agent.
In some embodiments, the consumable for use with the non-combustible aerosol provision device may comprise aerosol-generating material, an aerosol-generating material storage area, an aerosol-generating material transfer component, an aerosol generator, an aerosol generation area, a housing, a wrapper, a filter, a mouthpiece, and/or an aerosol-modifying agent.
In some embodiments, the substance to be delivered may be an aerosol-generating material or a material that is not intended to be aerosolised. As appropriate, either material may comprise one or more active constituents, one or more flavours, one or more aerosol-former materials, and/or one or more other functional materials.
An aerosol generator is an apparatus configured to cause aerosol to be generated from the aerosol-generating material. In some embodiments, the aerosol generator is a heater configured to subject the aerosol-generating material to heat energy, so as to release one or more volatiles from the aerosol-generating material to form an aerosol. In some embodiments, the aerosol generator is configured to cause an aerosol to be generated from the aerosol-generating material without heating. For example, the aerosol generator may be configured to subject the aerosol-generating material to one or more of vibration, increased pressure, or electrostatic energy.
Aerosol-generating material is a material that is capable of generating aerosol, for example when heated, irradiated or energized in any other way. Aerosol-generating material may, for example, be in the form of a solid, liquid or gel which may or may not contain an active substance and/or flavorants. In some embodiments, the aerosol-generating material may comprise an “amorphous solid”, which may alternatively be referred to as a “monolithic solid” (i.e. non-fibrous). In some embodiments, the amorphous solid may be a dried gel. The amorphous solid is a solid material that may retain some fluid, such as liquid, within it. In some embodiments, the aerosol-generating material may for example comprise from about 50 wt %, 60 wt % or 70 wt % of amorphous solid, to about 90 wt %, 95 wt % or 100 wt % of amorphous solid.
The aerosol-generating material may comprise one or more active substances and/or flavours, one or more aerosol-former materials, and optionally one or more other functional material.
The aerosol-former material may comprise one or more constituents capable of forming an aerosol. In some embodiments, the aerosol-former material may comprise one or more of glycerine, glycerol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,3-butylene glycol, erythritol, meso-Erythritol, ethyl vanillate, ethyl laurate, a diethyl suberate, triethyl citrate, triacetin, a diacetin mixture, benzyl benzoate, benzyl phenyl acetate, tributyrin, lauryl acetate, lauric acid, myristic acid, and propylene carbonate.
The one or more other functional materials may comprise one or more of pH regulators, colouring agents, preservatives, binders, fillers, stabilizers, and/or antioxidants.
The material may be present on or in a support, to form a substrate. The support may, for example, be or comprise paper, card, paperboard, cardboard, reconstituted material, a plastics material, a ceramic material, a composite material, glass, a metal, or a metal alloy. In some embodiments, the support comprises a susceptor. In some embodiments, the susceptor is embedded within the material. In some alternative embodiments, the susceptor is on one or either side of the material.
An aerosol-modifying agent is a substance, typically located downstream of the aerosol generation area, that is configured to modify the aerosol generated, for example by changing the taste, flavour, acidity or another characteristic of the aerosol. The aerosol-modifying agent may be provided in an aerosol-modifying agent release component that is operable to selectively release the aerosol-modifying agent.
The aerosol-modifying agent may, for example, be an additive or a sorbent. The aerosol-modifying agent may, for example, comprise one or more of a flavorant, a colourant, water, and a carbon adsorbent. The aerosol-modifying agent may, for example, be a solid, a liquid, or a gel. The aerosol-modifying agent may be in powder, thread or granule form. The aerosol-modifying agent may be free from filtration material.
A susceptor is a material that is heatable by penetration with a varying magnetic field, such as an alternating magnetic field. The susceptor may be an electrically-conductive material, so that penetration thereof with a varying magnetic field causes induction heating of the heating material. The heating material may be magnetic material, so that penetration thereof with a varying magnetic field causes magnetic hysteresis heating of the heating material. The susceptor may be both electrically-conductive and magnetic, so that the susceptor is heatable by both heating mechanisms. The device that is configured to generate the varying magnetic field is referred to as a magnetic field generator, herein.
Induction heating is a process in which an electrically-conductive object is heated by penetrating the object with a varying magnetic field. The process is described by Faraday's law of induction and Ohm's law. An induction heater may comprise an electromagnet and a device for passing a varying electrical current, such as an alternating current, through the electromagnet. When the electromagnet and the object to be heated are suitably relatively positioned so that the resultant varying magnetic field produced by the electromagnet penetrates the object, one or more eddy currents are generated inside the object. The object has a resistance to the flow of electrical currents. Therefore, when such eddy currents are generated in the object, their flow against the electrical resistance of the object causes the object to be heated. This process is called Joule, ohmic, or resistive heating. An object that is capable of being inductively heated is known as a susceptor.
In one embodiment, the susceptor is in the form of a closed circuit. It has been found that, when the susceptor is in the form of a closed circuit, magnetic coupling between the susceptor and the electromagnet in use is enhanced, which results in greater or improved Joule heating.
Magnetic hysteresis heating is a process in which an object made of a magnetic material is heated by penetrating the object with a varying magnetic field. A magnetic material can be considered to comprise many atomic-scale magnets, or magnetic dipoles. When a magnetic field penetrates such material, the magnetic dipoles align with the magnetic field. Therefore, when a varying magnetic field, such as an alternating magnetic field, for example as produced by an electromagnet, penetrates the magnetic material, the orientation of the magnetic dipoles changes with the varying applied magnetic field. Such magnetic dipole reorientation causes heat to be generated in the magnetic material.
When an object is both electrically-conductive and magnetic, penetrating the object with a varying magnetic field can cause both Joule heating and magnetic hysteresis heating in the object. Moreover, the use of magnetic material can strengthen the magnetic field, which can intensify the Joule heating.
In each of the above processes, as heat is generated inside the object itself, rather than by an external heat source by heat conduction, a rapid temperature rise in the object and more uniform heat distribution can be achieved, particularly through selection of suitable object material and geometry, and suitable varying magnetic field magnitude and orientation relative to the object. Moreover, as induction heating and magnetic hysteresis heating do not require a physical connection to be provided between the source of the varying magnetic field and the object, design freedom and control over the heating profile may be greater, and cost may be lower.
Articles, for instance those in the shape of rods, are often named according to the product length: “regular” (typically in the range 68-75 mm, e.g. from about 68 mm to about 72 mm), “short” or “mini” (68 mm or less), “king-size” (typically in the range 75-91 mm, e.g. from about 79 mm to about 88 mm), “long” or “super-king” (typically in the range 91-105 mm, e.g. from about 94 mm to about 101 mm) and “ultra-long” (typically in the range from about 110 mm to about 121 mm).
They are also named according to the product circumference: “regular” (about 23-25 mm), “wide” (greater than 25 mm), “slim” (about 22-23 mm), “demi-slim” (about 19-22 mm), “super-slim” (about 16-19 mm), and “micro-slim” (less than about 16 mm).
Accordingly, an article in a king-size, super-slim format will, for example, have a length of about 83 mm and a circumference of about 17 mm.
Each format may be produced with mouthpieces of different lengths. The mouthpiece length will be from about 30 mm to 50 mm. A tipping paper connects the mouthpiece to the aerosol generating material and will usually have a greater length than the mouthpiece, for example from 3 to 10 mm longer, such that the tipping paper covers the mouthpiece and overlaps the aerosol generating material, for instance in the form of a rod of substrate material, to connect the mouthpiece to the rod.
Articles and their aerosol generating materials and mouthpieces described herein can be made in, but are not limited to, any of the above formats.
The terms ‘upstream’ and ‘downstream’ used herein are relative terms defined in relation to the direction of mainstream aerosol drawn though an article or device in use.
The filamentary tow or filter material described herein can comprise cellulose acetate fibre tow. The filamentary tow can also be formed using other materials used to form fibres, such as polyvinyl alcohol (PVOH), polylactic acid (PLA), polycaprolactone (PCL), poly(1-4 butanediol succinate) (PBS), poly(butylene adipate-co-terephthalate)(PBAT), starch based materials, cotton, aliphatic polyester materials and polysaccharide polymers or a combination thereof. The filamentary tow may be plasticised with a suitable plasticiser for the tow, such as triacetin where the material is cellulose acetate tow, or the tow may be non-plasticised. The tow can have any suitable specification, such as fibres having a cross section which is ‘Y’ shaped, ‘X’ shaped or ‘O’ shaped. The fibres of the tow may have filamentary denier values between 2.5 and 15 denier per filament, for example between 8.0 and 11.0 denier per filament and total denier values of 5,000 to 50,000, for example between 10,000 and 40,000. When viewed in cross section, the fibres may have an isoperimetric ratio L2/A of 25 or less, preferably 20 or less, and more preferably 15 or less, where L is the length of the perimeter of the cross section and A is the area of the cross section. Filter material described herein also includes cellulose-based materials such as paper. Such materials may have a relatively low density, such as between about 0.1 and about 0.45 grams per cubic centimetre, to allow air and/or aerosol to pass through the material. Although described as filter materials, such materials may have a primary purpose, such as increasing the resistance to draw of a component, that is not related to filtration as such.
As used herein, the term “tobacco material” refers to any material comprising tobacco or derivatives or substitutes thereof. The term “tobacco material” may include one or more of tobacco, tobacco derivatives, expanded tobacco, reconstituted tobacco or tobacco substitutes. The tobacco material may comprise one or more of ground tobacco, tobacco fibre, cut tobacco, extruded tobacco, tobacco stem, tobacco lamina, reconstituted tobacco and/or tobacco extract.
In the tobacco material described herein, the tobacco material contains an aerosol forming material. In this context, an “aerosol forming material” is an agent that promotes the generation of an aerosol. An aerosol forming material may promote the generation of an aerosol by promoting an initial vaporisation and/or the condensation of a gas to an inhalable solid and/or liquid aerosol. In some embodiments, an aerosol forming material may improve the delivery of flavour from the aerosol generating material. In general, any suitable aerosol forming material or agents may be included in the aerosol generating material of the invention, including those described herein. Other suitable aerosol forming materials include, but are not limited to: a polyol such as sorbitol, glycerol, and glycols like propylene glycol or triethylene glycol; a non-polyol such as monohydric alcohols, high boiling point hydrocarbons, acids such as lactic acid, glycerol derivatives, esters such as diacetin, triacetin, triethylene glycol diacetate, triethyl citrate or myristates including ethyl myristate and isopropyl myristate and aliphatic carboxylic acid esters such as methyl stearate, dimethyl dodecanedioate and dimethyl tetradecanedioate. In some embodiments, the aerosol forming material may be glycerol, propylene glycol, or a mixture of glycerol and propylene glycol. The total amount of glycerol, propylene glycol, or a mixture of glycerol and propylene glycol used may be in the range of between 10% and 30%, for instance between 15% and 25% of the tobacco material measured on a dry weight basis. Glycerol may be present in an amount of from 10 to 20% by weight of the tobacco material, for example 13 to 16% by weight of the composition, or about 14% or 15% by weight of the composition. Propylene glycol, if present, may be present in an amount of from 0.1 to 0.3% by weight of the composition.
In some embodiments, the substance to be delivered comprises an active substance.
The active substance as used herein may be a physiologically active material, which is a material intended to achieve or enhance a physiological response. The active substance may for example be selected from nutraceuticals, nootropics, psychoactives. The active substance may be naturally occurring or synthetically obtained. The active substance may comprise for example nicotine, caffeine, taurine, theine, vitamins such as B6 or B12 or C, melatonin, cannabinoids, or constituents, derivatives, or combinations thereof. The active substance may comprise one or more constituents, derivatives or extracts of tobacco, cannabis or another botanical.
In some embodiments, the active substance comprises nicotine. In some embodiments, the active substance comprises caffeine, melatonin or vitamin B12.
As noted herein, the active substance may comprise or be derived from one or more botanicals or constituents, derivatives or extracts thereof. As used herein, the term “botanical” includes any material derived from plants including, but not limited to, extracts, leaves, bark, fibres, stems, roots, seeds, flowers, fruits, pollen, husk, shells or the like. Alternatively, the material may comprise an active compound naturally existing in a botanical, obtained synthetically. The material may be in the form of liquid, gas, solid, powder, dust, crushed particles, granules, pellets, shreds, strips, sheets, or the like. Example botanicals are tobacco, Eucalyptus, star anise, hemp, cocoa, cannabis, fennel, lemongrass, peppermint, spearmint, rooibos, chamomile, flax, ginger, Ginkgo Biloba, hazel, hibiscus, laurel, licorice (liquorice), matcha, mate, orange skin, Papaya, rose, sage, tea such as green tea or black tea, thyme, clove, cinnamon, coffee, aniseed (anise), basil, bay leaves, cardamom, coriander, cumin, nutmeg, oregano, paprika, rosemary, saffron, lavender, lemon peel, mint, juniper, elderflower, vanilla, wintergreen, beefsteak plant, curcuma, turmeric, sandalwood, cilantro, bergamot, orange blossom, myrtle, cassis, valerian, pimento, mace, damien, marjoram, olive, lemon balm, lemon basil, chive, carvi, verbena, tarragon, geranium, mulberry, ginseng, theanine, theacrine, maca, ashwagandha, damiana, guarana, chlorophyll, baobab or any combination thereof. The mint may be chosen from the following mint varieties: Mentha Arventis, Mentha c.v.,Mentha niliaca, Mentha piperita, Mentha piperita citrata c.v.,Mentha piperita c.v, Mentha spicata crispa, Mentha cardifolia, Mentha longifolia, Mentha suaveolens variegata, Mentha pulegium, Mentha spicata c.v. and Mentha suaveolens.
In some embodiments, the active substance comprises or is derived from one or more botanicals or constituents, derivatives or extracts thereof and the botanical is tobacco.
In some embodiments, the active substance comprises or is derived from one or more botanicals or constituents, derivatives or extracts thereof and the botanical is selected from eucalyptus, star anise, cocoa and hemp.
In some embodiments, the active substance comprises or derived from one or more botanicals or constituents, derivatives or extracts thereof and the botanical is selected from rooibos and fennel.
In some embodiments, the substance to be delivered comprises a flavour.
As used herein, the terms “flavour” and “flavorant” refer to materials which, where local regulations permit, may be used to create a desired taste, aroma or other somatosensorial sensation in a product for adult consumers. They may include naturally occurring flavour materials, botanicals, extracts of botanicals, synthetically obtained materials, or combinations thereof (e.g., tobacco, cannabis, licorice (liquorice), hydrangea, eugenol, Japanese white bark magnolia leaf, chamomile, fenugreek, clove, maple, matcha, menthol, Japanese mint, aniseed (anise), cinnamon, turmeric, Indian spices, Asian spices, herb, wintergreen, cherry, berry, red berry, cranberry, peach, apple, orange, mango, clementine, lemon, lime, tropical fruit, papaya, rhubarb, grape, durian, dragon fruit, cucumber, blueberry, mulberry, citrus fruits, Drambuie, bourbon, scotch, whiskey, gin, tequila, rum, spearmint, peppermint, lavender, aloe vera, cardamom, celery, cascarilla, nutmeg, sandalwood, bergamot, geranium, khat, naswar, betel, shisha, pine, honey essence, rose oil, vanilla, lemon oil, orange oil, orange blossom, cherry blossom, cassia, caraway, cognac, jasmine, ylang-ylang, sage, fennel, wasabi, piment, ginger, coriander, coffee, hemp, a mint oil from any species of the genus Mentha, Eucalyptus, star anise, cocoa, lemongrass, rooibos, flax, Ginkgo Biloba, hazel, hibiscus, laurel, mate, orange skin, rose, tea such as green tea or black tea, thyme, juniper, elderflower, basil, bay leaves, cumin, oregano, paprika, rosemary, saffron, lemon peel, mint, beefsteak plant, Curcuma, cilantro, myrtle, cassis, valerian, pimento, mace, damien, marjoram, olive, lemon balm, lemon basil, chive, Carvi, verbena, tarragon, limonene, thymol, camphene), flavour enhancers, bitterness receptor site blockers, sensorial receptor site activators or stimulators, sugars and/or sugar substitutes (e.g., sucralose, acesulfame potassium, aspartame, saccharine, cyclamates, lactose, sucrose, glucose, fructose, sorbitol, or mannitol), and other additives such as charcoal, chlorophyll, minerals, botanicals, or breath freshening agents. They may be imitation, synthetic or natural ingredients or blends thereof. They may be in any suitable form, for example, liquid such as an oil, solid such as a powder, or gas.
In some embodiments, the flavour comprises menthol, spearmint and/or peppermint. In some embodiments, the flavour comprises flavour components of cucumber, blueberry, citrus fruits and/or redberry. In some embodiments, the flavour comprises eugenol. In some embodiments, the flavour comprises flavour components extracted from tobacco. In some embodiments, the flavour comprises flavour components extracted from Cannabis.
In some embodiments, the flavour may comprise a sensate, which is intended to achieve a somatosensorial sensation which are usually chemically induced and perceived by the stimulation of the fifth cranial nerve (trigeminal nerve), in addition to or in place of aroma or taste nerves, and these may include agents providing heating, cooling, tingling, numbing effect. A suitable heat effect agent may be, but is not limited to, vanillyl ethyl ether and a suitable cooling agent may be, but not limited to eucolyptol, WS-3.
In the figures described herein, like reference numerals are used to illustrate equivalent features, articles or components.
The article 1 comprises: a rod of aerosol generating material 2 comprising at least one aerosol forming material; and a mouth end section 20 disposed downstream of the aerosol generating material 2. The mouth end section 20 comprises a hollow tubular body 3, the hollow tubular body having a wall thickness greater than about 0.5 mm and a cylindrical body 21 disposed immediately downstream of the hollow tubular body 3. The article 1 is configured such that the distance ‘d’ between the downstream end of the aerosol-generating material 2 and the upstream end of the cylindrical body 21 is less than about 22 mm.
In the present case, the article further comprises a hollow tubular member 5 disposed immediately upstream of the hollow tubular body 3. The hollow tubular member 5 is disposed between the aerosol generating material 2 and the hollow tubular body 3. The hollow tubular body 3 and hollow tubular member 5 are also referred to herein as cooling sections.
The combined length of the hollow tubular member 5 and the hollow tubular body 3 is such that the cylindrical body 21 is spaced away from the aerosol generating material by a maximum distance d. In the present example, the hollow tubular member has a length of 12 mm, and the hollow tubular body has a length of 9 mm. The cylindrical body 21 is therefore separated from the aerosol generating material by a distance of 21 mm. Preferably, the maximum distance d is 22 mm. Suitably, the distance d may be 21 mm. It has been surprisingly found that by providing a cooling section comprised of a hollow tubular member 5 and a hollow tubular body 3, configured to extend a maximum of 22 mm from the aerosol generating material, an improved aerosol may be provided. It is hypothesised that limiting the combined length of the cooling sections to less than 22 mm may reduce the condensation of desirable components of the aerosol on the inner surfaces of the cooling sections. For example, the hollow tubular member 5 may have a length of 11 mm and the hollow tubular body 3 may have a length of 10 mm. The hollow tubular member 5 may have a length from about 6 mm to about 15 mm, more preferably from about 8 mm to about 12 mm and/or the hollow tubular body 3 may have a length from about 6 mm to about 15 mm, more preferably from about 8 mm to about 12 mm.
In addition, it has surprisingly been found that the use of hollow tubular body 3 immediately upstream of cylindrical body 21 can further reduce the condensation of desirable components of the aerosol in the cylindrical body 21. Without wising to be bound by theory, it is hypothesised that this is due to hollow tubular body 3 channeling aerosol through the centre of the cylindrical body 21 at an increased flow rate. In addition, by increasing the proportion of the aerosol channeled through the centre of the cylindrical body 21, the cross sectional area of the cylindrical body through which aerosol passes is effectively reduced, further reducing the potential condensation of desirable components of the aerosol in the cylindrical body 21.
Preferably, the hollow tubular member 5 has a wall thickness of at least 300 microns and/or a permeability of at least 100 Coresta units. By constructing the hollow tubular member 5 to have a permeability of at least 100 Coresta units, the hollow tubular member takes up moisture from aerosol generated by the aerosol generating material 2 when the article 1 is heated by the non-combustible aerosol provision device 100. Furthermore, papers with permeability greater than 100 Coresta units are generally low weight and easier to work with during manufacturing.
The hollow tubular member 5 is configured to have a larger internal diameter, for instance a smaller wall thickness, than the wall thickness of the hollow tubular body 3.
In the present example the hollow tubular member 5 is formed from paper. Specifically, the hollow tubular member 5 is formed from a plurality of layers of paper which are parallel wound, with butted seams, to form the tubular member 5, which underlies a wrapper 6. The paper tube provides additional rigidity to the first cavity 5a. In the present example, first and second paper layers are provided in a two-ply tube, although in other examples 3, 4 or more paper layers can be used forming 3, 4 or more ply tubes. Other constructions can be used, such as spirally wound layers of paper, cardboard tubes, tubes formed using a papier-mâché type process, moulded or extruded plastic tubes or similar.
The hollow tubular member 5 can also be formed using a stiff plug wrap and/or tipping paper, for instance as the wrapper 6 and/or further wrapper 6′ described in more detail below, meaning that a separate tubular element is not required. The stiff plug wrap and/or tipping paper is manufactured to have a rigidity that is sufficient to withstand the axial compressive forces and bending moments that might arise during manufacture and whilst the article 1 is in use. For instance, the stiff plug wrap and/or tipping paper can have a basis weight between 70 gsm and 120 gsm, more preferably between 80 gsm and 110 gsm. Additionally or alternatively, the stiff plug wrap and/or tipping paper can have a thickness between 80 μm and 200 μm, more preferably between 100 μm and 160 μm, or from 120 μm to 150 μm. It can be desirable for both the wrapper 6 and/or further wrapper 6′ to have values in these ranges, to achieve an acceptable overall level of rigidity for the hollow tubular member 5.
In other examples, the hollow tubular member 5 may be formed from other materials, such as a moulded or extruded plastic tube, or a fibrous material as described for hollow tubular body 3.
The hollow tubular member 5 preferably has a wall thickness, which can be measured, for example using a calliper, of at least about 100 μm and up to about 1.5 mm, preferably between 100 μm and 1 mm and more preferably between 150 μm and 500 μm, or about 300 μm. In the present example, the hollow tubular member 5 has a wall thickness of about 250 μm.
Preferably, the length of the hollow tubular member 5 is less than about 20 mm. More preferably, the length of the hollow tubular member 5 is less than about 18 mm. Still more preferably, the length of the hollow tubular member 5 is less than about 15 mm. In addition, or as an alternative, the length of the hollow tubular member 5 is preferably at least about 5 mm. Preferably, the length of the hollow tubular member 5 is at least about 6 mm. In some preferred embodiments, the length of the hollow tubular member 5 is from about 10 mm to about 14 mm, more preferably from about 11 mm to about 13 mm, most preferably about 12 mm. In the present example, the length of the hollow tubular member 5 is 12 mm.
The hollow tubular body 3 is configured to serve as a heat dissipater to reduce the phenomena of ‘hot puff’. ‘Hot puff’ is defined as aerosol delivered to the user at an uncomfortably high temperature. Hot puff may be exacerbated when a user draws aerosol through a heated article 1 at a high rate, reducing the time for heat in the aerosol to be dissipated. When inserted into a non-combustible aerosol provision device 100, the hollow tubular body 3 separates the mouth end section from the heater 101 to provide space for heat to dissipate before the aerosol reaches the downstream end of the article. Further, it shall be appreciated that heat will be conducted away from the aerosol and into the hollow tubular body 3 as the aerosol is drawn therethrough. In this way, the hollow tubular body 3 acts as a heat sink.
In the present example, hollow tubular body 3 is formed from filamentary tow. In other embodiments, other constructions may be used, such as spirally wound layers of paper, cardboard tubes, tubes formed using a papier-mâché type process, tubes formed from paper filter material, moulded or extruded plastic tubes or similar.
The hollow tubular body 3 preferably has a wall thickness of at least about 325 μm and up to about 2 mm, preferably between 500 μm and 2 mm and more preferably between 750 μm and 1.5 mm. In the present example, the hollow tubular body 3 has a wall thickness of about 1.4 mm. The “wall thickness” of the hollow tubular body 3 corresponds to the thickness of the wall of the hollow tubular body 3 in a radial direction. This may be measured, for example, using a caliper. The use of filamentary tow and/or wall thicknesses in these ranges have advantage of insulating the hot aerosol passing through the second cavity 3a from the outer surface of the hollow tubular body 3.
The wall thickness together with the external diameter of the hollow tubular body 3 together define the internal diameter or cavity size of the hollow tubular body 3.
In some embodiments, the thickness of the wall of the hollow tubular body 3 is at least 325 microns and, preferably, at least 400, 500, 600, 700, 800, 900 or 1000 microns. In some embodiments, the thickness of the wall of the hollow tubular body 3 is at least 1250 or 1500 microns.
In some embodiments, the thickness of the wall of the hollow tubular body 3 is less than 2000 microns and, for instance, less than 1500 microns.
The increased thickness of the wall of the hollow tubular body 3 means that it has a greater thermal mass, which has been found to help reduce the temperature of the aerosol passing through the hollow tubular body 3 and reduce the surface temperature of the mouth end section 20 at locations downstream of the hollow tubular body 3. This is thought to be because the greater thermal mass of the hollow tubular body 3 allows the hollow tubular body 3 to absorb more heat from the aerosol in comparison to a hollow tubular body 3 with a thinner wall thickness. The increased thickness of the hollow tubular body 3 also channels the aerosol centrally through the mouth end section 20 such that less heat from the aerosol is transferred to the outer portions of the mouth end section 20.
Preferably, the density of the hollow tubular body 3 is at least about 0.25 grams per cubic centimetre (g/cc), more preferably at least about 0.3 g/cc. Preferably, the density of the hollow tubular body 3 is less than about 0.75 grams per cubic centimetre (g/cc), more preferably less than 0.6 g/cc. In some embodiments, the density of the hollow tubular body 3 is between 0.25 and 0.75 g/cc, more preferably between 0.3 and 0.6 g/cc, and more preferably between 0.4 g/cc and 0.6 g/cc or about 0.5 g/cc. These densities have been found to provide a good balance between improved firmness afforded by denser material and the lower heat transfer properties of lower density material. For the purposes of the present example, the “density” of the hollow tubular body 3 refers to the density of the filamentary tow forming the element with any plasticiser incorporated. For the purposes of the present invention, the “density” of the material forming the hollow tubular body 3 refers to the density of any filamentary tow forming the element with any plasticiser incorporated. The density may be determined by dividing the total weight of the material forming the hollow tubular body 3 by the total volume of the material forming the hollow tubular body 3, wherein the total volume can be calculated using appropriate measurements of the material forming the hollow tubular body 3 taken, for example, using callipers. Where necessary, the appropriate dimensions may be measured using a microscope.
The filamentary tow forming the hollow tubular body 3 preferably has a total denier of less than 45,000, more preferably less than 42,000. This total denier has been found to allow the formation of a tubular element 13 which is not too dense. Preferably, the total denier is at least 20,000, more preferably at least 25,000. In preferred embodiments, the filamentary tow forming the hollow tubular body 3 has a total denier between 25,000 and 45,000, more preferably between 35,000 and 45,000. Preferably the cross-sectional shape of the filaments of tow are ‘Y’ shaped, although in other embodiments other shapes such as ‘X’ shaped filaments can be used.
The filamentary tow forming the hollow tubular body 3 preferably has a denier per filament of greater than 3. This denier per filament has been found to allow the formation of a tubular element 13 which is not too dense. Preferably, the denier per filament is at least 4, more preferably at least 5. In preferred embodiments, the filamentary tow forming the hollow tubular body 3 has a denier per filament between 4 and 10, more preferably between 4 and 9. In one example, the filamentary tow forming the hollow tubular body 3 has an 8Y40,000 tow formed from cellulose acetate and comprising 18% plasticiser, for instance triacetin.
The hollow tubular body 3 preferably comprises from 10% to 22% by weight of plasticiser. For cellulose acetate tow, the plasticiser is preferably triacetin, although other plasticisers such as polyethelyne glycol (PEG) can be used. The hollow tubular body 3 can comprise less than about 18% by weight of plasticiser, such as triacetin, or less than about 17%, less than about 16% or less than about 15%. More preferably, the tubular body 3 comprises from 10% to 20% by weight of plasticiser, for instance about 11%, about 12%, about 13%, about 15%, about 17%, about 18% or about 19% plasticiser.
In some embodiments, the permeability of the material of the wall of the hollow tubular body 3 is at least 100 Coresta Units and, preferably, at least 500 or 1000 Coresta Units.
It has been found that the relatively high permeability of the hollow tubular body 3 increases the amount of heat that is transferred to the hollow tubular body 3 from the aerosol and thus reduces the temperature of the aerosol. The permeability of the hollow tubular body 3 has also been found to increase the amount of moisture that is transferred from the aerosol to the hollow tubular body 3, which has been found to improve the feel of the aerosol in the user's mouth. A high permeability of hollow tubular body 3 also makes it easier to cut ventilation holes into the hollow tubular body 3 using a laser, meaning that a lower power of laser can be used.
The hollow tubular body 3 may comprise a filamentary tow comprising filaments having a cross-section with an isoperimetric ratio L2/A of 25 or less, 20 or less or 15 or less, where L is the length of the perimeter of the cross section and A is the area of the cross section. In other words, the filaments may comprise a substantially ‘0’ shaped cross section, or at least as close as it is possible to achieve. For a given denier per filament, filaments with a substantially ‘0’ shaped cross section have a lower surface area than other cross sectional shapes, such as ‘Y’ or ‘X’ shaped filaments. Therefore, the delivery of aerosol to the user is improved.
It shall be appreciated that aerosol drawn through the hollow tubular body 3 passes through both a central second cavity 3a in the hollow tubular body 3 and also partly through the filaments of the hollow tubular body 3 itself. By providing filaments with a substantially ‘o’ shaped cross section, a greater proportion of aerosol will pass through the filament of the hollow tubular body 3 itself, increasing heat transfer to the hollow tubular body 3 yet further.
In the present example, hollow tubular body 3 has a length of 9 mm. In other examples, hollow tubular body may have a length up to about 12 mm, for instance 10 mm.
The hollow tubular body 3 and hollow tubular member 5 are also referred to as cooling sections, and define respective first and second cavities 5a, 3a.
The hollow tubular member 5 and hollow tubular body 3 are each located around and define respective air gaps within the mouthpiece 20 which act as cooling segments. The air gaps provide chambers through which heated volatilised components generated by the aerosol generating material 2 flow.
Preferably, the first cavity 5a has an internal volume greater than about 300 mm3 and/or the second cavity 3a has an internal volume greater than about 100 mm3. For instance, the first cavity 5a may have an internal volume of about 310 mm3 or about 330 mm3, and the second cavity 3a may have an internal volume of about 120 mm3. Providing cavities of at least these volumes has been found to enable the formation of an improved aerosol, as well as providing the cooling function described herein. Such cavity sizes provide sufficient space within the mouthpiece 20 to allow heated volatilised components to cool, therefore allowing the exposure of the aerosol generating material 2 to higher temperatures than would otherwise be possible, since they may result in an aerosol which is too warm.
Surprisingly, the relative internal diameters and length of the first and second cavities has been found to be important for improving the quality of the aerosol. It has been advantageously found that providing a tubular member 5 having a length less than 18 mm, or less than the length of the aerosol generating material 2, reduces the likelihood of desirable components of the aerosol condensing on the inner surface of the tubular member 5. It has also been surprisingly found that providing a hollow tubular body 3, having a smaller inner diameter than hollow tubular member 5, immediately downstream of the hollow tubular member 5 provides a further improvement in the aerosol by channeling the hot aerosol through the centre of the hollow tubular member 5, further reducing condensation on the inner surface of the tubular member.
The inner diameters of each of the hollow tubular body 3 and the hollow tubular member 5 may be selected from a range of about 2 mm to about 6 mm, about 2 mm to about 5 mm, about 2.5 mm to about 4.5 mm and about 3.0 mm to about 4 mm. The inner diameter of the tubular body 3 is selected to be smaller than the inner diameter of the tubular member 5.
The second cavity can, for instance, have an internal volume greater than 75 mm3, for instance greater than 90 mm3, 100 mm3, 140 mm3, or 150 mm3, allowing further improvement of the aerosol. In some examples, the second cavity 3a comprises a volume of between about 130 mm3 and about 180 mm3, for instance about 150 mm3.
The first cavity can, for instance, have an internal volume greater than 100 mm3, for instance greater than 200 mm3, 300 mm3, 350 cm3, 400 mm3, or 500 mm3, allowing further improvement of the aerosol. In some examples, the first cavity 5a comprises a volume of between about 300 mm3 and about 400 mm3, or between about 340 mm3 and about 360 mm3 for instance about 350 mm3.
The hollow tubular member 5 can be configured to provide a temperature differential of at least 40 degrees Celsius between a heated volatilised component entering a first, upstream end of the hollow tubular member 5 and a heated volatilised component exiting a second, downstream end of the hollow tubular member 5. The hollow tubular member 5 is preferably configured to provide a temperature differential of at least 60 degrees Celsius, preferably at least 80 degrees Celsius and more preferably at least 100 degrees Celsius between a heated volatilised component entering a first, upstream end of the hollow tubular member 5 and a heated volatilised component exiting a second, downstream end of the hollow tubular member 5. This temperature differential across the length of the hollow tubular member 5 protects the temperature sensitive second body of material 5 from the high temperatures of the aerosol generating material 3 when it is heated.
The hollow tubular body 3 can be configured to provide a temperature differential of at least 5 degrees Celsius between a heated volatilised component entering a first, upstream end of the hollow tubular body 3 and a heated volatilised component exiting a second, downstream end of the hollow tubular body 3. The hollow tubular body 3 is preferably configured to provide a temperature differential of at least 10 degrees Celsius, preferably at least 12 degrees Celsius and more preferably at least 15 degrees Celsius between a heated volatilised component entering a first, upstream end of the hollow tubular body 3 and a heated volatilised component exiting a second, downstream end of the hollow tubular body 3.
In each embodiment, the article further comprises the wrapper 6 at least partially surrounding the aerosol generating material 2 and the hollow tubular member 5 to connect the aerosol generating material 2 to the hollow tubular member 5. In some examples the wrapper may extend along the full length of the article 1 to attach the aerosol generating material 2 to the components of the mouth end section 20. In the present example, a further wrapper 6′ underlies the wrapper 6, and extends along the mouth end section 20. Further wrapper 6′ combines the hollow tubular member 5, the tubular body 3, cylindrical body 21, and second tubular body 22. In the present example, wrapper 6 extends partially along the length of the aerosol generating material 2 to attach the aerosol generating material to the wrapped mouth end section 20.
A plug wrap 23 circumscribes the cylindrical body 21. Further wrapper 6′ circumscribes and attaches the second tubular body 22 to the body of material 21, the hollow tubular body 3, and the hollow tubular member 5. The wrapped second tubular body 22, cylindrical body 21, hollow tubular body 3 and hollow tubular member 5 are attached to the aerosol generating material 2 by wrapper 6.
The wrapper 6 may be a paper material comprising a citrate, such as sodium nitrate or potassium nitrate. In such examples, the wrapper 6 may have a citrate content of 2% by weight or less, or 1% by weight or less. This reduces charring of the wrapper 6 when the article 1 is heated in the non-combustible aerosol provision device 100.
In some embodiments, the aerosol generating material 2 described herein is a first aerosol generating material 2 and the hollow tubular body 3 may comprise a second aerosol generating material. For example, the second aerosol generating material may be disposed on an inner surface of the hollow tubular body 3.
The second aerosol generating material comprises at least one aerosol former material, and may also comprise at least one aerosol modifying agent, or other sensate material. The aerosol former material and/or aerosol modifying agent can be any aerosol former material or aerosol modifying agent as described herein, or a combination thereof.
In use, as the aerosol generated from the first aerosol generating material 2 is drawn through the hollow tubular body 3, heat from the first aerosol may aerosolise the aerosol forming material of the second aerosol generating material, to form a second aerosol. The second aerosol may comprise a flavorant, which may be additional or complementary to the flavour of the first aerosol.
Providing a second aerosol generating material on the second hollow tubular body 3 can result in generation of a second aerosol which boosts or complements the flavour or visual appearance of the first aerosol.
The article 1 may further comprise at least one ventilation area 12 arranged to allow external air to flow into the article. In the illustrated embodiments, the ventilation area 12 comprises a row of ventilation apertures, or perforations, cut into the wrapper 6. The ventilation apertures may extend in a line around the circumference of the article 1. The ventilation area 12 may comprise two or more rows of ventilation apertures. By providing a ventilation area 12, ambient air may be drawn into the article during use to further cool the aerosol.
In the illustrated embodiments, the at least one ventilation area 12 is arranged to provide external air into the second cavity 3a of the hollow tubular body 3. To achieve this, the one or more rows of ventilation apertures extend around the circumference of the article over the hollow tubular body 3.
Suitably, the ventilation area 12 may be provided at a position between 12 mm and 20 mm downstream of the aerosol generating material 2. For instance, the ventilation area may be provided at a position about 14.5 mm or 18.5 mm downstream of the aerosol generating material 2 or at a position between 14 mm and 20 mm downstream of the aerosol generating material 2. In other examples, ventilation may be provided at a position 22.5 mm upstream of the mouth end of the article. Alternatively/additionally, the ventilation may be provided at a position less than 3.5 mm from the downstream end of the hollow tubular member. For instance, the ventilation area may be provided at a position about 14.5 mm or 18.5 mm downstream of the aerosol generating material 2. In other examples, ventilation may be provided at a position 22.5 mm upstream of the mouth end of the article.
In one example, the ventilation area 12 comprises a single row of perforations formed as laser perforations. In some other examples, the ventilation area comprises first and second parallel rows of perforations formed as laser perforations, for instance at positions 17.925 mm and 18.625 mm respectively from the mouth end. These perforations pass though the wrapper 6 and hollow tubular body 3. In alternative embodiments, the ventilation can be provided at other locations.
In some examples, the perforations pass through the full thickness of the wall of the hollow tubular body 3. In other examples, the ventilations may be formed through only a portion of the wall thickness of the tubular body. For example, the ventilation perforation may extend into the tubular body by a depth of up to about 0.2 mm, or up to about 0.3 mm, or up to about 0.5 mm, or up to about 1 mm, or up to about 1.5 mm.
Alternatively, the ventilation can be provided via a single row of perforations, for instance laser perforations, into the portion of the article 1 in which the hollow tubular body 3 is located. This has been found to result in improved aerosol formation, which is thought to result from the airflow through the perforations being more uniform than with multiple rows of perforations, for a given ventilation level. In the present example, the ventilation area 12 comprises a single row of laser perforations 18.5 mm downstream of the aerosol generating material 2.
In another embodiment, the at least one ventilation area 12 is arranged to provide external air into the aerosol generating material 2. To achieve this, the one or more rows of ventilation apertures extend around the circumference of the article over the rod of aerosol generating material 2.
The level of ventilation provided by the at least one ventilation area 12 is within the range of 40% to 70% of the volume of aerosol generated by the aerosol generating material 2 passing through the article 1, when the article 1 is heated in the non-combustible aerosol provision device 100.
Aerosol temperature has been found to generally increase with a drop in the ventilation level. However the relationship between aerosol temperature and ventilation level does not appear to be linear, with variations in ventilation, for instance due to manufacturing tolerances, having less impact at lower target ventilation levels. For instance, with a ventilation tolerance of ±15%, for a target ventilation level of 75%, the aerosol temperature could increase by approximately 6° C. at the lower ventilation limit (60% ventilation). However, with a target ventilation level of 60% the aerosol temperature may only increase by approximately 3.5° C. at the lower vent limit (45% ventilation). The target ventilation level of the article can therefore be within the range 40% to 70%, for instance, 45% to 65%. The mean ventilation level of at least 20 articles can be between 40% and 70%, for instance between 45% and 70% or between 51% and 59%.
In some embodiments, an additional wrapper 10 at least partially surrounds the aerosol generating material 2, between the aerosol generating material 2 and the wrapper 6. In particular, during manufacture of the article, the aerosol generating material is first wrapped by additional wrapper 10 before being attached in combination with the other components of the article 1 by wrapper 6.
In some embodiments, the additional wrapper 10 surrounding the aerosol generating material has a high level of permeability, for example greater than about 1000 Coresta Units, or greater than about 1500 Coresta Units, or greater than about 2000 Coresta Units. The permeability of the additional wrapper 10 can be measured in accordance with ISO 2965:2009 concerning the determination of air permeability for materials used as cigarette papers, filter plug wrap and filter joining paper.
The additional wrapper 10 may be formed from a material with a high inherent level of permeability, an inherently porous material, or may be formed from a material with any level of inherent permeability where the final level of permeability is achieved by providing the additional wrapper 10 with a permeable zone or area. Providing a permeable additional wrapper 10 provides a route for air to enter the smoking article. The additional wrapper 10 can be provided with a permeability such that the amount of air entering through the rod of aerosol generating material 2 is relatively more than the amount of air entering the article 1 through the ventilation area 12 in the mouthpiece. An article 1 having this arrangement may produce a more flavoursome aerosol which may be more satisfactory to the user.
The mouth end section 20 further comprises a second tubular body 22. The second tubular body 22 defines the mouth end of the article 1. The second tubular body 22 may comprise a tube of cellulose acetate stiffened with plasticizer. For example, the second tubular body may be constructed in the same way as described for hollow tubular body 3, and may have a wall thickness and/or density in the range as described for hollow tubular body 3.
The second tubular body 22 defines a cavity 22a in the mouth end section 20 that opens at the mouth end.
The provision of a second tubular body 22 at the downstream end of the article 1 has advantageously been found to significantly reduce the temperature of the outer surface of the article 1 at the downstream end of the mouthpiece which comes into contact with a consumer's mouth when the article 1 is in use.
The use of the second hollow tubular body 22 has also been found to significantly reduce the temperature of the outer surface of the mouth end section 20 even upstream of the second hollow tubular body 22. Without wishing to be bound by theory, it is hypothesised that this is due to the second hollow tubular body 22 channeling aerosol closer to the centre of the mouth end section 20, and therefore reducing the transfer of heat from the aerosol to the outer surface of the article.
The second hollow tubular body 22 preferably has an internal diameter of greater than 3.0 mm. Smaller diameters than this can result in increasing the velocity of aerosol passing though the mouth end section 20 to the consumers' mouth more than is desirable, such that the aerosol becomes too warm, for instance reaching temperatures greater than 40° C. or greater than 45° C. More preferably, the tubular body 22 has an internal diameter of greater than 3.1 mm, and still more preferably greater than 3.5 mm or 3.6 mm. In one embodiment, the internal diameter of the tubular body 22 is about 3.9 mm.
The “wall thickness” of the second hollow tubular body 22 corresponds to the thickness of the wall of the tube 13 in a radial direction. This may be measured in the same way as for hollow tubular element 8. The wall thickness is advantageously greater than 0.9 mm, and more preferably 1.0 mm or greater. Preferably, the wall thickness is substantially constant around the entire wall of the second hollow tubular element 11. However, where the wall thickness is not substantially constant, the wall thickness is preferably greater than 0.9 mm at any point around the second hollow tubular element 11, more preferably 1.0 mm or greater.
Preferably, the length of the second hollow tubular body 22 is less than about 20 mm. More preferably, the length of the second hollow tubular body 22 is less than about 15 mm. Still more preferably, the length of the second hollow tubular body 22 is less than about 10 mm. In addition, or as an alternative, the length of the second hollow tubular body 22 is at least about 5 mm. Preferably, the length of the second hollow tubular body 22 is at least about 6 mm. In some preferred embodiments, the length of the second hollow tubular body 22 is from about 5 mm to about 20 mm, more preferably from about 6 mm to about 10 mm, even more preferably from about 6 mm to about 8 mm, most preferably about 6 mm, 7 mm or about 8 mm. In the present example, the length of the second hollow tubular body 22 is 6 mm.
In the present example, the article 1 includes a body of material 21. The body of material is substantially cylindrical, and positioned immediately downstream of the hollow tubular body 3. The body of material 21 is wrapped in an additional wrapping material, such as a first plug wrap 23. In some examples, the first plug wrap 23 has a basis weight of less than 50 gsm, for instance between about 20 gsm and 40 gsm. For instance, the first plug wrap 23 can have a thickness of between 30 μm and 60 μm, or between 35 μm and 45 μm.
In other examples, the first plug wrap 23 has a basis weight greater than 65 gsm, for instance greater than 80 gsm, or greater than 95 gsm. In some examples, the first plug wrap 23 has a basis weight of about 100 gsm. It has advantageously been found that providing a first plug wrap having a basis weight in these ranges and comprising an embossed pattern can reduce the temperature of the external surface of the article 1 at a position overlying the cylindrical body 21. For instance, first plug wrap 23 may be provided with an embossed pattern comprising a hexagonal repeating pattern, a linear repeating pattern, or a series of raised areas having any suitable shape. Without wishing to be bound by theory, it is thought that providing an embossed first plug wrap 23 can provide an air gap between the plug wrap and the additional wrapper 10, which can reduce heat transfer to the external surface of the article 1.
Preferably, the first plug wrap 23 is a non-porous plug wrap, for instance having a permeability of less than 100 Coresta units, for instance less than 50 Coresta units. However, in other embodiments, the first plug wrap 23 can be a porous plug wrap, for instance having a permeability of greater than 200 Coresta units.
The second tubular body 22 is separated from the hollow tubular body 3 by the body of material 21.
Preferably, the length of the body of material 21 is less than about 15 mm. More preferably, the length of the body of material 21 is less than about 10 mm. In addition, or as an alternative, the length of the body of material 21 is at least about 5 mm. Preferably, the length of the body of material 21 is at least about 6 mm. In some preferred embodiments, the length of the body of material 21 is from about 5 mm to about 15 mm, more preferably from about 6 mm to about 12 mm, even more preferably from about 6 mm to about 12 mm, most preferably about 6 mm, 7 mm, 8 mm, 9 mm or 10 mm. In the present example, the length of the body of material 21 is 10 mm.
The body of material 21, also referred to as cylindrical body 21, can be formed without any cavities or hollow portions, for instance without cavities or hollow portions having a dimension greater than 0.5 mm therein. For instance, the cylindrical body of material can comprise material which extends substantially continuously throughout its volume. It can, for instance, have a density which is substantially uniform across its diameter and/or along its length.
In the present example, the body of material 21 is formed from filamentary tow. In the present example, the tow used in the body of material 21 has a denier per filament (d.p.f.) of 8.4 and a total denier of 21,000. Alternatively, the tow can, for instance, have a denier per filament (d.p.f.) of 9.5 and a total denier of 12,000. Alternatively, the tow can, for instance, have a denier per filament (d.p.f.) of 8 and a total denier of 15,000. In the present example, the tow comprises plasticised cellulose acetate tow. The plasticiser used in the tow comprises about 7% by weight of the tow. In the present example, the plasticiser is triacetin. In other examples, different materials can be used to form the body of material 21. For instance, rather than tow, the body 21 can be formed from paper, for instance in a similar way to paper filters known for use in cigarettes. Alternatively, the body 21 can be formed from tows other than cellulose acetate, for instance polylactic acid (PLA), other materials described herein for filamentary tow or similar materials, such as paper filter material. The tow is preferably formed from cellulose acetate. The tow, whether formed from cellulose acetate or other materials, preferably has a d.p.f. of at least 5, more preferably at least 6 and still more preferably at least 7. These values of denier per filament provide a tow which has relatively coarse, thick fibres with a lower surface area which result in a lower pressure drop across the body of material 21 than tows having lower d.p.f. values. Preferably, to achieve a sufficiently uniform body of material 21, the tow has a denier per filament of no more than 12 d.p.f., preferably no more than 11 d.p.f. and still more preferably no more than 10 d.p.f.
The total denier of the tow forming the body of material 21 is preferably at most 30,000, more preferably at most 28,000 and still more preferably at most 25,000. These values of total denier provide a tow which takes up a reduced proportion of the cross sectional area of the article 1 which results in a lower pressure drop across the article 1 than tows having higher total denier values. For appropriate firmness of the body of material 21, the tow preferably has a total denier of at least 8,000 and more preferably at least 10,000. Preferably, the denier per filament is between 5 and 12 while the total denier is between 10,000 and 25,000. More preferably, the denier per filament is between 6 and 10 while the total denier is between 11,000 and 22,000. Preferably the cross-sectional shape of the filaments of tow are ‘Y’ shaped, although in other embodiments other shapes such as ‘X’ shaped or ‘O’ shaped filaments can be used, with the same d.p.f. and total denier values as provided herein. The tow may comprise filaments having a cross-section with an isoperimetric ratio of 25 or less, preferably 20 or less, and more preferably 15 or less. In some examples, the body of material 21 may comprise an adsorbent material (e.g. charcoal) dispersed within the tow.
Irrespective of the material used to form the body 6, the pressure drop across body 6, can, for instance, be between 0.2 and 5 mmWG per mm of length of the body 6, for instance between 0.5 mmWG and 3 mmWG per mm of length of the body 6. The pressure drop can, for instance, be between 0.5 and 2.5 mmWG/mm of length, between 1 and 1.5 mmWG/mm of length or between 1.5 and 2.5 mmWG/mm of length. The total pressure drop across body 6 can, for instance, be between 2 mmWG and 8 mWG, or between 4 mmWG and 7 mmWG. The total pressure drop across body 6 can be about 5, 6 or 7 mmWG.
The capsule 24 has a core-shell structure. In other words, the capsule 24 comprises a shell encapsulating a liquid agent, for instance a flavorant or other agent, which can be any one of the flavorants or aerosol modifying agents described herein. The shell of the capsule 24 can be ruptured by a user to release the flavorant or other agent into the body of material 21. The first plug wrap 23 can comprise a barrier coating to make the material of the plug wrap substantially impermeable to the liquid payload of the capsule. Alternatively or in addition, the further wrapper 6′ and/or wrapping material 6 can comprise a barrier coating to make the material of that further wrapper 6′ and/or wrapping material 6 substantially impermeable to the liquid payload of the capsule.
In some examples, the capsule is spherical and has a diameter of about 3 mm. In other examples, other shapes and sizes of capsule can be used. The total weight of the capsule may be in the range about 10 mg to about 50 mg.
It is known to generate, for a given tow specification (such as 8.4Y21000), a tow capability curve which represents the pressure drop through a length of rod formed using the tow, for each of a range of tow weights. Parameters such as the rod length and circumference, wrapper thickness and tow plasticiser level are specified, and these are combined with the tow specification to generate the tow capability curve, which gives an indication of the pressure drop which would be provided by different tow weights between the minimum and maximum weights achievable using standard filter rod forming machinery. Such tow capability curves can be calculated, for instance, using software available from tow suppliers. It has been found that it is particularly advantageous to use a body of material 21 which includes filamentary tow having a weight per mm of length of the body of material 21 which is between about 10% and about 30% of the range between the minimum and maximum weights of a tow capability curve generated for the filamentary tow. This can provide an acceptable balance between providing enough tow weight to avoid shrinkage after the body 21 has been formed, providing an acceptable pressure drop, while also assisting with capsule placement within the tow, for capsules of the sizes described herein.
A control sample and an article according to the claimed invention were tested, as described below, to determine the distribution of nicotine and glycerol, desirable components of the aerosol, throughout the article after use. The pre-use level of glycerol and nicotine in the aerosol generating material was also determined using mass balance analysis, as described below.
The control sample comprises an aerosol generating material section having a length of 30 mm, a tubular member 5 arranged immediately downstream of the aerosol generating section, having a length of 17 mm, a cylindrical body 21 having a length of 10 mm, and a second tubular body 22 having a length of 6 mm. Sample A has the same general construction as illustrated in and described with reference to
Samples for mass balance analysis were taken of the aerosol generating material 2; the cooling section, which comprises the first tubular body 3, and where present, the tubular member 5; and a mouth end portion, comprising the cylindrical body 21 and the second tubular body 22.
The amount of nicotine and glycerol in each of the mouth end section, the cooling section and the aerosol generating section after use of the article can be determined using mass balance analysis. The amount of nicotine and glycerol present in the delivered aerosol can be determined using emissions analysis. Mass balance analysis and emissions analysis are techniques which are known to the person skilled in the art.
To obtain the data provided in tables 1 and 2 above, mass balance analysis was performed to determine the amount of a given substance (in the examples in tables 1 and 2 herein, nicotine and glycerol respectively), present in a given section of the article after use. Mass balance analysis was also used to determine the amount of nicotine and glycerol present in a given section of the article prior to use, so that both the distribution of the substance in the article and the amount present in the aerosol generated from an article could be compared to the total amount of the substance initially provided.
As would be evident to the skilled person, where ‘the article’ is referred to in relation to this data and the experimental methods by which the data was obtained, ‘the article’ does not refer to a single specific article, but rather an article having a specific design or configuration, which is therefore comparable to other articles having the same specific design or configuration. A number of such articles will have been analysed to obtain the values presented herein, which represent mean values, as described in further detail below. As would be clear to the skilled person, the same individual article is not tested both before and after use, to obtain the pre and post use data points. Instead, the pre use data will be obtained from a number of articles having a specific design or configuration, and the post use data will be obtained from a separate number of articles having the same specific design or configuration.
To obtain the samples for mass balance analysis, the article is deconstructed into sections. The number of articles deconstructed to obtain samples is such that the total mass of the samples to be analysed is at least 1 gram. Each sample comprises a number of the relevant components of the deconstructed article (e.g. the aerosol generating material section 2, or the cylindrical body 21 and second tubular body 22), the number being sufficient that the total mass of the components taken from a number of articles have a combined mass of at least 1 gram. At least three repetitions of mass balance analysis, each repetition performed on a new sample obtained from a new set of articles, should be carried out. The average amount of a substance in mg/unit is then obtained from an average of the at least three repetitions (three repetitions x typically 5 to 8 articles sampled per repetition=15 to 24 articles sampled for each average value obtained).
As described above, mass balance analysis employing the sampling protocol described in the preceding paragraph was performed to determine the pre-use nicotine and glycerol content of the article.
Emissions analysis can be performed using a standard puffing regime, and a heating device intended for use with the article, to determine the nicotine and glycerol content of the generated aerosol. The puffing regime is according to the ISO intense regime (where this includes a 55 ml puff volume, a 30 s interval between puffs, and a 2 s puff duration), but with any ventilation in the open configuration. Where the device has any ‘boost’ or additional smoking functions, these should not be used for performing the test.
Following use under the standard puffing regime as described above, samples were then taken from the articles according to the sampling protocol described above, for mass balance analysis to determine the post use distribution of nicotine and glycerol in the article.
A comparison between the nicotine and glycerol content of the aerosol in the control article and sample A reveals that 78% more nicotine and 85% more glycerol was present in the aerosol produced from sample A. A significantly increased amount of desirable components of the aerosol is therefore available for delivery to a user in articles prepared according to the present disclosure.
The data presented in tables 1 and 2 above shows less nicotine and glycerol was present in both the mouth end section and the cooling sections after use in sample A, compared to the control articles. As described above, it is hypothesised that this is due to a reduction in condensation of the aerosol on internal surfaces of the tubular bodies and in the material of the cylindrical body.
A method of manufacturing an article for use with a non-combustible aerosol provision device 100 comprising a heater 101 will now be described with reference to
Additionally, in the example of
In the example of
The article 1″ may comprise a rod of aerosol generating material 2 having a length of approximately 26 mm. However, the rod of aerosol generating material 2 may be any suitable length as will be understood by the skilled person.
A distance d′ between the downstream end of the article and the ventilation area 12 in
Without wishing to be bound by theory, it is also believed that the aerosol temperature is reduced the closer the ventilation position is provided to the mouth end of the article. Accordingly, improved cooling of aerosol can be achieved by locating the ventilation position closer to the mouth end.
The ventilation area may be provided in the wrapper 6 surrounding the hollow tubular member 5, in the same way for article 1 of
It has been surprisingly found that by locating the ventilation area 12 closer to the mouth end of the article, the reduction in certain toxicants from the generated aerosol passing through the article and exiting the mouth end is greater than the reduction in those toxicants when a ventilation area is provided closer to the aerosol generating material.
In the example of
Similarly, the reduction in NNN was found to be 80.6% compared to 55.5% for a corresponding article provided with a ventilation area at 22.5 mm from the mouth end of the article. Accordingly, it can be seen that the reduction in NNN is around 25% lower for the article provided with ventilation at 22.5 mm from the mouth end of the article compared to the article 1″ provided with ventilation at 18.5 mm from the mouth end of the article.
However, it has also been found that providing ventilation closer to the mouth end results in higher nicotine delivery compared to articles having ventilation provided closer to the aerosol generating material.
In particular nicotine delivery of an article as illustrated in
Without wishing to be bound by theory, it is also believed that providing ventilation closer to the mouth end also results in higher delivery of aerosol forming agent (e.g. glycerol) to the user, compared to articles having ventilation provided closer to the aerosol generating material.
Therefore, it can be seen that an article 1″ as illustrated in
A method of manufacturing an article 1″ for use with a non-combustible aerosol provision device 100 comprising a heater 101 will now be described with reference to
The method may also be performed in conjunction with the method described in relation to
The device 100 comprises a housing 102 (in the form of an outer cover) which surrounds and houses various components of the device 100. The device 100 has an opening 104 in one end, through which the article 110 may be inserted for heating by a heater 101, hereinafter referred to as the heating assembly. In use, the article 110 may be fully or partially inserted into the heating assembly where it may be heated by one or more components of the heater assembly.
The device 100 of this example comprises a first end member 106 which comprises a lid 108 which is moveable relative to the first end member 106 to close the opening 104 when no article 110 is in place. In
The device 100 may also include a user-operable control element 112, such as a button or switch, which operates the device 100 when pressed. For example, a user may turn on the device 100 by operating the switch 112.
The device 100 may also comprise an electrical component, such as a socket/port 114, which can receive a cable to charge a battery of the device 100. For example, the socket 114 may be a charging port, such as a USB charging port.
As shown in
The end of the device closest to the opening 104 may be known as the proximal end (or mouth end) of the device 100 because, in use, it is closest to the mouth of the user. In use, a user inserts an article 110 into the opening 104, operates the user control 112 to begin heating the aerosol generating material and draws on the aerosol generated in the device. This causes the aerosol to flow through the device 100 along a flow path towards the proximal end of the device 100.
The other end of the device furthest away from the opening 104 may be known as the distal end of the device 100 because, in use, it is the end furthest away from the mouth of the user. As a user draws on the aerosol generated in the device, the aerosol flows away from the distal end of the device 100.
The device 100 further comprises a power source 118. The power source 118 may be, for example, a battery, such as a rechargeable battery or a non-rechargeable battery. Examples of suitable batteries include, for example, a lithium battery (such as a lithium-ion battery), a nickel battery (such as a nickel-cadmium battery), and an alkaline battery. The battery is electrically coupled to the heating assembly to supply electrical power when required and under control of a controller (not shown) to heat the aerosol generating material. In this example, the battery is connected to a central support 120 which holds the battery 118 in place.
The device further comprises at least one electronics module 122. The electronics module 122 may comprise, for example, a printed circuit board (PCB). The PCB 122 may support at least one controller, such as a processor, and memory. The PCB 122 may also comprise one or more electrical tracks to electrically connect together various electronic components of the device 100. For example, the battery terminals may be electrically connected to the PCB 122 so that power can be distributed throughout the device 100. The socket 114 may also be electrically coupled to the battery via the electrical tracks.
In the example device 100, the heating assembly is an inductive heating assembly and comprises various components to heat the aerosol generating material of the article 110 via an inductive heating process. Induction heating is a process of heating an electrically conducting object (such as a susceptor) by electromagnetic induction. An induction heating assembly may comprise an inductive element, for example, one or more inductor coils, and a device for passing a varying electric current, such as an alternating electric current, through the inductive element. The varying electric current in the inductive element produces a varying magnetic field. The varying magnetic field penetrates a susceptor suitably positioned with respect to the inductive element, and generates eddy currents inside the susceptor. The susceptor has electrical resistance to the eddy currents, and hence the flow of the eddy currents against this resistance causes the susceptor to be heated by Joule heating. In cases where the susceptor comprises ferromagnetic material such as iron, nickel or cobalt, heat may also be generated by magnetic hysteresis losses in the susceptor, i.e. by the varying orientation of magnetic dipoles in the magnetic material as a result of their alignment with the varying magnetic field. In inductive heating, as compared to heating by conduction for example, heat is generated inside the susceptor, allowing for rapid heating. Further, there need not be any physical contact between the inductive heater and the susceptor, allowing for enhanced freedom in construction and application.
The induction heating assembly of the example device 100 comprises a susceptor arrangement 132 (herein referred to as “a susceptor”), a first inductor coil 124 and a second inductor coil 126. The first and second inductor coils 124, 126 are made from an electrically conducting material. In this example, the first and second inductor coils 124, 126 are made from Litz wire/cable which is wound in a helical fashion to provide helical inductor coils 124, 126. Litz wire comprises a plurality of individual wires which are individually insulated and are twisted together to form a single wire. Litz wires are designed to reduce the skin effect losses in a conductor. In the example device 100, the first and second inductor coils 124, 126 are made from copper Litz wire which has a rectangular cross section. In other examples the Litz wire can have other shape cross sections, such as circular.
The first inductor coil 124 is configured to generate a first varying magnetic field for heating a first section of the susceptor 132 and the second inductor coil 126 is configured to generate a second varying magnetic field for heating a second section of the susceptor 132. In this example, the first inductor coil 124 is adjacent to the second inductor coil 126 in a direction along the longitudinal axis 134 of the device 100 (that is, the first and second inductor coils 124, 126 to not overlap). The susceptor arrangement 132 may comprise a single susceptor, or two or more separate susceptors. Ends 130 of the first and second inductor coils 124, 126 can be connected to the PCB 122.
It will be appreciated that the first and second inductor coils 124, 126, in some examples, may have at least one characteristic different from each other. For example, the first inductor coil 124 may have at least one characteristic different from the second inductor coil 126. More specifically, in one example, the first inductor coil 124 may have a different value of inductance than the second inductor coil 126. In
In this example, the first inductor coil 124 and the second inductor coil 126 are wound in opposite directions. This can be useful when the inductor coils are active at different times. For example, initially, the first inductor coil 124 may be operating to heat a first section/portion of the article 110, and at a later time, the second inductor coil 126 may be operating to heat a second section/portion of the article 110. Winding the coils in opposite directions helps reduce the current induced in the inactive coil when used in conjunction with a particular type of control circuit. In
The susceptor 132 of this example is hollow and therefore defines a receptacle within which aerosol generating material is received. For example, the article 110 can be inserted into the susceptor 132. In this example the susceptor 120 is tubular, with a circular cross section.
The susceptor 132 may be made from one or more materials. Preferably the susceptor 132 comprises carbon steel having a coating of Nickel or Cobalt.
In some examples, the susceptor 132 may comprise at least two materials capable of being heated at two different frequencies for selective aerosolization of the at least two materials. For example, a first section of the susceptor 132 (which is heated by the first inductor coil 124) may comprise a first material, and a second section of the susceptor 132 which is heated by the second inductor coil 126 may comprise a second, different material. In another example, the first section may comprise first and second materials, where the first and second materials can be heated differently based upon operation of the first inductor coil 124. The first and second materials may be adjacent along an axis defined by the susceptor 132, or may form different layers within the susceptor 132. Similarly, the second section may comprise third and fourth materials, where the third and fourth materials can be heated differently based upon operation of the second inductor coil 126. The third and fourth materials may be adjacent along an axis defined by the susceptor 132, or may form different layers within the susceptor 132. Third material may the same as the first material, and the fourth material may be the same as the second material, for example. Alternatively, each of the materials may be different. The susceptor may comprise carbon steel or aluminium for example.
The device 100 of
The insulating member 128 can also fully or partially support the first and second inductor coils 124, 126. For example, as shown in
In a specific example, the susceptor 132, the insulating member 128, and the first and second inductor coils 124, 126 are coaxial around a central longitudinal axis of the susceptor 132.
The device 100 further comprises a support 136 which engages one end of the susceptor 132 to hold the susceptor 132 in place. The support 136 is connected to the second end member 116.
The device may also comprise a second printed circuit board 138 associated within the control element 112.
The device 100 further comprises a second lid/cap 140 and a spring 142, arranged towards the distal end of the device 100. The spring 142 allows the second lid 140 to be opened, to provide access to the susceptor 132. A user may open the second lid 140 to clean the susceptor 132 and/or the support 136.
The device 100 further comprises an expansion chamber 144 which extends away from a proximal end of the susceptor 132 towards the opening 104 of the device. Located at least partially within the expansion chamber 144 is a retention clip 146 to abut and hold the article 110 when received within the device 100. The expansion chamber 144 is connected to the end member 106.
In one example, the susceptor 132 has a wall thickness 154 of about 0.025 mm to 1 mm, or about 0.05 mm.
In one example, the susceptor 132 has a length of about 40 mm to 60 mm, about 40 mm to 45 mm, or about 44.5 mm.
In one example, the insulating member 128 has a wall thickness 156 of about 0.25 mm to 2 mm, 0.25 mm to 1 mm, or about 0.5 mm.
In use, the article 1, 1′, 1″ described herein can be inserted into a non-combustible aerosol provision device such as the device 100 described with reference to
The various embodiments described herein are presented only to assist in understanding and teaching the claimed features. These embodiments are provided as a representative sample of embodiments only, and are not exhaustive and/or exclusive. It is to be understood that advantages, embodiments, examples, functions, features, structures, and/or other aspects described herein are not to be considered limitations on the scope of the invention as defined by the claims or limitations on equivalents to the claims, and that other embodiments may be utilised and modifications may be made without departing from the scope of the claimed invention. Various embodiments of the invention may suitably comprise, consist of, or consist essentially of, appropriate combinations of the disclosed elements, components, features, parts, steps, means, etc, other than those specifically described herein. In addition, this disclosure may include other inventions not presently claimed, but which may be claimed in future.
Number | Date | Country | Kind |
---|---|---|---|
2019584.8 | Dec 2020 | GB | national |
2105211.3 | Apr 2021 | GB | national |
2020307.1 | Dec 2021 | GB | national |
The present application is a National Phase entry of PCT Application No. PCT/GB2021/053236, filed Dec. 10, 2021, which claims priority from GB Application No. 2019584.8, filed Dec. 11, 2020; GB Application No. 2020307.1, filed Dec. 21, 2020; and GB Application No. 2105211.3, filed Apr. 12, 2021 each of which is hereby fully incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2021/053236 | 12/10/2021 | WO |