Article for use with apparatus for heating smokable material

Information

  • Patent Grant
  • 11825870
  • Patent Number
    11,825,870
  • Date Filed
    Friday, February 26, 2021
    3 years ago
  • Date Issued
    Tuesday, November 28, 2023
    6 months ago
Abstract
Disclosed is an article for use with apparatus for heating smokable material to volatilize at least one component of the smokable material. The article comprises smokable material, such as tobacco, and a heater for heating the smokable material. The heater comprises heating material that is heatable by penetration with a varying magnetic field. The heating material has a Curie point temperature that is less than the combustion temperature of the smokable material.
Description
TECHNICAL FIELD

The present disclosure relates to apparatus for heating smokable material to volatilize at least one component of the smokable material, to articles for use with such apparatus, to systems comprising such apparatus and such articles, and to methods of manufacturing products comprising heaters for use in heating smokable material to volatilize at least one component of the smokable material.


BACKGROUND

Smoking articles such as cigarettes, cigars and the like burn tobacco during use to create tobacco smoke. Attempts have been made to provide alternatives to these articles by creating products that release compounds without combusting. Examples of such products are so-called “heat not burn” products or tobacco heating devices or products, which release compounds by heating, but not burning, material. The material may be, for example, tobacco or other non-tobacco products, which may or may not contain nicotine.


SUMMARY

A first aspect of the present disclosure provides a method of manufacturing a product comprising a heater for use in heating smokable material to volatilize at least one component of the smokable material, the method comprising: determining a maximum temperature to which a heater is to be heated in use; and providing a heater comprising heating material, wherein the heating material is heatable by penetration with a varying magnetic field, and wherein the heating material has a Curie point temperature selected on the basis of the determined maximum temperature.


In an exemplary embodiment, the Curie point temperature is equal to or less than the maximum temperature.


In an exemplary embodiment, the maximum temperature is less than the combustion temperature of the smokable material to be heated by the heater in use.


In an exemplary embodiment, the combustion temperature of the smokable material is the autoignition temperature or kindling point of the smokable material.


In an exemplary embodiment, the Curie point temperature is no more than 350 degrees Celsius.


In respective exemplary embodiments, the Curie point temperature may be less than 350 degrees Celsius, less than 325 degrees Celsius, less than 300 degrees Celsius, less than 280 degrees Celsius, less than 260 degrees Celsius, less than 240 degrees Celsius, or less than 220 degrees Celsius.


In an exemplary embodiment, the method comprises forming an article comprising the heater and smokable material to be heated by the heater in use.


In an exemplary embodiment, the smokable material comprises tobacco and/or one or more humectants.


In an exemplary embodiment, the method comprises providing that the heater is in contact with the smokable material.


In an exemplary embodiment, the method comprises forming apparatus for heating smokable material to volatilize at least one component of the smokable material, the apparatus comprising a heating zone for receiving an article comprising smokable material, the heater for heating the heating zone, and a magnetic field generator for generating a varying magnetic field that penetrates the heating material; and a maximum temperature to which the heater is heatable by penetration with the varying magnetic field in use is exclusively determined by the Curie point temperature of the heating material.


In an exemplary embodiment, the heating material comprises one or more materials selected from the group consisting of: iron; an alloy comprising iron; an alloy comprising iron and nickel; an alloy comprising iron and nickel and chromium; an alloy comprising iron and nickel and chromium and manganese; an alloy comprising iron and nickel and chromium and manganese and silicon; and stainless steel.


In an exemplary embodiment, the heater consists entirely, or substantially entirely, of the heating material.


A second aspect of the present disclosure provides an article for use with apparatus for heating smokable material to volatilize at least one component of the smokable material, the article comprising: smokable material; and a heater for heating the smokable material, wherein the heater comprises heating material that is heatable by penetration with a varying magnetic field, and wherein the heating material has a Curie point temperature that is less than the combustion temperature of the smokable material.


In an exemplary embodiment, the combustion temperature of the smokable material is the autoignition temperature or kindling point of the smokable material.


In an exemplary embodiment, the heating material is in contact with the smokable material.


In an exemplary embodiment, the Curie point temperature is no more than 350 degrees Celsius.


In respective exemplary embodiments, the Curie point temperature may be less than 350 degrees Celsius, less than 325 degrees Celsius, less than 300 degrees Celsius, less than 280 degrees Celsius, less than 260 degrees Celsius, less than 240 degrees Celsius, or less than 220 degrees Celsius.


In an exemplary embodiment, the heating material comprises one or more materials selected from the group consisting of: iron; an alloy comprising iron; an alloy comprising iron and nickel; an alloy comprising iron and nickel and chromium; an alloy comprising iron and nickel and chromium and manganese; an alloy comprising iron and nickel and chromium and manganese and silicon; and stainless steel.


In an exemplary embodiment, the smokable material comprises tobacco and/or one or more humectants.


In an exemplary embodiment, the heater consists entirely, or substantially entirely, of the heating material.


A third aspect of the present disclosure provides apparatus for heating smokable material to volatilize at least one component of the smokable material, the apparatus comprising: a heating zone for receiving an article comprising smokable material; a heater for heating the heating zone, wherein the heater comprises heating material that is heatable by penetration with a varying magnetic field; and a magnetic field generator for generating a varying magnetic field that penetrates the heating material; wherein a maximum temperature to which the heater is heatable by penetration with the varying magnetic field in use is exclusively determined by a Curie point temperature of the heating material.


In an exemplary embodiment, the Curie point temperature is no more than 350 degrees Celsius.


In respective exemplary embodiments, the Curie point temperature may be less than 350 degrees Celsius, less than 325 degrees Celsius, less than 300 degrees Celsius, less than 280 degrees Celsius, less than 260 degrees Celsius, less than 240 degrees Celsius, or less than 220 degrees Celsius.


In an exemplary embodiment, the heating material comprises one or more materials selected from the group consisting of: iron; an alloy comprising iron; an alloy comprising iron and nickel; an alloy comprising iron and nickel and chromium; an alloy comprising iron and nickel and chromium and manganese; an alloy comprising iron and nickel and chromium and manganese and silicon; and stainless steel.


In an exemplary embodiment, the heater consists entirely, or substantially entirely, of the heating material.


A fourth aspect of the present disclosure provides a system, comprising: apparatus for heating the smokable material to volatilize at least one component of the smokable material; and an article for use with the apparatus, wherein the article comprises smokable material and a heater for heating the smokable material, wherein the heater is formed of heating material that is heatable by penetration with a varying magnetic field, and wherein the heating material has a Curie point temperature that is less than the combustion temperature of the smokable material; wherein the apparatus comprises a heating zone for receiving the article, and a magnetic field generator for generating a varying magnetic field that penetrates the heating material when the article is in the heating zone.


In respective exemplary embodiments, the article of the system may have any one or more of the features discussed above as being present in respective exemplary embodiments of the article of the second aspect of the present disclosure.


A fifth aspect of the present disclosure provides a system, comprising: apparatus for heating the smokable material to volatilize at least one component of the smokable material; and an article for use with the apparatus, wherein the article comprises smokable material; wherein the apparatus comprises: a heating zone for receiving the article, a heater for heating the smokable material when the article is in the heating zone, wherein the heater is formed of heating material that is heatable by penetration with a varying magnetic field, and a magnetic field generator for generating a varying magnetic field that penetrates the heating material; wherein a maximum temperature to which the heater is heatable by penetration with the varying magnetic field in use is exclusively determined by a Curie point temperature of the heating material.


In an exemplary embodiment, the article of the system is the article of the second aspect of the present disclosure. The article of the system may have any one or more of the features discussed above as being present in respective exemplary embodiments of the article of the second aspect of the present disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the disclosure will now be described, by way of example only, with reference to the accompanying drawings, in which:



FIG. 1 shows a schematic perspective view of an example of an article for use with apparatus for heating smokable material to volatilize at least one component of the smokable material.



FIG. 2 shows a schematic cross-sectional view of the article of FIG. 1.



FIG. 3 shows a schematic cross-sectional view of an example of apparatus for heating smokable material to volatilize at least one component of the smokable material.



FIG. 4 is a flow diagram showing an example of a method of manufacturing an article for use with apparatus for heating smokable material to volatilize at least one component of the smokable material.



FIG. 5 is a flow diagram showing an example of a method of manufacturing apparatus for heating smokable material to volatilize at least one component of the smokable material.





DETAILED DESCRIPTION

As used herein, the term “smokable material” includes materials that provide volatilized components upon heating, typically in the form of vapor or an aerosol. “Smokable material” may be a non-tobacco-containing material or a tobacco-containing material. “Smokable material” may, for example, include one or more of tobacco per se, tobacco derivatives, expanded tobacco, reconstituted tobacco, tobacco extract, homogenized tobacco or tobacco substitutes. The smokable material can be in the form of ground tobacco, cut rag tobacco, extruded tobacco, reconstituted tobacco, reconstituted smokable material, liquid, gel, gelled sheet, powder, or agglomerates, or the like. “Smokable material” also may include other, non-tobacco, products, which, depending on the product, may or may not contain nicotine. “Smokable material” may comprise one or more humectants, such as glycerol or propylene glycol.


As used herein, the term “heating material” or “heater material” refers to material that is heatable by penetration with a varying magnetic field.


Induction heating is a process in which an electrically-conductive object is heated by penetrating the object with a varying magnetic field. The process is described by Faraday's law of induction and Ohm's law. An induction heater may comprise an electromagnet and a device for passing a varying electrical current, such as an alternating current, through the electromagnet. When the electromagnet and the object to be heated are suitably relatively positioned so that the resultant varying magnetic field produced by the electromagnet penetrates the object, one or more eddy currents are generated inside the object. The object has a resistance to the flow of electrical currents. Therefore, when such eddy currents are generated in the object, their flow against the electrical resistance of the object causes the object to be heated. This process is called Joule, ohmic, or resistive heating. An object that is capable of being inductively heated is known as a susceptor.


It has been found that, when the susceptor is in the form of a closed circuit, magnetic coupling between the susceptor and the electromagnet in use is enhanced, which results in greater or improved Joule heating.


Magnetic hysteresis heating is a process in which an object made of a magnetic material is heated by penetrating the object with a varying magnetic field. A magnetic material can be considered to comprise many atomic-scale magnets, or magnetic dipoles.


When a magnetic field penetrates such material, the magnetic dipoles align with the magnetic field. Therefore, when a varying magnetic field, such as an alternating magnetic field, for example as produced by an electromagnet, penetrates the magnetic material, the orientation of the magnetic dipoles changes with the varying applied magnetic field. Such magnetic dipole reorientation causes heat to be generated in the magnetic material.


When an object is both electrically-conductive and magnetic, penetrating the object with a varying magnetic field can cause both Joule heating and magnetic hysteresis heating in the object. Moreover, the use of magnetic material can strengthen the magnetic field, which can intensify the Joule heating.


In each of the above processes, as heat is generated inside the object itself, rather than by an external heat source by heat conduction, a rapid temperature rise in the object and more uniform heat distribution can be achieved, particularly through selection of suitable object material and geometry, and suitable varying magnetic field magnitude and orientation relative to the object. Moreover, as induction heating and magnetic hysteresis heating do not require a physical connection to be provided between the source of the varying magnetic field and the object, design freedom and control over the heating profile may be greater, and cost may be lower.


The Curie point temperature, or Curie Temperature, is the temperature at which certain magnetic materials undergo a sharp change in their magnetic properties. It is understood that the Curie point temperature is the temperature below which there is spontaneous magnetization in the absence of an externally applied magnetic field, and above which the material is paramagnetic. For example, the Curie point temperature is the magnetic transformation temperature of a ferromagnetic material between its ferromagnetic and paramagnetic phase. When such a magnetic material reaches its Curie point temperature, its magnetic permeability reduces or ceases, and the ability of the material to be heated by penetration with a varying magnetic field also reduces or ceases. That is, it may not be possible to heat the material above its Curie point temperature by magnetic hysteresis heating. If the magnetic material is electrically-conductive, then the material may still be heatable, to a lesser extent, by penetration with a varying magnetic field above the Curie point temperature by Joule heating. However, if the magnetic material is non-electrically-conductive, then heating of the material above its Curie point temperature by penetration with a varying magnetic field may be hindered or even impossible.


Referring to FIGS. 1 and 2 there are shown a schematic perspective view and a schematic cross-sectional view of an example of an article according to an embodiment of the disclosure. Broadly speaking, the article 1 comprises smokable material 10, a heater 20 for heating the smokable material 10, and a cover 30 that encircles the smokable material 10 and the heater 20. The heater 20 comprises heating material that is heatable by penetration with a varying magnetic field. Example such heating materials are discussed elsewhere herein. The article 1 is for use with apparatus for heating the smokable material 10 to volatilize at least one component of the smokable material 10 without burning the smokable material 10.


In this embodiment, the article 1 is elongate and cylindrical with a substantially circular cross section in a plane normal to a longitudinal axis of the article 1. However, in other embodiments, the article 1 may have a cross section other than circular and/or not be elongate and/or not be cylindrical. The article 1 may have proportions approximating those of a cigarette.


In this embodiment, the heater 20 is elongate and extends along a longitudinal axis that is substantially aligned with a longitudinal axis of the article 1. This can help to provide more uniform heating of the smokable material 10 in use, and can also aid manufacturing of the article 1. In this embodiment, the aligned axes are coincident. In a variation to this embodiment, the aligned axes may be parallel to each other. However, in other embodiments, the axes may be oblique to each other.


In this embodiment, the heater 20 extends to opposite longitudinal ends of the mass of smokable material 10. This can help to provide more uniform heating of the smokable material 10 in use, and can also aid manufacturing of the article 1. However, in other embodiments, the heater 20 may not extend to either of the opposite longitudinal ends of the mass of smokable material 10, or may extend to only one of the longitudinal ends of the mass of smokable material 10 and be spaced from the other of the longitudinal ends of the mass of smokable material 10.


In this embodiment, the heater 20 is within the smokable material 10. In other embodiments, the smokable material 10 may be on only one side of the heater 20, for example.


In this embodiment, the heating material of the heater 20 is in contact with the smokable material 10. Thus, when the heating material is heated by penetration with a varying magnetic field, heat may be transferred directly from the heating material to the smokable material 10. In other embodiments, the heating material may be kept out of contact with the smokable material 10. For example, in some embodiments, the article 1 may comprise a thermally-conductive barrier that is free of heating material and that spaces the heater 20 from the smokable material 10. In some embodiments, the thermally-conductive barrier may be a coating on the heater 20. The provision of such a barrier may be advantageous to help to dissipate heat to alleviate hot spots in the heating material.


The heater 20 of this embodiment has two opposing major surfaces joined by two minor surfaces. Therefore, the depth or thickness of the heater 20 is relatively small as compared to the other dimensions of the heater 20. The heating material may have a skin depth, which is an exterior zone within which most of an induced electrical current and/or induced reorientation of magnetic dipoles occurs. By providing that the heating material has a relatively small thickness, a greater proportion of the heating material may be heatable by a given varying magnetic field, as compared to heating material having a depth or thickness that is relatively large as compared to the other dimensions of the heating material. Thus, a more efficient use of material is achieved and, in turn, costs are reduced. However, in other embodiments, the heater 20 may have a cross-section that is a shape other than rectangular, such as circular, elliptical, annular, polygonal, square, triangular, star-shaped, radially-finned, or the like.


The cover 30 of the article 1 helps to maintain the relative positions of the smokable material 10 and the heater 20. The cover 30 may be made of any suitable material, such as paper, card, a plastics material, or the like. Overlapping portions of the cover 30 may be adhered to each other to help maintain the shape of the cover 30 and the article 1 as a whole. In some embodiments, the cover 30 may take a different form or be omitted.


The Curie point temperature of a material is determined or controlled by the chemical composition of the material. Modern technology allows adjustment of the composition of a material to provide the material with a preset Curie point temperature. Some example heating materials that could be used in embodiments of the present disclosure, along with their approximate Curie point temperatures, are as shown in Table 1, below.












TABLE 1








Curie point temperature



Material
(degrees Celsius)



















30% Ni 70% Fe
100



36% Ni 64% Fe
279



42% Ni 58% Fe
325



46% Ni 54% Fe
460



52% Ni 48% Fe
565



80% Ni 20% Fe
460



Cobalt
1120



Iron
770



Low carbon steel
760



Iron (III) oxide
675



Iron (II, III) oxide
585



NiOFe2O3
585



CuOFe2O3
455



Strontium ferrite
450



MgOFe2O3
440



Kovar *
435



MnBi
357



Nickel
353



MnSb
314



MnOFe2O3
300



Y3Fe5O12
287



CrO2
113



MnAs
45







* A typical composition of Kovar is as follows, given in percentages of weight: Ni 29%, Co 17%, Si 0.2%, Mn 0.3%, C < 0.01%, Fe balance.






The % values given for the above various alloys of Ni and Fe may be % wt values.


Low Curie temperature material for induction heating self-temperature controlling system”; T. Todaka et al.; Journal of Magnetism and Magnetic Materials 320 (2008) e702-e707, presents low Curie temperature magnetic materials for induction heating. The materials are alloys based on SUS430 (a grade of stainless steel), could be used in embodiments of the present disclosure, and are shown in Table 2, below, along with their approximate Curie point temperatures.












TABLE 2







Material Composition
Curie point temperature



(wt %)
(degrees Celsius)









SUS430-Al11.7Dy0.5
301



SUS430-Al11.7Gd0.3
300



SUS430-Al11.7Sm0.3
300



SUS430-Al12.8Gd0.3
194



SUS430-Al12.8Sm0.1
195



SUS430-Al12.8Y0.3
198



SUS430-Al13.5Gd0.3
106



SUS430-Al13.5Sm0.1
116



SUS430-Al13.5Y0.3
109










Low Curie temperature in Fe—Cr—Ni—Mn alloys”; Alexandru Iorga et al.; U.P.B. Sci. Bull., Series B, Vol. 73, Iss. 4 (2011) 195-202, provides a discussion of several Fe—Ni—Cr alloys. Some of the materials disclosed in this document could be used in embodiments of the present disclosure, and are shown in Table 3, below, along with their approximate Curie point temperatures.












TABLE 3







Material Composition
Curie point temperature



(wt %)
(degrees Celsius)



















Cr4—Ni32—Fe62—Mn1.5—Si0.5
55



Cr4—Ni33—Fe62.5—Si0.5
122



Cr10—Ni33—Fe53.5—Mn3—Si0.5
11



Cr11—Ni35—Fe53.5—Si0.5
66










A further material that could be used in some embodiments of the present disclosure is NeoMax MS-135, which is from NeoMax Materials Co., Ltd. This material is described at www.neomax-materials.co.jp.


In this embodiment, the chemical composition of the heating material of the heater 20 has been carefully and intentionally set, selected or provided so that the heating material has a Curie point temperature that is less than the combustion temperature of the smokable material 10. The combustion temperature may be the autoignition temperature or kindling point of the smokable material 10. That is, the lowest temperature at which the smokable material 10 will spontaneously ignite in normal atmosphere without an external source of ignition, such as a flame or spark.


Accordingly, when the temperature of the heater 20 in use reaches the Curie point temperature, the ability to further heat the heater 20 by penetration with a varying magnetic field is reduced or removed. For example, as noted above, when the heating material is electrically-conductive, Joule heating may still be effected by penetrating the heating material with a varying magnetic field. Alternatively, when the heating material is non-electrically-conductive, depending on the chemical composition of the heating material, such further heating by penetration with a varying magnetic field may be impossible.


Thus, in use, this inherent mechanism of the heating material of the heater 20 may be used to limit or prevent further heating of the heater 20, so as to help avoid the temperature of the adjacent smokable material 10 from reaching a magnitude at which the smokable material 10 burns or combusts. Thus, in some embodiments, the chemical composition of the heater 20 may help enable the smokable material 10 to be heated sufficiently to volatilize at least one component of the smokable material 10 without burning the smokable material 10. In some embodiments, this may also help to prevent overheating of the apparatus with which the article 1 is being used, and/or help to prevent part(s), such as the cover 30 or an adhesive, of the article 1 being damaged by excessive heat during use of the article 1.


In some embodiments, if the combustion temperature of the smokable material 10 is greater than X degrees Celsius, then the chemical composition of the heating material may be provided so that the Curie point temperature is no more than X degrees Celsius. For example, if the combustion temperature of the smokable material 10 is greater than 350 degrees Celsius, then the chemical composition of the heating material may be provided so that the Curie point temperature is no more than 350 degrees Celsius. The Curie point temperature may be, for example, less than 350 degrees Celsius, less than 325 degrees Celsius, less than 300 degrees Celsius, less than 280 degrees Celsius, less than 260 degrees Celsius, less than 240 degrees Celsius, or less than 220 degrees Celsius.


In some embodiments, the ability of the heating material to be heated by penetration with a varying magnetic field by magnetic hysteresis heating may return when the temperature of the heating material has dropped below the Curie point temperature.


In some embodiments, the heater 20 may consist entirely, or substantially entirely, of the heating material. The heating material may comprise, for example, one or more materials selected from the group consisting of: iron; an alloy comprising iron; an alloy comprising iron and nickel; an alloy comprising iron and nickel and chromium; an alloy comprising iron and nickel and chromium and manganese; an alloy comprising iron and nickel and chromium and manganese and silicon; and stainless steel.


In some embodiments, the heater of the product, such as the article, may comprise a first portion of heating material that has a first Curie point temperature, and a second portion of heating material that has a second Curie point temperature that is different to the first Curie point temperature. The second Curie point temperature may be higher than the first Curie point temperature. In use, the second portion of heating material may thus be permitted to reach a higher temperature than the first portion of heating material when both are penetrated by a varying magnetic field. This may help progressive heating of the smokable material 10, and thus progressive generation of vapor, to be achieved. Both the first and second Curie point temperatures may be less than the combustion temperature of the smokable material 10.


Referring to FIG. 4, there is shown a flow diagram showing an example of a method of manufacturing a product for use in heating smokable material to volatilize at least one component of the smokable material, according to an embodiment of the disclosure. The article 1 of FIGS. 1 and 2 may be made according to this method.


The method 400 comprises determining 401 a maximum temperature to which a heater is to be heated in use. This determining 401 may comprise, for example, determining the combustion temperature of the smokable material 10 to be heated by the heater 20 in use, and then determining the maximum temperature on the basis of that combustion temperature. For example, in some embodiments, the maximum temperature may be less than the combustion temperature of the smokable material 10, for the reasons discussed above. In other embodiments, the determining 401 may additionally or alternatively comprise determining a maximum temperature to which other part(s), such as a cover or an adhesive, of the article may be subjected in use without incurring damage, and then determining the maximum temperature on the basis of that temperature. For example, in some embodiments, the maximum temperature may be less than the temperature to which the part(s) may be safely subjected in use. In still other embodiments, the determining 401 may additionally or alternatively comprise determining a maximum temperature to which the smokable material 10 is to be heated on the basis of desired sensory properties, and then determining the maximum temperature on the basis of that temperature. For example, at different temperatures different components of the smokable material 10 may be volatilized.


The method 400 further comprises providing 402 a heater 20 comprising heating material, wherein the heating material is heatable by penetration with a varying magnetic field, and wherein the heating material has a Curie point temperature selected or determined on the basis of, or in dependence on, the maximum temperature determined at 401. The providing 402 may comprise, for example, manufacturing the heater 20 from suitable heating material. The method may comprise adjusting the composition of the heating material during manufacture of the heater 20. Alternatively or additionally, the providing 402 may comprise selecting the heater 20 from a plurality of heaters 20, wherein the plurality of heaters 20 are made of heating material having respective different Curie point temperatures. The Curie point temperature of the heating material of the heater 20 provided in 402 may, for example, be equal to the maximum temperature determined in 401, or may be less than the maximum temperature determined in 401. The heater 20 provided in 402 may consists entirely, or substantially entirely, of the heating material. The heating material may comprise or consist of any one or more of the available heating materials discussed above, for example.


The method then comprises forming 403 an article, such as the article 1 of FIGS. 1 and 2, comprising the heater 20 and smokable material 10 to be heated by the heater 20 in use. The forming 403 may comprise providing that the heater 20 is in contact with the smokable material 10, as is the case in the article 1 of FIGS. 1 and 2. However, in other embodiments, the smokable material 10 may be out of contact with the heater 20 and yet still be heatable by the heater 20. The forming 403 of the method 400 may additionally or alternatively comprise encircling or covering the smokable material 10 and the heater 20 with a cover, such as the cover 30 of the article 1 shown in FIGS. 1 and 2.


The above-described article 1 and described variants thereof may be used with apparatus for heating the smokable material 10 to volatilize at least one component of the smokable material 10 without burning the smokable material 10. Any one of the article(s) 1 and such apparatus may be provided together as a system. The system may take the form of a kit, in which the article 1 is separate from the apparatus. Alternatively, the system may take the form of an assembly, in which the article 1 is combined with the apparatus. The apparatus of the system comprises a heating zone for receiving the article 1, and a magnetic field generator for generating a varying magnetic field that penetrates the heating material when the article 1 is in the heating zone.


Referring to FIG. 3 there is shown a schematic cross-sectional view of an example of apparatus for heating smokable material to volatilize at least one component of the smokable material according to an embodiment of the disclosure. Broadly speaking, the apparatus 100 comprises a heating zone 111 for receiving an article comprising smokable material; a heater 115 for heating the heating zone 111, wherein the heater 115 comprises heating material that is heatable by penetration with a varying magnetic field; and a magnetic field generator 112 for generating a varying magnetic field that penetrates the heating material of the heater 115. A maximum temperature to which the heater 115 is heatable by penetration with the varying magnetic field in use is exclusively determined by a Curie point temperature of the heating material of the heater 115. Example such heating materials are discussed elsewhere herein. The apparatus 100 is for use with an article that comprises smokable material. In some embodiments, the apparatus 100 is for heating the smokable material to volatilize at least one component of the smokable material without burning the smokable material. The article may comprise heating material, such as the article 1 of FIGS. 1 and 2, or may be free of heating material.


The apparatus 100 of this embodiment comprises a body 110 and a mouthpiece 120. The mouthpiece 120 may be made of any suitable material, such as a plastics material, cardboard, cellulose acetate, paper, metal, glass, ceramic, or rubber. The mouthpiece 120 defines a channel 122 therethrough. The mouthpiece 120 is locatable relative to the body 110 so as to cover an opening into the heating zone 111. When the mouthpiece 120 is so located relative to the body 110, the channel 122 of the mouthpiece 120 is in fluid communication with the heating zone 111. In use, the channel 122 acts as a passageway for permitting volatilized material to pass from an article inserted in the heating zone 111 to an exterior of the apparatus 100. In this embodiment, the mouthpiece 120 of the apparatus 100 is releasably engageable with the body 110 so as to connect the mouthpiece 120 to the body 110. In other embodiments, the mouthpiece 120 and the body 110 may be permanently connected, such as through a hinge or flexible member. In some embodiments, such as embodiments in which the article itself comprises a mouthpiece, the mouthpiece 120 of the apparatus 100 may be omitted.


The apparatus 100 may define an air inlet that fluidly connects the heating zone 111 with the exterior of the apparatus 100. Such an air inlet may be defined by the body 110 of the apparatus 100 and/or by the mouthpiece 120 of the apparatus 100. A user may be able to inhale the volatilized component(s) of the smokable material by drawing the volatilized component(s) through the channel 122 of the mouthpiece 120. As the volatilized component(s) are removed from the article, air may be drawn into the heating zone 111 via the air inlet of the apparatus 100.


In this embodiment, the body 110 comprises the heating zone 111. In this embodiment, the heating zone 111 comprises a recess 111 for receiving at least a portion of the article. In other embodiments, the heating zone 111 may be other than a recess, such as a shelf, a surface, or a projection, and may require mechanical mating with the article in order to co-operate with, or receive, the article. In this embodiment, the heating zone 111 is elongate, and is sized and shaped to receive the article. In this embodiment, the heating zone 111 accommodates the whole article. In other embodiments, the heating zone 111 may be dimensioned to receive only a portion of the article.


In this embodiment, the magnetic field generator 112 comprises an electrical power source 113, a coil 114, a device 116 for passing a varying electrical current, such as an alternating current, through the coil 114, a controller 117, and a user interface 118 for user-operation of the controller 117.


In this embodiment, the electrical power source 113 is a rechargeable battery. In other embodiments, the electrical power source 113 may be other than a rechargeable battery, such as a non-rechargeable battery, a capacitor, a battery-capacitor hybrid, or a connection to a mains electricity supply.


The coil 114 may take any suitable form. In this embodiment, the coil 114 is a helical coil of electrically-conductive material, such as copper. In some embodiments, the magnetic field generator 112 may comprise a magnetically permeable core around which the coil 114 is wound. Such a magnetically permeable core concentrates the magnetic flux produced by the coil 114 in use and makes a more powerful magnetic field. The magnetically permeable core may be made of iron, for example. In some embodiments, the magnetically permeable core may extend only partially along the length of the coil 114, so as to concentrate the magnetic flux only in certain regions.


In this embodiment, the coil 114 is in a fixed position relative to the heater 115 and the heating zone 111. In this embodiment, the coil 114 encircles the heater 115 and the heating zone 111. In this embodiment, the coil 114 extends along a longitudinal axis that is substantially aligned with a longitudinal axis A-A of the heating zone 111. In this embodiment, the aligned axes are coincident. In a variation to this embodiment, the aligned axes may be parallel to each other. However, in other embodiments, the axes may be oblique to each other. Moreover, in this embodiment, the coil 114 extends along a longitudinal axis that is substantially coincident with a longitudinal axis of the heater 115. This can help to provide more uniform heating of the heater 115 in use, and can also aid manufacturability of the apparatus 100. In other embodiments, the longitudinal axes of the coil 114 and the heater 115 may be aligned with each other by being parallel to each other, or may be oblique to each other.


In this embodiment, the device 116 for passing a varying current through the coil 114 is electrically connected between the electrical power source 113 and the coil 114. In this embodiment, the controller 117 also is electrically connected to the electrical power source 113, and is communicatively connected to the device 116 to control the device 116. More specifically, in this embodiment, the controller 117 is for controlling the device 116, so as to control the supply of electrical power from the electrical power source 113 to the coil 114. In this embodiment, the controller 117 comprises an integrated circuit (IC), such as an IC on a printed circuit board (PCB). In other embodiments, the controller 117 may take a different form. In some embodiments, the apparatus may have a single electrical or electronic component comprising the device 116 and the controller 117. The controller 117 is operated in this embodiment by user-operation of the user interface 118. In this embodiment, the user interface 118 is located at the exterior of the body 110. The user interface 118 may comprise a push-button, a toggle switch, a dial, a touchscreen, or the like. In other embodiments, the user interface 118 may be remote and connected to the rest of the apparatus wirelessly, such as via Bluetooth.


In this embodiment, operation of the user interface 118 by a user causes the controller 117 to cause the device 116 to cause an alternating electrical current to pass through the coil 114, so as to cause the coil 114 to generate an alternating magnetic field. The coil 114 and the heater 115 of the apparatus 100 are suitably relatively positioned so that the alternating magnetic field produced by the coil 114 penetrates the heating material of the heater 115. When the heating material of the heater 115 is an electrically-conductive material, this may cause the generation of one or more eddy currents in the heating material. The flow of eddy currents in the heating material against the electrical resistance of the heating material causes the heating material to be heated by Joule heating. In this embodiment, the heating material is made of a magnetic material, and so the orientation of magnetic dipoles in the heating material changes with the changing applied magnetic field, which causes heat to be generated in the heating material.


A maximum temperature to which the heater 115 of the apparatus 100 is heatable by penetration with the varying magnetic field in use is exclusively determined by a Curie point temperature of the heating material of the heater 115. That is, the apparatus 100 may be free of any other system for limiting the temperature to which the heater 115 is heatable to below the maximum temperature. In this embodiment, the chemical composition of the heating material of the heater 115 of the apparatus 100 has been carefully and intentionally set, selected or provided so that the heating material has a Curie point temperature that is less than the combustion temperature of the smokable material in an article to be used with the apparatus 100. Accordingly, when the temperature of the heater 115 in use reaches the Curie point temperature, the ability to further heat the heater 115 by penetration with a varying magnetic field is reduced or removed, as discussed above.


Thus, in use, this inherent mechanism of the heating material of the heater 115 may be used to limit or prevent further heating of the heater 115, so as to help avoid the temperature of the heating zone 111 and an article located therein from reaching a magnitude at which the smokable material of the article burns or combusts. Thus, in some embodiments, the chemical composition of the heater 115 may help enable the smokable material to be heated sufficiently to volatilize at least one component of the smokable material without burning the smokable material. In some embodiments, this may also help to prevent overheating of the apparatus 100 or damage to components of the apparatus, such as the magnetic field generator 112.


As noted above, in some embodiments, the ability of the heating material to be heated by penetration with a varying magnetic field by magnetic hysteresis heating may return when the temperature of the heating material has dropped below the Curie point temperature.


In some embodiments, if the combustion temperature of the smokable material to be used with the apparatus 100 is greater than X degrees Celsius, then the chemical composition of the heating material may be provided so that the Curie point temperature is no more than X degrees Celsius. For example, if the combustion temperature of the smokable material is greater than 350 degrees Celsius, then the chemical composition of the heating material may be provided so that the Curie point temperature is no more than 350 degrees Celsius. The Curie point temperature may be, for example, less than 350 degrees Celsius, less than 325 degrees Celsius, less than 300 degrees Celsius, less than 280 degrees Celsius, less than 260 degrees Celsius, less than 240 degrees Celsius, or less than 220 degrees Celsius.


In some embodiments, the heater 115 may consist entirely, or substantially entirely, of the heating material. The heating material may comprise, for example, one or more materials selected from the group consisting of: iron; an alloy comprising iron; an alloy comprising iron and nickel; an alloy comprising iron and nickel and chromium; an alloy comprising iron and nickel and chromium and manganese; an alloy comprising iron and nickel and chromium and manganese and silicon; and stainless steel.


The apparatus 100 may comprise more than one coil. The plurality of coils of the apparatus 100 could be operable to provide progressive heating of the smokable material 10 in an article 1, and thereby progressive generation of vapor. For example, one coil may be able to heat a first region of the heating material relatively quickly to initialize volatilization of at least one component of the smokable material 10 and formation of a vapor in a first region of the smokable material 10. Another coil may be able to heat a second region of the heating material relatively slowly to initialize volatilization of at least one component of the smokable material 10 and formation of a vapor in a second region of the smokable material 10. Accordingly, a vapor is able to be formed relatively rapidly for inhalation by a user, and vapor can continue to be formed thereafter for subsequent inhalation by the user even after the first region of the smokable material 10 may have ceased generating vapor. The initially-unheated second region of smokable material 10 could act as a heat sink, to reduce the temperature of created vapor or make the created vapor mild, during heating of the first region of smokable material 10.


In some embodiments, the apparatus 100 may have a sensor for detecting a Curie-related change in magnetism of the heater 20, 115. The sensor may be communicatively-connected to the controller 117. The controller 117 may be configured to control the device 116 to cause the generation of the varying magnetic field to be halted or changed, on the basis of a signal received at the controller 117 from the sensor.


In some embodiments, the apparatus 100 may have an amplifier for amplifying the Curie-related change in magnetism of the heater 20, 115 of the article 1 or apparatus 100. For example, the coil 114 may be configured or arranged so that a change in a property of the coil 114 in response to the Curie-related change in magnetism of the heater 20, 115 is large. The impedance of the coil 114 may be matched with the impedance of the heater 20, 115, to result in a Curie-related event being more reliably detectable.


Referring to FIG. 5, there is shown a flow diagram showing an example of a method of manufacturing a product for use in heating smokable material to volatilize at least one component of the smokable material, according to an embodiment of the disclosure. The apparatus 100 of FIG. 3 may be made according to this method.


The method 500 comprises determining 501 a maximum temperature to which a heater is to be heated in use. The determining 501 may comprise, for example, determining the combustion temperature of smokable material to be heated by the heater 115 in use, and then determining the maximum temperature on the basis of that combustion temperature. For example, in some embodiments, the maximum temperature may be less than the combustion temperature of the smokable material, for the reasons discussed above. In other embodiments, the determining 501 may additionally or alternatively comprise determining a maximum comfortable temperature to which the exterior of the apparatus 100 is to be permitted to reach in use while still being comfortable to hold by a user, and then determining the maximum temperature on the basis of that temperature. In still further embodiments, the determining 501 may additionally or alternatively comprise determining a maximum temperature to which components, such as electrical components, of the apparatus 100 may be subjected in use without incurring damage, and then determining the maximum temperature on the basis of that temperature.


The method further comprises providing 502 a heater 115 comprising heating material, wherein the heating material is heatable by penetration with a varying magnetic field, and wherein the heating material has a Curie point temperature selected or determined on the basis of, or in dependence on, the maximum temperature determined at 501. The providing 502 may comprise, for example, manufacturing the heater 115 from suitable heating material. The method may comprise adjusting the composition of the heating material during manufacture of the heater 115. Alternatively or additionally, the providing 502 may comprise selecting the heater 115 from a plurality of heaters 115, wherein the plurality of heaters 115 are made of heating material having respective different Curie point temperatures.


The Curie point temperature of the heating material of the heater 115 provided in 502 may, for example, be equal to the maximum temperature determined in 501, or may be less than the maximum temperature determined in 501. The heater 115 provided in 502 may consists entirely, or substantially entirely, of the heating material. The heating material may comprise or consist of any one or more of the available heating materials discussed above, for example.


The method then comprises forming 503 apparatus, such as the apparatus 100 of FIG. 3, that comprises a heating zone 111 for receiving an article comprising smokable material, the heater 115 for heating the heating zone 111, and a magnetic field generator 112 for generating a varying magnetic field that penetrates the heating material, wherein a maximum temperature to which the heater 115 is heatable by penetration with the varying magnetic field in use is exclusively determined by the Curie point temperature of the heating material.


In some embodiments, the forming 403 of the method 400 of FIG. 4, and/or the forming 503 of the method 500 of FIG. 5, may be omitted. For example, in some such embodiments, the product made using the method may be a component or system for future incorporation into apparatus for heating smokable material to volatilize at least one component of the smokable material. In some other such embodiments, the product made using the method may be a component or system for future incorporation into an article for use with such apparatus.


Accordingly, in accordance with some embodiments of the present disclosure, a product, such as the article 1 of FIGS. 1 and 2 or the apparatus 100 of FIG. 3, may be provided with an automatic mechanism for limiting the temperature to which a heater 20, 115 of the product is heatable by penetration with a varying magnetic field.


In each of the embodiments discussed above, the heating material may have a skin depth, which is an exterior zone within which most of an induced electrical current and/or induced reorientation of magnetic dipoles occurs. By providing that the component comprising the heating material has a relatively small thickness, a greater proportion of the heating material may be heatable by a given varying magnetic field, as compared to heating material in a component having a depth or thickness that is relatively large as compared to the other dimensions of the component. Thus, a more efficient use of material is achieved. In turn, costs are reduced.


In some embodiments, a component comprising the heating material may comprise discontinuities or holes therein. Such discontinuities or holes may act as thermal breaks to control the degree to which different regions of the smokable material 10 are heated in use. Areas of the heating material with discontinuities or holes therein may be heated to a lesser extent that areas without discontinuities or holes. This may help progressive heating of the smokable material 10, and thus progressive generation of vapor, to be achieved. Such discontinuities or holes may, on the other hand, be used to optimize the creation of complex eddy currents in use.


In each of the above described embodiments, the smokable material 10 comprises tobacco. However, in respective variations to each of these embodiments, the smokable material 10 may consist of tobacco, may consist substantially entirely of tobacco, may comprise tobacco and smokable material other than tobacco, may comprise smokable material other than tobacco, or may be free of tobacco. In some embodiments, the smokable material 10 may comprise a vapor or aerosol forming agent or a humectant, such as glycerol, propylene glycol, triacetin, or diethylene glycol.


In each of the above described embodiments, the article 1 is a consumable article. Once all, or substantially all, of the volatilizable component(s) of the smokable material 10 in the article 1 has/have been spent, the user may remove the article 1 from the apparatus and dispose of the article 1. The user may subsequently re-use the apparatus with another of the articles 1. However, in other respective embodiments, the article 1 may be non-consumable, and the apparatus and the article 1 may be disposed of together once the volatilizable component(s) of the smokable material 10 has/have been spent.


In some embodiments, the apparatus 100 discussed above is sold, supplied or otherwise provided separately from the articles with which the apparatus 100 is usable. However, in some embodiments, the apparatus 100 and one or more of the articles may be provided together as a system. Similarly, in some embodiments, the article 1 discussed above is sold, supplied or otherwise provided separately from the apparatus with which the article 1 is usable. However, in some embodiments, one or more of the articles 1 may be provided together with the apparatus as a system. Such systems may be in the form of a kit or an assembly, possibly with additional components, such as cleaning utensils.


Embodiments of the disclosure could be implemented in a system comprising any one of the articles discussed herein, and any one of the apparatuses discussed herein. Heat generated in the heating material of the apparatus could be transferred to the article to heat, or further heat, the smokable material therein when the portion of the article is in the heating zone.


Some of the products discussed herein may be considered smoking industry products.


In order to address various issues and advance the art, the entirety of this disclosure shows by way of illustration and example various embodiments in which the claimed invention may be practiced and which provide for superior apparatus for heating smokable material to volatilize at least one component of the smokable material, superior articles for use with such apparatus, superior systems comprising such apparatus and such articles, and superior methods of manufacturing products comprising heaters. The advantages and features of the disclosure are of a representative sample of embodiments only, and are not exhaustive and/or exclusive. They are presented only to assist in understanding and teach the claimed and otherwise disclosed features. It is to be understood that advantages, embodiments, examples, functions, features, structures and/or other aspects of the disclosure are not to be considered limitations on the disclosure as defined by the claims or limitations on equivalents to the claims, and that other embodiments may be utilized and modifications may be made without departing from the scope and/or spirit of the disclosure. Various embodiments may suitably comprise, consist of, or consist in essence of, various combinations of the disclosed elements, components, features, parts, steps, means, etc. The disclosure may include other inventions not presently claimed, but which may be claimed in future.

Claims
  • 1. A method of manufacturing a product comprising a heater for use in heating smokable material to volatilize at least one component of the smokable material, the method comprising: determining a maximum temperature to which a heater is to be heated in use; andproviding a heater comprising heating material, wherein the heater is within the smokable material and is elongate with a rectangular cross-section and extends to opposite longitudinal ends of the smokable material, and wherein the heating material is heatable by penetration with a varying magnetic field, and wherein the heating material has a Curie point temperature selected on the basis of the determined maximum temperature.
  • 2. The method of claim 1, wherein the Curie point temperature is equal to or less than the maximum temperature.
  • 3. The method of claim 1, wherein the maximum temperature is less than the combustion temperature of the smokable material to be heated by the heater in use.
  • 4. The method of claim 1, wherein the heating material comprises one or more materials selected from the group consisting of: iron; an alloy comprising iron; an alloy comprising iron and nickel; an alloy comprising iron and nickel and chromium; an alloy comprising iron and nickel and chromium and manganese; an alloy comprising iron and nickel and chromium and manganese and silicon; and stainless steel.
  • 5. The method of claim 1, wherein the heater consists entirely, or substantially entirely, of the heating material.
  • 6. An article for use with apparatus for heating smokable material to volatilize at least one component of the smokable material, the article comprising: smokable material; anda heater for heating the smokable material, wherein the heater is within the smokable material and is elongate with a rectangular cross-section and extends to opposite longitudinal ends of the smokable material, and comprises heating material that is heatable by penetration with a varying magnetic field, and whereinthe heating material has a Curie point temperature that is less than a combustion temperature of the smokable material.
  • 7. The apparatus of claim 6, wherein the Curie point temperature is no more than 350 degrees Celsius.
  • 8. The apparatus of claim 6, wherein the heating material comprises one or more materials selected from the group consisting of: iron; an alloy comprising iron; an alloy comprising iron and nickel; an alloy comprising iron and nickel and chromium; an alloy comprising iron and nickel and chromium and manganese; an alloy comprising iron and nickel and chromium and manganese and silicon; and stainless steel.
  • 9. The apparatus of claim 6, wherein the heater consists entirely, or substantially entirely, of the heating material.
  • 10. An apparatus for heating smokable material to volatilize at least one component of the smokable material, the apparatus comprising: a heating zone for receiving an article comprising smokable material;a heater for heating the heating zone, wherein the heater is within the smokable material and is elongate with a rectangular cross-section and extends to opposite longitudinal ends of the smokable material and comprises heating material that is heatable by penetration with a varying magnetic field, anda magnetic field generator for generating a varying magnetic field that penetrates the heating material;wherein a maximum temperature to which the heater is heatable by penetration with the varying magnetic field in use is exclusively determined by a Curie point temperature of the heating material.
  • 11. The method of claim 1, comprising forming an article comprising the heater and smokable material to be heated by the heater in use.
  • 12. The method of claim 11, wherein the smokable material comprises tobacco and/or one or more humectants.
  • 13. The method of claim 11, comprising providing that the heater is in contact with the smokable material.
  • 14. The method of claim 1, comprising forming an apparatus for heating smokable material to volatilize at least one component of the smokeable material, the apparatus comprising a heating zone for receiving an article comprising smokable material, the heater for heating the heating zone, and a magnetic field generator for generating a varying magnetic field that penetrates the heating material; and wherein a maximum temperature to which the heater is heatable by penetration with the varying magnetic field in use is exclusively determined by the Curie point temperature of the heating material.
  • 15. The article of claim 6, wherein the heating material is in contact with the smokable material.
  • 16. The article of claim 6, wherein the smokable material comprises at least one of tobacco or one or more humectants.
  • 17. The apparatus of claim 10, wherein the Curie point temperature is not more than 350 degrees Celsius.
  • 18. The apparatus of claim 10, wherein the heating material comprises one or more materials selected from the group consisting of: iron; an alloy comprising iron; an alloy comprising iron and nickel; an alloy comprising iron and nickel and chromium; an alloy comprising iron and nickel and chromium and manganese; an alloy comprising iron and nickel and chromium and manganese and silicon; and stainless steel.
  • 19. The apparatus of claim 10, wherein the heater consists entirely, or substantially entirely, of the heating material.
PRIORITY CLAIM

The present application is a Continuation Application of U.S. patent application Ser. No. 15/772,386, filed Apr. 30, 2018, which is a National Phase entry of PCT Application No. PCT/EP2016/075739, filed Oct. 26, 2016, which claims priority from U.S. patent application Ser. No. 14/927,532, filed Oct. 30, 2015, each of which is hereby fully incorporated herein by reference.

US Referenced Citations (372)
Number Name Date Kind
219628 Edison Sep 1879 A
219634 Gifford Sep 1879 A
219635 Giles Sep 1879 A
219643 Mattoni Sep 1879 A
2462563 Seyforth Feb 1949 A
2689150 Croce Sep 1954 A
2888208 Rene May 1959 A
3040991 Rene Jun 1962 A
3043524 Sonia Jul 1962 A
3144174 Henry Aug 1964 A
3258015 Drummond et al. Jun 1966 A
3289949 Willy Dec 1966 A
3347231 Chien-Hshuing Oct 1967 A
3522806 Szekely Aug 1970 A
3647143 Gauthier et al. Mar 1972 A
3658059 Steil Apr 1972 A
3733010 Riccio May 1973 A
3856185 Riccio Dec 1974 A
3864326 Babington Feb 1975 A
3913843 Cambio Oct 1975 A
3943942 Anderson et al. Mar 1976 A
4017701 Mittelmann Apr 1977 A
4149548 Bradshaw Apr 1979 A
4284089 Ray Aug 1981 A
4299274 Campbell Nov 1981 A
4299355 Haekkinen Nov 1981 A
4303541 Wasel-Nielen et al. Dec 1981 A
4393884 Jacobs Jul 1983 A
4429835 Brugger et al. Feb 1984 A
4746067 Svoboda May 1988 A
4765348 Honeycutt Aug 1988 A
4771795 White et al. Sep 1988 A
4776353 Lilja et al. Oct 1988 A
4819665 Roberts et al. Apr 1989 A
4827950 Banerjee et al. May 1989 A
4907606 Lilja et al. Mar 1990 A
4913168 Potter et al. Apr 1990 A
4917119 Potter et al. Apr 1990 A
4917120 Hill Apr 1990 A
4924883 Perfetti et al. May 1990 A
4938236 Banerjee et al. Jul 1990 A
4941483 Ridings et al. Jul 1990 A
4947874 Brooks et al. Aug 1990 A
4955399 Potter et al. Sep 1990 A
4979521 Davis et al. Dec 1990 A
4987291 McGaffigan et al. Jan 1991 A
4991606 Serrano et al. Feb 1991 A
5019122 Clearman et al. May 1991 A
5020509 Suzuki et al. Jun 1991 A
5040552 Schleich et al. Aug 1991 A
5042509 Banerjee et al. Aug 1991 A
5060667 Strubel Oct 1991 A
5060671 Counts et al. Oct 1991 A
5076292 Sensabaugh et al. Dec 1991 A
5080115 Templeton Jan 1992 A
5093894 Deevi et al. Mar 1992 A
5095921 Losee et al. Mar 1992 A
5097850 Braunshteyn et al. Mar 1992 A
5099861 Clearman et al. Mar 1992 A
5105831 Banerjee et al. Apr 1992 A
5119834 Shannon et al. Jun 1992 A
5133368 Neumann et al. Jul 1992 A
5144962 Counts et al. Sep 1992 A
5146934 Deevi et al. Sep 1992 A
5159940 Hayward et al. Nov 1992 A
5167242 Turner et al. Dec 1992 A
5179966 Losee et al. Jan 1993 A
5188130 Hajaligol et al. Feb 1993 A
5224498 Deevi et al. Jul 1993 A
5230715 Iizuna et al. Jul 1993 A
5235992 Sensabaugh Aug 1993 A
5249586 Morgan et al. Oct 1993 A
5261424 Sprinkel Nov 1993 A
5269327 Counts et al. Dec 1993 A
5272216 Clark et al. Dec 1993 A
5285798 Banerjee et al. Feb 1994 A
5293883 Edwards Mar 1994 A
5312046 Knoch et al. May 1994 A
5322075 Deevi et al. Jun 1994 A
5327915 Porenski et al. Jul 1994 A
5345951 Serrano et al. Sep 1994 A
5357984 Farrier et al. Oct 1994 A
5369723 Counts et al. Nov 1994 A
5396911 Casey et al. Mar 1995 A
5400808 Turner et al. Mar 1995 A
5408574 Deevi et al. Apr 1995 A
5412183 Buffenoir et al. May 1995 A
5415186 Casey et al. May 1995 A
5443560 Deevi et al. Aug 1995 A
5454363 Sata Oct 1995 A
5461695 Knoch Oct 1995 A
5474059 Cooper Dec 1995 A
5483953 Cooper Jan 1996 A
5500511 Hansen et al. Mar 1996 A
5501236 Hill et al. Mar 1996 A
5502743 Conochie et al. Mar 1996 A
5511538 Haber et al. Apr 1996 A
5517981 Taub et al. May 1996 A
5534020 Cheney et al. Jul 1996 A
5538020 Farrier et al. Jul 1996 A
5549906 Santus Aug 1996 A
5564442 MacDonald et al. Oct 1996 A
5591368 Fleischhauer et al. Jan 1997 A
5593792 Farrier et al. Jan 1997 A
5613505 Campbell et al. Mar 1997 A
5645749 Wang Jul 1997 A
5649554 Sprinkel et al. Jul 1997 A
5659656 Das Aug 1997 A
5687912 Denyer Nov 1997 A
5699786 Oshima et al. Dec 1997 A
5711292 Hammarlund Jan 1998 A
5726421 Fleischhauer et al. Mar 1998 A
5736110 Angelillo et al. Apr 1998 A
5778899 Saito et al. Jul 1998 A
5837088 Palmgren et al. Nov 1998 A
5845649 Saito et al. Dec 1998 A
5865185 Collins et al. Feb 1999 A
5865186 Volsey Feb 1999 A
5878752 Adams et al. Mar 1999 A
5902501 Nunnally et al. May 1999 A
5921233 Gold et al. Jul 1999 A
5935486 Bell et al. Aug 1999 A
5938125 Ritsche et al. Aug 1999 A
6000394 Blaha-Schnabel et al. Dec 1999 A
6026820 Baggett et al. Feb 2000 A
6041790 Smith et al. Mar 2000 A
6053176 Adams et al. Apr 2000 A
6079405 Justo Jun 2000 A
6085741 Becker Jul 2000 A
6089857 Matsuura et al. Jul 2000 A
6113078 Rock Sep 2000 A
6125853 Susa et al. Oct 2000 A
6129080 Pitcher et al. Oct 2000 A
6158676 Hughes Dec 2000 A
6164287 White Dec 2000 A
6178963 Baik Jan 2001 B1
6209457 Kenworthy et al. Apr 2001 B1
6223745 Hammarlund et al. May 2001 B1
6230703 Bono May 2001 B1
6234459 Rock May 2001 B1
6244573 Rock Jun 2001 B1
6248257 Bell et al. Jun 2001 B1
6267110 Tenenboum et al. Jul 2001 B1
6283116 Yang Sep 2001 B1
6289889 Bell et al. Sep 2001 B1
6297483 Sadahira et al. Oct 2001 B2
6347789 Rock Feb 2002 B1
6427878 Greiner-Perth et al. Aug 2002 B1
6595209 Rose et al. Jul 2003 B1
6598607 Adiga et al. Jul 2003 B2
6648306 Rock Nov 2003 B2
6669176 Rock Dec 2003 B2
6708846 Fuchs et al. Mar 2004 B1
6761164 Amirpour et al. Jul 2004 B2
6769436 Horian Aug 2004 B2
6799572 Nichols et al. Oct 2004 B2
6803545 Blake et al. Oct 2004 B2
6803550 Sharpe et al. Oct 2004 B2
6886556 Fuchs May 2005 B2
6968888 Kolowich Nov 2005 B2
6994096 Rostami et al. Feb 2006 B2
7041123 Stapf et al. May 2006 B2
7077130 Nichols et al. Jul 2006 B2
7081211 Li et al. Jul 2006 B2
7088914 Whittle et al. Aug 2006 B2
7163014 Nichols et al. Jan 2007 B2
7185659 Sharpe Mar 2007 B2
7234459 Del Jun 2007 B2
7235187 Li et al. Jun 2007 B2
7290549 Banerjee et al. Nov 2007 B2
7303328 Faraldi et al. Dec 2007 B2
7335186 Oneil Feb 2008 B2
7373938 Nichols et al. May 2008 B2
7434584 Steinberg Oct 2008 B2
7458374 Hale et al. Dec 2008 B2
7540286 Cross et al. Jun 2009 B2
7581540 Hale et al. Sep 2009 B2
7581718 Chang Sep 2009 B1
7585493 Hale et al. Sep 2009 B2
7645442 Hale et al. Jan 2010 B2
7665461 Zierenberg et al. Feb 2010 B2
7832397 Lipowicz Nov 2010 B2
7834295 Sharma et al. Nov 2010 B2
7987846 Hale et al. Aug 2011 B2
8156944 Han Apr 2012 B2
8342184 Inagaki et al. Jan 2013 B2
8365742 Hon Feb 2013 B2
8375957 Hon Feb 2013 B2
8402976 Fernando et al. Mar 2013 B2
8439046 Peters et al. May 2013 B2
8459271 Inagaki Jun 2013 B2
8689804 Fernando et al. Apr 2014 B2
8689805 Hon Apr 2014 B2
8701682 Sherwood et al. Apr 2014 B2
8707967 Li et al. Apr 2014 B2
9084440 Zuber et al. Jul 2015 B2
9125437 Kaljura Sep 2015 B2
9302522 Sherwood et al. Apr 2016 B2
9439454 Fernando et al. Sep 2016 B2
9668516 Sherwood et al. Jun 2017 B2
9955726 Brinkley et al. May 2018 B2
10130121 Plojoux et al. Nov 2018 B2
10130780 Talon Nov 2018 B2
20010042927 Rock Nov 2001 A1
20010054421 Jaser et al. Dec 2001 A1
20020043260 Layer et al. Apr 2002 A1
20020078951 Nichols et al. Jun 2002 A1
20020078955 Nichols et al. Jun 2002 A1
20020078956 Sharpe et al. Jun 2002 A1
20020089072 Rock Jul 2002 A1
20020121624 Usui Sep 2002 A1
20030007887 Roumpos et al. Jan 2003 A1
20030052196 Fuchs Mar 2003 A1
20030097164 Stapf et al. May 2003 A1
20030101984 Li et al. Jun 2003 A1
20030105192 Li et al. Jun 2003 A1
20030106551 Sprinkel et al. Jun 2003 A1
20030111637 Li et al. Jun 2003 A1
20030159702 Lindell et al. Aug 2003 A1
20030209240 Hale et al. Nov 2003 A1
20030217750 Amirpour et al. Nov 2003 A1
20030226837 Blake et al. Dec 2003 A1
20030230567 Centanni et al. Dec 2003 A1
20040031495 Steinberg Feb 2004 A1
20040065314 Layer et al. Apr 2004 A1
20040068222 Brian Apr 2004 A1
20040083755 Kolowich May 2004 A1
20040149297 Sharpe Aug 2004 A1
20040177849 Del Sep 2004 A1
20040234699 Hale et al. Nov 2004 A1
20040234914 Hale et al. Nov 2004 A1
20040234916 Hale et al. Nov 2004 A1
20040255941 Nichols et al. Dec 2004 A1
20040261782 Furumichi et al. Dec 2004 A1
20050007870 Faraldi et al. Jan 2005 A1
20050016549 Banerjee et al. Jan 2005 A1
20050025213 Parks Feb 2005 A1
20050045193 Yang Mar 2005 A1
20050063686 Whittle et al. Mar 2005 A1
20050079166 Damani et al. Apr 2005 A1
20050098187 Grierson et al. May 2005 A1
20050133029 Nichols et al. Jun 2005 A1
20050196345 Diederichs et al. Sep 2005 A1
20050236006 Cowan Oct 2005 A1
20060027233 Zierenberg et al. Feb 2006 A1
20060032501 Hale et al. Feb 2006 A1
20060043067 Kadkhodayan et al. Mar 2006 A1
20060102175 Nelson May 2006 A1
20060118128 Hoffmann et al. Jun 2006 A1
20060137681 Von et al. Jun 2006 A1
20060191546 Takano et al. Aug 2006 A1
20060196518 Hon Sep 2006 A1
20060196885 Leach et al. Sep 2006 A1
20070023043 Von et al. Feb 2007 A1
20070028916 Hale et al. Feb 2007 A1
20070031340 Hale et al. Feb 2007 A1
20070102533 Rosell et al. May 2007 A1
20070125362 Ford et al. Jun 2007 A1
20070131219 Ford et al. Jun 2007 A1
20070138207 Bonney et al. Jun 2007 A1
20070175476 Lipowicz Aug 2007 A1
20070204864 Grychowski et al. Sep 2007 A1
20070222112 Christ et al. Sep 2007 A1
20070235046 Gedevanishvili Oct 2007 A1
20070267407 Loveless et al. Nov 2007 A1
20070283972 Monsees et al. Dec 2007 A1
20070289720 Sunol et al. Dec 2007 A1
20080027694 Gitman Jan 2008 A1
20080031267 Imao Feb 2008 A1
20080038363 Zaffaroni et al. Feb 2008 A1
20080149118 Oglesby et al. Jun 2008 A1
20080156326 Belcastro et al. Jul 2008 A1
20080216828 Wensley et al. Sep 2008 A1
20080241255 Rose et al. Oct 2008 A1
20080257367 Paterno et al. Oct 2008 A1
20080276947 Martzel Nov 2008 A1
20080312674 Chen et al. Dec 2008 A1
20090015717 Arnao et al. Jan 2009 A1
20090071477 Hale et al. Mar 2009 A1
20090078711 Farone et al. Mar 2009 A1
20090090349 Donovan Apr 2009 A1
20090090351 Sunol et al. Apr 2009 A1
20090095287 Emarlou Apr 2009 A1
20090107492 Ooida Apr 2009 A1
20090114215 Spallek et al. May 2009 A1
20090127253 Stark et al. May 2009 A1
20090151717 Bowen et al. Jun 2009 A1
20090162294 Werner Jun 2009 A1
20090180968 Hale et al. Jul 2009 A1
20090199843 Farone et al. Aug 2009 A1
20090217923 Boehm et al. Sep 2009 A1
20090230117 Fernando et al. Sep 2009 A1
20090255923 Buehrer et al. Oct 2009 A1
20090260641 Monsees et al. Oct 2009 A1
20090260642 Monsees et al. Oct 2009 A1
20090280043 Ferguson Nov 2009 A1
20090301363 Damani et al. Dec 2009 A1
20090301471 Stirzel Dec 2009 A1
20090302019 Selenski et al. Dec 2009 A1
20100006092 Hale et al. Jan 2010 A1
20100025023 Schmidt et al. Feb 2010 A1
20100031968 Sheikh et al. Feb 2010 A1
20100043809 Magnon Feb 2010 A1
20100065052 Sharma et al. Mar 2010 A1
20100068154 Sharma et al. Mar 2010 A1
20100089381 Bolmer et al. Apr 2010 A1
20100181387 Zaffaroni et al. Jul 2010 A1
20100236546 Yamada et al. Sep 2010 A1
20100242974 Pan Sep 2010 A1
20100258585 Jamison Oct 2010 A1
20100268212 Manwaring et al. Oct 2010 A1
20100300467 Kuistila et al. Dec 2010 A1
20100307518 Wang Dec 2010 A1
20100313901 Stahle et al. Dec 2010 A1
20110005535 Xiu Jan 2011 A1
20110030671 Ferguson et al. Feb 2011 A1
20110192408 Inagaki et al. Aug 2011 A1
20110240022 Hodges et al. Oct 2011 A1
20110283458 Gillette et al. Nov 2011 A1
20110290266 Koeller Dec 2011 A1
20110303230 Thiry Dec 2011 A1
20120006342 Rose et al. Jan 2012 A1
20120006343 Renaud et al. Jan 2012 A1
20120145189 Knopow et al. Jun 2012 A1
20120234315 Li et al. Sep 2012 A1
20130061861 Hearn Mar 2013 A1
20130133675 Shinozaki et al. May 2013 A1
20130152922 Benassayag et al. Jun 2013 A1
20140196716 Liu Jul 2014 A1
20140216482 Dotan et al. Aug 2014 A1
20140238737 Backman Aug 2014 A1
20150245669 Cadieux et al. Sep 2015 A1
20150272219 Hatrick et al. Oct 2015 A1
20150282256 Iguro et al. Oct 2015 A1
20150302971 Wagman et al. Oct 2015 A1
20150320116 Bleloch et al. Nov 2015 A1
20160044963 Saleem Feb 2016 A1
20160150825 Mironov et al. Jun 2016 A1
20160150828 Goldstein et al. Jun 2016 A1
20170055574 Kaufman et al. Mar 2017 A1
20170055575 Wilke et al. Mar 2017 A1
20170055580 Blandino et al. Mar 2017 A1
20170055581 Wilke et al. Mar 2017 A1
20170055582 Blandino et al. Mar 2017 A1
20170055583 Blandino et al. Mar 2017 A1
20170055584 Blandino et al. Mar 2017 A1
20170071250 Mironov Mar 2017 A1
20170079325 Mironov Mar 2017 A1
20170119046 Kaufman et al. May 2017 A1
20170119047 Blandino et al. May 2017 A1
20170119048 Kaufman et al. May 2017 A1
20170119049 Blandino et al. May 2017 A1
20170119050 Blandino et al. May 2017 A1
20170119051 Blandino et al. May 2017 A1
20170119054 Zinovik et al. May 2017 A1
20170156403 Gill et al. Jun 2017 A1
20180235279 Wilke et al. Aug 2018 A1
20180242633 Wilke et al. Aug 2018 A1
20180242636 Blandino et al. Aug 2018 A1
20180249760 Kaufman et al. Sep 2018 A1
20180279677 Blandino et al. Oct 2018 A1
20180317552 Kaufman et al. Nov 2018 A1
20180317554 Kaufman et al. Nov 2018 A1
20180317555 Blandino et al. Nov 2018 A1
20180325173 Blandino et al. Nov 2018 A1
20190082738 Blandino et al. Mar 2019 A1
20190191780 Wilke et al. Jun 2019 A1
20190239555 Nicholson Aug 2019 A1
20190313695 Kaufman et al. Oct 2019 A1
20190364973 Kaufman et al. Dec 2019 A1
20200054068 Blandino et al. Feb 2020 A1
20200054069 Blandino et al. Feb 2020 A1
Foreign Referenced Citations (374)
Number Date Country
262137 May 1968 AT
306224 Mar 1973 AT
321190 Mar 1975 AT
321191 Mar 1975 AT
2002364521 Jun 2003 AU
2016344645 Jul 2019 AU
1043076 Jun 1990 CA
2160990 Oct 1994 CA
2146954 Oct 1996 CA
2414161 Jan 2002 CA
2414191 Jan 2002 CA
2520759 Oct 2004 CA
2492255 Jul 2006 CA
2668465 Dec 2009 CA
2641869 May 2010 CA
2862048 Jul 2013 CA
2923377 Jun 2015 CA
513656 Oct 1971 CH
698603 Sep 2009 CH
2017003408 Jun 2018 CL
1038085 Dec 1989 CN
1045691 Oct 1990 CN
1059649 Mar 1992 CN
1121385 Apr 1996 CN
1123000 May 1996 CN
1123001 May 1996 CN
1126425 Jul 1996 CN
1126426 Jul 1996 CN
1158757 Sep 1997 CN
1209731 Mar 1999 CN
1287890 Mar 2001 CN
1293591 May 2001 CN
1293596 May 2001 CN
1151739 Jun 2004 CN
1575135 Feb 2005 CN
201076006 Jun 2008 CN
101277622 Oct 2008 CN
101390659 Mar 2009 CN
201199922 Mar 2009 CN
201375023 Jan 2010 CN
201445686 May 2010 CN
102212340 Oct 2011 CN
102499466 Jun 2012 CN
202351223 Jul 2012 CN
203369386 Jan 2014 CN
103689812 Apr 2014 CN
203762288 Aug 2014 CN
104095291 Oct 2014 CN
104095295 Oct 2014 CN
104203016 Dec 2014 CN
104223359 Dec 2014 CN
104256899 Jan 2015 CN
204091003 Jan 2015 CN
104619202 May 2015 CN
204519364 Aug 2015 CN
204519365 Aug 2015 CN
204949521 Jan 2016 CN
360431 Oct 1922 DE
1100884 Mar 1961 DE
1425872 Nov 1968 DE
1290499 Mar 1969 DE
1813993 Jun 1970 DE
1425871 Oct 1970 DE
2315789 Oct 1973 DE
4105370 Aug 1992 DE
4307144 Jan 1995 DE
4343578 Jun 1995 DE
29509286 Aug 1995 DE
4420366 Dec 1995 DE
29700307 Apr 1997 DE
19854007 May 2000 DE
19854009 May 2000 DE
10058642 Jun 2001 DE
10007521 Aug 2001 DE
10064288 Aug 2001 DE
10164587 Jul 2003 DE
102005024803 Jun 2006 DE
202006013439 Oct 2006 DE
102005056885 May 2007 DE
102006041544 Aug 2007 DE
102006041042 Mar 2008 DE
102006047146 Apr 2008 DE
102007011120 Sep 2008 DE
102008034509 Apr 2009 DE
102008013303 Sep 2009 DE
202009010400 Nov 2009 DE
102008038121 Feb 2010 DE
202010011436 Nov 2010 DE
114399 Jun 1969 DK
488488 Mar 1989 DK
0540774 Jul 1995 DK
0540775 Aug 1997 DK
0033668 Aug 1981 EP
0076897 Apr 1983 EP
0033668 Jun 1983 EP
0149997 Jul 1985 EP
0194257 Sep 1986 EP
0371285 Jun 1990 EP
0418464 Mar 1991 EP
0430559 Jun 1991 EP
0430566 Jun 1991 EP
0503767 Sep 1992 EP
0520231 Dec 1992 EP
0703735 Apr 1996 EP
0354661 Apr 1997 EP
0540775 Jul 1997 EP
0824927 Feb 1998 EP
0653218 Sep 1998 EP
1064083 Jan 2001 EP
1064101 Jan 2001 EP
1111191 Jun 2001 EP
0703735 Jul 2001 EP
1128741 Sep 2001 EP
1128742 Sep 2001 EP
1148905 Oct 2001 EP
1203189 May 2002 EP
1217320 Jun 2002 EP
1298993 Apr 2003 EP
1299499 Apr 2003 EP
1299500 Apr 2003 EP
1301152 Apr 2003 EP
1349601 Oct 2003 EP
1357025 Oct 2003 EP
1390112 Feb 2004 EP
1409051 Apr 2004 EP
1439876 Jul 2004 EP
1454840 Sep 2004 EP
1490452 Dec 2004 EP
1506792 Feb 2005 EP
1609376 Dec 2005 EP
1625334 Feb 2006 EP
1625335 Feb 2006 EP
1625336 Feb 2006 EP
1454840 Sep 2006 EP
1536703 Sep 2006 EP
1702639 Sep 2006 EP
1749548 Feb 2007 EP
1867357 Dec 2007 EP
1891867 Feb 2008 EP
1940254 Jul 2008 EP
1996880 Dec 2008 EP
2044967 Apr 2009 EP
1357025 Jul 2009 EP
2083642 Aug 2009 EP
2138058 Dec 2009 EP
2138059 Dec 2009 EP
2179229 Apr 2010 EP
2191735 Jun 2010 EP
2227973 Sep 2010 EP
2234508 Oct 2010 EP
2241203 Oct 2010 EP
2138057 Nov 2010 EP
2246086 Nov 2010 EP
2249669 Nov 2010 EP
2253541 Nov 2010 EP
2257195 Dec 2010 EP
2277398 Jan 2011 EP
2303043 Apr 2011 EP
2316286 May 2011 EP
2327318 Jun 2011 EP
2368449 Sep 2011 EP
2003997 Oct 2011 EP
2408494 Jan 2012 EP
2253541 May 2012 EP
2523752 Nov 2012 EP
2542131 Jan 2013 EP
2760303 Aug 2014 EP
2907397 Aug 2015 EP
262308 Jun 1982 ES
718708 Jan 1932 FR
1418189 Nov 1965 FR
2573985 Jun 1986 FR
2604093 Mar 1988 FR
2700697 Jul 1994 FR
2730166 Aug 1996 FR
2818152 Jun 2002 FR
2842791 Apr 2005 FR
2873584 Nov 2006 FR
347650 Apr 1931 GB
353745 Jul 1931 GB
910166 Nov 1962 GB
922310 Mar 1963 GB
958867 May 1964 GB
1104214 Feb 1968 GB
1227333 Apr 1971 GB
1379688 Jan 1975 GB
1431334 Apr 1976 GB
2294401 May 1996 GB
2323033 Sep 1998 GB
2342874 Apr 2000 GB
2388040 Nov 2003 GB
2412326 Sep 2005 GB
2412876 Oct 2005 GB
2448478 Oct 2008 GB
2487851 Aug 2012 GB
2495923 May 2013 GB
2504732 Feb 2014 GB
63083 Mar 1995 IE
1289590 Oct 1998 IT
S4961986 Jun 1974 JP
S5096908 Aug 1975 JP
S5594260 Jul 1980 JP
S57110260 Jul 1982 JP
S57177769 Nov 1982 JP
S63153666 Jun 1988 JP
H01191674 Aug 1989 JP
H01166953 Nov 1989 JP
H0292986 Apr 1990 JP
H034479 Jan 1991 JP
H03232481 Oct 1991 JP
H0851175 Feb 1996 JP
2519658 Jul 1996 JP
H08228751 Sep 1996 JP
H08511175 Nov 1996 JP
3053426 Oct 1998 JP
H11503912 Apr 1999 JP
H11507234 Jun 1999 JP
H11178562 Jul 1999 JP
3016586 Mar 2000 JP
2000082576 Mar 2000 JP
2000093155 Apr 2000 JP
3078033 Aug 2000 JP
2000515576 Nov 2000 JP
3118462 Dec 2000 JP
3118463 Dec 2000 JP
2002170657 Jun 2002 JP
2002253593 Sep 2002 JP
2002336290 Nov 2002 JP
2003034785 Feb 2003 JP
3392138 Mar 2003 JP
2004504580 Feb 2004 JP
3588469 Nov 2004 JP
2005050624 Feb 2005 JP
2005516647 Jun 2005 JP
2006524494 Nov 2006 JP
2007516015 Jun 2007 JP
2007522900 Aug 2007 JP
2008509907 Apr 2008 JP
2008511175 Apr 2008 JP
2009509523 Mar 2009 JP
2010041354 Feb 2010 JP
2010526553 Aug 2010 JP
2011135901 Jul 2011 JP
2012529936 Nov 2012 JP
2014526275 Oct 2014 JP
2015503336 Feb 2015 JP
2015503337 Feb 2015 JP
2015060837 Mar 2015 JP
2015506170 Mar 2015 JP
2015508287 Mar 2015 JP
2015509706 Apr 2015 JP
2015098645 May 2015 JP
2015531601 Nov 2015 JP
2016036222 Mar 2016 JP
2016525341 Aug 2016 JP
2017515490 Jun 2017 JP
2017520234 Jul 2017 JP
2017526381 Sep 2017 JP
2018520664 Aug 2018 JP
2020067569 Apr 2020 JP
2020067596 Apr 2020 JP
960702734 May 1996 KR
100385395 Aug 2003 KR
20040068292 Jul 2004 KR
20070096027 Oct 2007 KR
100971178 Jul 2010 KR
20120104533 Sep 2012 KR
20130029697 Mar 2013 KR
20140068808 Jun 2014 KR
20140123487 Oct 2014 KR
102061674 Dec 2019 KR
2102906 Jan 1998 RU
94815 Jun 2010 RU
2015105675 Aug 2015 RU
2013155697 Oct 2015 RU
2687757 May 2019 RU
7415242 Jun 1975 SE
0502503 Oct 2006 SE
274507 Apr 1996 TW
201325481 Jul 2013 TW
8404698 Dec 1984 WO
8601730 Mar 1986 WO
9013326 Nov 1990 WO
9409842 May 1994 WO
9527411 Oct 1995 WO
9639880 Dec 1996 WO
9805906 Feb 1998 WO
9823171 Jun 1998 WO
9835552 Aug 1998 WO
9914402 Mar 1999 WO
9947273 Sep 1999 WO
9947806 Sep 1999 WO
0028843 May 2000 WO
0104548 Jan 2001 WO
0140717 Jun 2001 WO
0163183 Aug 2001 WO
0205620 Jan 2002 WO
0205640 Jan 2002 WO
0206421 Jan 2002 WO
0207656 Jan 2002 WO
0224262 Mar 2002 WO
02051466 Jul 2002 WO
02096532 Dec 2002 WO
02098389 Dec 2002 WO
03037412 May 2003 WO
03049792 Jun 2003 WO
03083007 Oct 2003 WO
2004098324 Nov 2004 WO
2004104491 Dec 2004 WO
2004104492 Dec 2004 WO
2004104493 Dec 2004 WO
2006022714 Mar 2006 WO
2007042941 Apr 2007 WO
2007051163 May 2007 WO
2007054167 May 2007 WO
2007078273 Jul 2007 WO
2007090594 Aug 2007 WO
2007098337 Aug 2007 WO
2007116915 Oct 2007 WO
2008015441 Feb 2008 WO
2008029381 Mar 2008 WO
2008051909 May 2008 WO
2008069883 Jun 2008 WO
2008151777 Dec 2008 WO
2009006521 Jan 2009 WO
2009042955 Apr 2009 WO
2009079641 Jun 2009 WO
2009092862 Jul 2009 WO
2009118085 Oct 2009 WO
2009152651 Dec 2009 WO
2009155957 Dec 2009 WO
2009156181 Dec 2009 WO
2010017586 Feb 2010 WO
2010047389 Apr 2010 WO
2010053467 May 2010 WO
2010060537 Jun 2010 WO
2010107613 Sep 2010 WO
2011088132 Jul 2011 WO
2011101164 Aug 2011 WO
2011109304 Sep 2011 WO
2011117580 Sep 2011 WO
2444112 Apr 2012 WO
2012054973 May 2012 WO
2012072770 Jun 2012 WO
2012072790 Jun 2012 WO
2012078865 Jun 2012 WO
2012100430 Aug 2012 WO
2013034455 Mar 2013 WO
2013034458 Mar 2013 WO
2013076098 May 2013 WO
2013098395 Jul 2013 WO
2013098405 Jul 2013 WO
2013098409 Jul 2013 WO
2013098410 Jul 2013 WO
2013102609 Jul 2013 WO
2014023965 Feb 2014 WO
2014048745 Apr 2014 WO
2015051646 Apr 2015 WO
2015068936 May 2015 WO
2015082648 Jun 2015 WO
2015131058 Sep 2015 WO
2015177045 Nov 2015 WO
2015177255 Nov 2015 WO
2015177263 Nov 2015 WO
2015177264 Nov 2015 WO
2015177265 Nov 2015 WO
2015177294 Nov 2015 WO
2015198015 Dec 2015 WO
2016014652 Jan 2016 WO
2016200815 Dec 2016 WO
2017001819 Jan 2017 WO
2017005705 Jan 2017 WO
2017029270 Feb 2017 WO
2017068099 Apr 2017 WO
Non-Patent Literature Citations (90)
Entry
“Atomization Device Applicable to Solid Tobacco Materials and Electronic Cigarette”, CN203762288U, retrieved from Google Patents <https://patents.google.com/patenUCN203762288U/en> on Jan. 12, 2018, 10 pages.
English translation of CN101390659 dated Aug. 3, 2017, 8 pages.
English Translation of Japanese Office Action, Application No. 2018-521547, dated Jun. 25, 2019, 4 pages.
European Extended Search Report for Application No. 19216472.1 dated Apr. 22, 2020, 13 pages.
Extended European Search Report for Application No. 19164405.3 dated Aug. 28, 2019, 6 pages.
Extended European Search Report for Application No. 19165045.6 dated Sep. 6, 2019, 7 pages.
First Office Action dated Nov. 1, 2019 for Chinese Application No. 2016800498584, 6 pages.
First Office Action dated Dec. 3, 2015 for Chinese Application No. 201380021387.2, filed Apr. 11, 2011, 20 pages.
First Office Action dated May 5, 2016 for Chinese Application No. 201380048636.7, 25 pages.
International Preliminary Report on Patentability for Application No. PCT/EP2013/068797, dated Mar. 31, 2015, 5 pages.
International Preliminary Report on Patentability for Application No. PCT/EP2016/070176, dated Mar. 15, 2018, 12 pages.
International Preliminary Report on Patentability for Application No. PCT/EP2016/070178, dated Mar. 15, 2018, 8 pages.
International Preliminary Report on Patentability for Application No. PCT/EP2016/070182, dated Mar. 15, 2018, 8 pages.
International Preliminary Report on Patentability for Application No. PCT/EP2016/070185, dated Mar. 15, 2018, 11 pages.
International Preliminary Report on Patentability for Application No. PCT/EP2016/070188, dated Mar. 15, 2018, 8 pages.
International Preliminary Report on Patentability for Application No. PCT/EP2016/070191, dated Mar. 15, 2018, 8 pages.
International Preliminary Report on Patentability for Application No. PCT/EP2016/075734, dated May 11, 2018, 7 pages.
International Preliminary Report on Patentability for Application No. PCT/EP2016/075739, dated Jan. 16, 2018, 7 pages.
International Preliminary Report on Patentability for Application No. PCT/GB2013/052433, dated Mar. 24, 2015, 9 pages.
International Search Report and Written Opinion for Application No. PCT/EP2013/068797, dated Dec. 9, 2013, 3 pages.
International Search Report and Written Opinion for Application No. PCT/EP2016/070176, dated Apr. 19, 2017, 21 Pages.
International Search Report and Written Opinion for Application No. PCT/EP2016/070178, dated Dec. 14, 2016, 10 pages.
International Search Report and Written Opinion for Application No. PCT/EP2016/070182, dated Dec. 12, 2016, 11 pages.
International Search Report and Written Opinion for Application No. PCT/EP2016/070185, dated Apr. 4, 2017, 16 pages.
International Search Report and Written Opinion for Application No. PCT/EP2016/070188, dated Dec. 13, 2016, 10 pages.
International Search Report and Written Opinion for Application No. PCT/EP2016/070191, dated Dec. 13, 2016, 10 pages.
International Search Report and Written Opinion for Application No. PCT/GB2013/052433, dated Jun. 30, 2014, 16 pages.
International Search Report and Written Opinion, Application No. PCT/EP2016/075734, dated Apr. 6, 2017, 12 pages.
International Search Report and Written Opinion, International Application No. PCT/EP2016/075739, dated Feb. 24, 2017, 10 pages.
Japanese Office Action, Application No. 2018-519865, dated Jun. 25, 2019, 3 pages.
“NeoMax MS-135”, from NeoMax Materials Co., Ltd., described at the following URL: http://www.neomax-materials.co.ip/eng/pr0510.htm, Oct. 30, 2015, 2 pages.
Notification of Reasons for Refusal dated Feb. 1, 2016 for Japanese Application No. 2015531544, 5 pages.
Office Action and Search Report dated May 6, 2020 for Chinese Application No. 2016800498156 filed Aug. 26, 2016, 7 pages.
Office Action and Search Report dated Feb. 27, 2020 for Taiwan Application No. 105127626 filed Aug. 29, 2016, 14 pages.
Office Action dated Nov. 12, 2019 for Japanese Application No. 2018-506575, 8 pages.
Office Action dated Feb. 13, 2019 for Japanese Application No. 2018-507624, 32 pages.
Office Action dated Mar. 13, 2018 for Japanese Application No. 2017-075527, 10 pages.
Office Action dated Sep. 13, 2017 for Russian Application No. 2015106592, 6 pages.
Office Action dated Feb. 14, 2019 for Canadian Application No. 2996835, 3 pages.
Office Action dated Dec. 19, 2019 for Taiwan Application No. 105127627, 14 pages.
Office Action dated Feb. 19, 2019 for Canadian Application No. 2995315, 4 pages.
Office Action dated Mar. 19, 2019 for Japanese Application No. 2018-506553, 8 pages.
Office Action dated Mar. 19, 2019 for Japanese Application No. 2018-506575, 10 pages.
Office Action dated Mar. 19, 2019 for Japanese Application No. 2018-506565, 4 pages.
Office Action dated Oct. 21, 2019 for Chinese Application No. 2016800498156, 20 pages.
Office Action dated Mar. 26, 2019 for Japanese Application No. 2018-506381, 22 pages.
Office Action dated Mar. 28, 2019 for Canadian Application No. 3003514, 6 pages.
Office Action dated Aug. 29, 2019 for Korean Application No. 10-2018-7006009, 9 pages.
Office Action dated Oct. 29, 2019 for Japanese Application No. 2018-507624, 29 pages.
Office Action dated Dec. 3, 2019 for Japanese Application No. 2018-506381, 8 pages.
Office Action dated Dec. 3, 2019 for Japanese Application No. 2018-521547, 4 pages.
Office Action dated Jan. 31, 2019 for Korean Application No. 10-2018-7006009, 17 pages.
Office Action dated Nov. 4, 2019 for Chinese Application No. 201680049679.0, 12 pages.
Office Action dated Nov. 5, 2019 for Japanese Application No. 2018-506553, 12 pages.
Office Action dated Nov. 5, 2019 for Japanese Application No. 2018-506565, 12 pages.
Office Action dated Feb. 7, 2019 for Korean Application No. 10-2018-7006070, 9 pages.
Office Action dated May 7, 2019 for Japanese Application No. 2018-506563, 4 pages.
Office Action dated Feb. 8, 2019 for Korean Application No. 10-2018-7006077, 15 pages.
Office Action dated Jan. 8, 2018 for Japanese Application No. 2017-075527, 15 pages.
“Scientific Principles”, University of Illinois, retrieved from: <http://matse1.matse.illinois.edu/ceramics/prin.html>, Accessed on Jun. 15, 2017, 13 pages.
Search Report dated Jan. 17, 2013 for Great Britain Application No. 1216621.1, 6 pages.
Second Office Action dated Jan. 16, 2017 for Chinese Application No. 201380048636.7, 24 pages.
Blandino , et al., Application and File History for U.S. Appl. No. 14/840,652, filed Aug. 31, 2015.
Blandino , et al., Application and File History for U.S. Appl. No. 14/840,731, filed Aug. 31, 2015.
Blandino , et al., Application and File History for U.S. Appl. No. 14/840,751, filed Aug. 31, 2015.
Blandino , et al., Application and File History for U.S. Appl. No. 14/840,854, filed Aug. 31, 2015.
Blandino , et al., Application and File History for U.S. Appl. No. 14/927,539, filed Oct. 30, 2015.
Blandino , et al., Application and File History for U.S. Appl. No. 14/927,551, filed Oct. 30, 2015.
Blandino , et al., Application and File History for U.S. Appl. No. 14/927,556, filed Oct. 30, 2015, 60 Pages.
Blandino , et al., Application and File History for U.S. Appl. No. 15/754,801, filed Feb. 23, 2018.
Blandino , et al., Application and File History for U.S. Appl. No. 15/754,812, filed Feb. 23, 2018.
Blandino , et al., Application and File History for U.S. Appl. No. 15/754,818, filed Feb. 23, 2018.
Blandino , et al., Application and File History for U.S. Appl. No. 15/754,823, filed Feb. 23, 2018.
Chaplin , “Hydrocolloids and Gums”, retrieved from: <http://www1.Isbu.ac.uk/water/hydrocolloids_gums.html>, Established in 2001, 7 pages.
Wilke , et al., Application and File History for U.S. Appl. No. 15/754,837, filed Feb. 23, 2018.
Gaohe , “Chinese Scientific Information”, vol. 10, May 15, 2010, pp. 132-133.
Hatrick , et al., Application and File History for U.S. Appl. No. 14/428,626, filed Mar. 16, 2015.
Ineos , “Typical Engineering Properties of High Density Polyethylene”, Olefins and Polymers, USA, retrieved from https://www.ineos.com/globalassets/ineos-group/businesses/ineos-olefins-and-polymers-usa/products/technical-information-patents/ineos-typical-engineering-properties of-hdpe.pdf, Accessed Dec. 4, 2018, 2 pages.
Iorga, Alexandru , et al., “Low Curie Temperature in Fe—Cr—Ni—Mn Alloys”, U.P.B. Sci.Bull., Series B, vol. 73, Iss.4, 2011, pp. 195-202 (8 Pages).
jrank.org , “Heat Capacity and Calorimetry, Heat Capacity and the Law of Conservation of Energy-Significance of the High Heat Capacity of Water”, retrieved from https://science.jrank.org/pages/3265/Heat-Capacity.html, Accessed on Jun. 15, 2017, 2 pages.
Kaufman , et al., Application and File History for U.S. Appl. No. 14/927,529, filed Oct. 30, 2015.
Kaufman , et al., Application and File History for U.S. Appl. No. 14/927,537, filed Oct. 30, 2015.
Kaufman , et al., Application and File History for U.S. Appl. No. 15/772,382, filed Apr. 30, 2018.
Rasidek , et al., “Effect of Temperature on Rheology Behaviour of Banana Peel Pectin Extracted Using Hot Compressed Water”, Jurnal Teknologi (Sciences & Engineering), vol. 80, No. 3, Apr. 1, 2018, pp. 97-103.
The Engineering Toolbox , “Specific Heats for Metals”, retrieved from https://www.engineeringtoolbox.com/specific-heat-metals-d_ 152.html, 2003, 6 pages.
Todaka , et al., “Low Curie Temperature Material for Induction Heating Self-Temperature Controlling System”, Journal of Magnetism and Magnetic Materials 320, 2008, pp. e702-e707 (6 Pages).
Wilke , et al., Application and File History for U.S. Appl. No. 14/840,703, filed Aug. 31, 2015.
Wilke , et al., Application and File History for U.S. Appl. No. 14/840,972, filed Aug. 31, 2015.
Wilke , et al., Application and File History for U.S. Appl. No. 15/754,809, filed Feb. 23, 2018.
Egzoset , “Induction vaporizer (based on “Curie” alloys)”, Fuck Combustion forum, Available at <https://fuckcombustion.com/threads/induction-vaporizer-based-on-curiealloys.4598/>, Nov. 13, 2011, 7 pages.
Related Publications (1)
Number Date Country
20220015408 A1 Jan 2022 US
Continuations (2)
Number Date Country
Parent 15772386 US
Child 17187077 US
Parent 14927532 Oct 2015 US
Child 15772386 US