The disclosed embodiments relate generally to spokes for vehicle wheels, and more particularly, to wheel connection systems incorporating flexible spokes having braided fibers with hub and rim terminations.
Many types of wheels employ metal spokes to form a connection structure between the hub (which forms the center of the wheel and is usually attached to an axel) and the rim (which forms the outer circumference of the wheel and usually has a rubber tire affixed thereto). A spoked wheel is used commonly in bicycles because it allows the wheels to be lighter than if a solid structure was used to connect the hub and rim. Since extra weight increases the inertia of a wheel and therefore slows the ability of the rider to accelerate quickly or climb hills, many attempts have been made in the past to optimize the materials and construction of bicycle wheels.
Bicycle spokes are typically constructed of stainless steel due to its high strength, good fatigue life, excellent corrosion resistance, and low cost. In a common road bicycle, stainless steel spokes typically weigh about 8 grams each and there may be a total of up to 64 spokes split between the two wheels. To reduce weight, the spokes can be manufactured with a smaller diameter in the middle of the spoke, a process called butting. Butted spokes can be in the 4 to 6 gram range, however they cannot be reduced below a certain cross sectional area because the tensile strength and fatigue properties become insufficient to warrant extended use without failure. Even with these reduced weights, bicycle spokes still make up a significant portion of the weight of the wheels. In the past, spoke manufacturers have utilized materials such as titanium, fiber-reinforced plastic, and other polymers to try to decrease the weight further, but none of these options has attained mainstream success.
In past implementations, each of the materials discussed above have had shortcomings when compared to stainless steel: titanium spokes have low stiffness, higher costs, and reduced fatigue life compared to steel. Fiber reinforced plastic (or carbon fiber) can fail catastrophically if one or more spokes fail individually. Novel plastics, such as polybenzoxazole require the use of custom wheel components and are therefore not desirable. In addition, novel plastics introduced in the past have required a protective jacket around the core to protect the plastic from sources of degradation such as UV exposure, abrasion by foreign objects, and moisture. Because of these disadvantages, stainless steel spokes remain the prevailing material used in bikes today.
Polymer technology has greatly advanced however in the past decades to the point where materials with sufficiently favorable properties have been commercialized. These properties include strength to weight ratio, creep resistance, UV resistance, moisture resistance, and cost to manufacture. Because of this, thick protective coatings are no longer required in some cases. Also, creep resistant polymers have been developed increasing the number of materials which could theoretically be used to make bicycle spokes.
The technology necessary for effective utilization of high-performance materials in typical bike wheel configurations has not caught up with the materials themselves. Prior art does not teach a technique which allows for integration with common hubs and rim connections. In fact, prior art describes connections and spoke implementations which preclude integration with standard wheel components. This is a critical omission because the industry is largely standardized. Accordingly, products with custom requirements are unlikely to be adopted and commercially successful.
The idea of specifically utilizing a non-rigid material to replace stainless steel was proposed as early as 1990 in U.S. Pat. No. 5,110,190 by Johnson. In this patent, generic connection methods for fabricating a wheel from non-rigid spokes are disclosed, but the ability to construct the spoke such that it can be incorporated into a standard wheel is not taught. In fact, many of the materials and connections modalities discussed are explicitly not compatible with traditional wheel components and require the use of a specially designed system. For example, creating an enlarged head through affixation of a bulb or knot tying means the enlarged end will, by definition, be too large to insert through the hub holes. The opposite end of the spoke taught by Johnson uses a non-standard rim-spoke connection, incompatible with traditional nipples that those familiar with the bicycle industry use. Other methods presented suffer from this fundamental flaw—incompatibility with standard hubs, rims, and nipples.
Another flexible spoke design was proposed by Campbell in U.S. Pat. No. 6,036,281 which utilized liquid crystal fibers and an extruded jacket. The jacket is necessary to protect the fibers which are susceptible to breakage when loaded transverse to their main axis of orientation. This combination produces a spoke that is over 3 mm in diameter which is too large to fit through a standard hub hole. Additionally, the rim connection taught in the patent is also incompatible with a standard rim hole or nipple because the fiber must go through the center of the threaded section. Non-standard hubs and rims are required to construct a wheel out of these spokes.
Lubecki, in U.S. Pat. Nos. 7,988,240, 8,313,154, and 8,794,714 discloses yet another spoke connection strategy in which a custom hub with cradles cut into the hub flanges is used to interlock a flexible spoke. While this strategy helps to get around earlier assembly problems, it still requires a custom hub to be manufactured and thus does not address the fundamental problem.
Even rigid alternate materials have struggled with compatibility with standard equipment. The fiber-reinforced-plastic spoke proposed by Imao in U.S. Pat. No. 4,729,605 adds several incremental components between the hub connection and the rim connection which add a significant amount of weight to the spoke. Introduction of extra components quickly eliminates the weight advantages of non-steel materials.
In light of the past aforementioned attempts to create an improved wheel connection system for flexible spokes, it is clear that none have been able to incorporate the spokes with standard equipment.
The above deficiencies and other problems associated with wheels are reduced or eliminated by the disclosed spoke composed of braided fiber with hub and rim terminations. In accordance with one embodiment, a spoke comprises a braided synthetic fiber terminated with a threaded rod on one end and an eye splice on the other end which is compatible with standard “J-bend” and “straight pull” hubs as well as standard rims.
The present embodiment has several advantages over the prior art. First, the present invention has the ability to incorporate flexible materials into standard bicycle hub and rim systems without customization or excessive installation methods. The flexible materials which are available also have the advantages of higher strength-to-weight ratios than steel. They also have the ability to easily transport without damaging since they can be freely bent. In addition, the present invention also has optimal vibration damping, better fatigue life than metal, and improved resistance to impact loading.
In another embodiment, the invention includes a spoke for use in connection with a wheel, the spoke having a braided fiber having a first end and a second end, a rod having a first end and a second end, whereby the first end of the rod is threaded and wherein the second end of the rod is disposed inside the first end of the braided fiber.
In yet another embodiment, the invention includes a spoke for use in connection with a wheel including a braided fiber having a first end and a second end, whereby the second end of the braided fiber is spliced to form an eye splice, a rod having a first end and a second end, whereby the first end of the rod is threaded, wherein the second end of the rod is disposed inside the first end of the braided fiber.
In yet another embodiment, the invention includes a hub for a wheel. The hub includes a flange having at least one aperture, a spoke comprising a braided fiber fabricated from 12-strand, braided, ultra high molecular weight polyethylene braided fiber having a first end and a second end, whereby the second end of the braided fiber is spliced to form an eye splice, a rod having a first end and a second end, whereby the first end of the rod is threaded, wherein the second end of the rod is disposed inside the first end of the braided fiber and wherein the eye splice passes through the at least one aperture in the flange and the rod passes through the eye splice to form a chocker hitch when the spoke 1s pulled radially from the center rotation of the hub.
In an alternate embodiment, the invention includes a wheel comprising a tire affixed to a rim, a hub having a flange including at least one aperture, a plurality of spokes comprising a braided fiber fabricated from 12-strand, braided, ultra high molecular weight polyethylene having a first end and a second end, whereby the second end of the braided fiber is spliced to form an eye splice. A rod has a first end and a second end, whereby the first end of the rod is threaded. Wherein the second end of the rod is disposed inside the first end of the braided fiber, wherein the eye splice passes through the at least one aperture in the flange and the rod passes through the eye splice to form a chocker hitch when the plurality of spokes are pulled radially from the center rotation of the hub and wherein the first end of the rod is fastened to the rim by means of a nipple.
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Reference will now be made in detail to embodiments, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, circuits, and networks have not been described in detail so as not to unnecessarily obscure aspects of the embodiments.
It will also be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first gesture could be termed a second gesture, and, similarly, a second gesture could be termed a first gesture, without departing from the scope of the present invention.
The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
As used herein, the term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” may be construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to [the stated condition or event],” depending on the context.
The braided fiber 105 does not need to be UHMWPE. It could instead be a different braided fiber with high tensile strength such as aramid, polybenzoxazole, stainless steel, titanium, carbon fiber, polypropylene, low molecular weight polyethylene, cross-linked polyethylene, or the like. The advantage of using a high strength-to-weight material such as UHMWPE is that the spokes are lighter than traditional steel spokes. Also, the braid could be 8-strand, 16-strand, 3-strand, or some other number of strands. Instead of stainless steel, the rod could be made out of regular carbon steel, titanium, a carbon fiber composite, or some other material. The eye splice 107 could also be of different dimensions.
The overall length of the spokes of the present invention could be from 10 cm to over 100 cm, dependent on the diameter of the wheel that is being built. For a standard bicycle wheel, the spokes of the present invention would be approximately 20 to 35 cm in length.
A coating is not necessary to protect the spokes from abrasion to foreign objects or degradation due to sunlight and chemicals. However another embodiment of our spokes includes a coating to protect the fibers, bonding agent, and the threaded rod from degrading, or being otherwise altered from any source. The coating could be polyurethane, polyolefin (ie., polyethylene, polypropylene, etc.), or silicon-based rubber. The coating could be applied before or after the assembly of the spoke. The coating could be any polymer material, a material including metal fibers, or any other material. A preferred coating penetrates the fibers and provides a protective layer on the outside of all of the fibers. The thickness of the coating could range from a single molecule layer to 2 mm thick. Another option to protect the fibers is a heat-shrinkable tubing placed over the entire length or some part of the length of the spoke post-construction.
The spokes may instead be connected to a different type of hub such as a wheelchair hub, a motorcycle hub, or the hub of any other type of automobile or human powered vehicle. In
The maximum diameter of the embodiment of the spoke depicted in
The spokes can be used to build a bicycle wheel as shown in
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated.
The present application is a divisional of and claims priority of U.S. patent application Ser. No. 15/147,357, filed May 5, 2016, which claims the benefit of U.S. patent application Ser. No. 62/278,527, filed Jan. 14, 2016 and U.S. patent application Ser. No. 62/160,124, filed May 12, 2015, the contents all of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4729605 | Imao et al. | Mar 1988 | A |
5110190 | Johnson | May 1992 | A |
5131727 | Johnson | Jul 1992 | A |
5424021 | Nakade | Jun 1995 | A |
6036281 | Campbell | Mar 2000 | A |
6520595 | Slanger | Feb 2003 | B1 |
7988240 | Lubecki | Aug 2011 | B2 |
8313154 | Lubecki | Nov 2012 | B2 |
8794714 | Lubecki | May 2014 | B2 |
20010054840 | Slanger | Dec 2001 | A1 |
20030085610 | Addink et al. | May 2003 | A1 |
20040155518 | Schlanger | Aug 2004 | A1 |
20050067881 | Slanger | Mar 2005 | A1 |
20070138860 | Cappellotto | Jun 2007 | A1 |
20080265659 | Heyse | Oct 2008 | A1 |
20100078987 | Lubecki | Apr 2010 | A1 |
20110101768 | Schlanger | May 2011 | A1 |
20110241412 | Lubecki | Oct 2011 | A1 |
20130033094 | Lubecki | Feb 2013 | A1 |
20150035347 | Connolly | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
102008046255 | Mar 2010 | DE |
1304238 | Apr 2003 | EP |
0035683 | Jun 2000 | WO |
2004054819 | Jul 2004 | WO |
Entry |
---|
European Search Report and Written Opinion for European patent application No. 16793219.3, dated Dec. 13, 2018. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2016/030973, dated Aug. 10, 2016, 15 pages. |
Number | Date | Country | |
---|---|---|---|
20190143744 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
62278527 | Jan 2016 | US | |
62160124 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15147357 | May 2016 | US |
Child | 16213516 | US |