1. Field of the Invention
The subject invention generally relates to an article having an impact resistant surface for preventing damage to the article upon impact by an object.
2. Description of the Related Art
With the increased cost of metals, such as aluminum and steel, various articles previously manufactured from metals are now being manufactured from a polymer. The polymer is typically filled with glass fibers to increase the strength of the polymer. The articles are not only cheaper to produce from the polymer, but also weigh much less. However, these various polymer articles must meet predetermined design requirements. These design requirements include impact resistance, i.e., the polymer articles must still be capable of withstanding an impact from an object without fracturing. Furthermore, it is common that the amount of these fibers relative to the amount of the polymer and/or the size (e.g. length, diameter, etc.) of these fibers is not ideal for optimum impact resistance of the articles. In order to meet the required impact resistance, longitudinally extending ribs are typically incorporated into a planar portion of the polymer article. The ribs are disposed on an outer surface of the polymer article and exposed to an impact from an object. These longitudinally extending ribs are integrally formed with the polymer article, and extend in parallel rows along a length of the polymer article. The longitudinal ribs increase the geometric strength (rigidity) of the polymer article, i.e., the longitudinal ribs increase resistance to bending or flexing.
The glass fibers typically align themselves with the direction of flow of the polymer as the polymer article is being formed, i.e., the glass fibers align with the direction of flow of the polymer being injected into a mold. A strength of the glass filled polymer is greatest when a loading is applied in the direction of the orientation of the glass fibers, i.e., parallel to the orientation of the glass fibers, and is least when the loading is applied in a direction perpendicular to the orientation of the glass fibers. A resistance to elongation of the glass filled polymer article is least when the loading is applied in the direction of the orientation of the glass fibers, i.e., parallel to the orientation of the glass fibers, and is greatest when the loading is applied in a direction perpendicular to the orientation of the glass fibers. Therefore, the resistance to elongation acts opposite the strength, with the resistance to elongation of the glass filled article being highest when the loading is applied perpendicular to the orientation of the glass fibers in the polymer article and the strength of the glass filled article being highest when the loading is applied parallel to the orientation of the glass fibers in the polymer article.
The overall impact resistance of the polymer article is dependent upon both the strength and the resistance to elongation of the polymer article. Therefore, a longitudinal rib pattern in which the ribs are aligned parallel with the orientation of the glass fibers in the polymer article maximizes the bending strength, but minimizes the resistance to elongation, whereas a longitudinal rib pattern in which the ribs are aligned perpendicular with the orientation of the glass fibers in the polymer article minimizes the bending strength and maximizes the resistance to elongation.
An example of an article previously manufactured from steel that is now manufactured from the polymer is an oil pan (fluid reservoir) for an internal combustion engine. The longitudinal ribs run substantially along the entire length of the oil pan, such that the longitudinal ribs extend along a longitudinal axis of a vehicle and parallel with a direction of travel of the vehicle. As such, any flying object, for example a stone or some other debris, will most likely be traveling in a direction parallel the longitudinal ribs. Referring to Prior Art
The subject invention provides an impact resistant article. The article comprises a planar portion. A plurality of ribs extends outwardly from the planar portion. The plurality of ribs includes a pair of side surfaces in spaced parallel relationship. The pair of side surfaces is perpendicular to the planar portion. Each of the plurality of ribs further includes a top surface extending between the pair of side surfaces. The pair of side surfaces is spaced from each other a width between the range of 2.00 mm and 3.00 mm. The top surface is parallel to and spaced from the planar portion a height between the range of 2.00 mm and 6.00 mm. A fillet interconnects the planar portion and each of the pair of side surfaces. The fillet includes a fillet radius between the range of 0.75 mm and 2.00 mm.
The planar portion, the plurality of ribs and the fillet are all integrally formed from a polymer. The polymer includes fibers between the range of 30% and 40% by weight. The fibers are substantially oriented in a primary direction, with the plurality of ribs including a geometric orientation relative to the primary direction.
Accordingly, the subject invention improves the impact resistance of the polymer article by placing a fillet at the intersection of the side surfaces of the ribs and the planar portion, thereby eliminating the approximate ninety degree intersection previously utilized between the side surfaces of the ribs and the planar portion. The fillet more efficiently spreads an impact force applied to the ribs to the planar portion, thereby minimizing the concentrated stress point previously located at the inner corners of the intersection between the side surfaces of the ribs and the planar portion of the article. The geometric orientation of the ribs relative to the fibers further increases the impact resistance of the article by maximizing the strength of the material provided by the fibers.
Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Prior Art
Referring to the Figures, wherein like numerals indicate corresponding parts throughout the several views, an article is shown generally at 20. Preferably, the article 20 is manufactured from a polymer, i.e., a plastic material. In the context of the present invention, it should be understood that the polymer can be neat, i.e., virgin, uncompounded resin, or that the polymer can be an engineered product where the resin is compounded with other components, for example with select additives to improve certain physical properties. Such select additives include, but are not limited to, lubricants, non-fiber impact modifiers, fiber-based impact resistance additives, coupling agents, and colorants, such as pigments and the like. Preferably, the polymer is a nylon, such as nylon 6 or nylon 6/6. The polymer can include nylon 6 only, nylon 6/6 only, or various blends of the two. However, it should be understood that polymers other than nylon may also be used to manufacture the article 20.
Although not required, the polymer is typically filled with fibers 22 in an amount of from thirty percent (30%) to forty (40%) by weight based on a combined total weight of the polymer and the fibers 22. More preferably, the fibers 22 fill the polymer in an amount of thirty five percent (35%) by weight based on the combined total weight of the polymer and the fibers 22. The fibers 22 improve the impact resistance with or without the non-fiber impact modifiers referenced above. Preferably, the fibers 22 are glass fibers; however it should be appreciated that the fibers 22 may include or be some other material. It is to be understood that the fibers 22 may vary in size (e.g. length, diameter, etc.) and may be coated or uncoated. For example, in one embodiment, it is preferred that the fibers have an average diameter of less than 13 microns. In other embodiments, it is preferred that the fibers have an average diameter of 10 microns or less. The polymer or the fibers 22 themselves may include other components to encourage bonding between the polymer itself and the fibers 22.
The polymer should be resistant to fracturing upon impact with an object over a wide range of temperatures varying between the ranges of −40° C. and 150° C. Although not required, the polymer preferably has a modulus of elasticity (Young's Modulus) between the range of 3,500 MPa and 10,000 MPa. The polymer also preferably has a particular strength. The strength of the polymer may comprise a fatigue strength, a drop weight impact strength, and/or a notched impact strength. The fatigue strength is preferably between the range of 30 MPa and 60 MPa. The drop weight impact strength is preferably between the range of 75 kJ/m2 and 110 kJ/m2. The notched impact strength is preferably between the range of 12 kJ/m2 and 22 kJ/m2. Examples of suitable polymers include, but are not limited to Ultramid® polyamides commercially available from BASF Corp. Preferably, the polymer includes Ultramid® B3ZG7 OSI, PA6, 35% glass filled by weight, which is commercially available from BASF Corp.
As shown in
Referring to
A corner 36 interconnects each of the side surfaces 28 of the ribs 26 and the top surface 30 of the ribs 26. Preferably, each of the corners 36 includes a corner radius 38 between the range of 0.50 mm and 1.00 mm. More preferably, the corner radius 38 is equal to 0.75 mm. However, it should be understood that the corner radius 38 may vary from the preferred range and still fall within the scope of the invention.
The top surface 30 of the ribs 26 is spaced from the planar portion 24 to define a height H. The height H is preferably between the range of 2.00 mm and 6.00 mm. More preferably, the height H is equal to 3.00 mm. However, it should be appreciated that the height H may vary from the preferred range and still fall within the scope of the invention.
The side surfaces 28 of the ribs 26 are spaced apart from each other to define a width W. The width W is preferably between the range of 2.00 mm and 3.00 mm. More preferably, the width W is equal to 2.20 mm. However, it should be appreciated that the width W may vary from the preferred range and still fall with in the scope of the invention.
Depending upon the specific use of the article 20, the article 20 may have to meet specific impact resistance design requirements. In other words, the article 20 may need to include an impact resistance capable of resisting a predetermined impact force. For example, when the fluid reservoir shown in
Additionally, as described above, the impact resistance is also dependent upon the orientation of the ribs 26 relative to the orientation of the aligned fibers 22 in the article 20. The fibers 22 substantially align themselves in a primary direction 40 parallel to a flow of the polymer when injected into a mold during a molding process. The direction of the polymer flow during the molding process, and therefore the direction of the aligned fibers 22 relative to the ribs 26, affects the impact resistance of the article 20. Accordingly, the plurality of ribs 26 includes a geometric orientation 42 relative to the primary direction 40 of the aligned fibers 22.
Referring to
The plurality of ribs 26 may include a first portion 44 of the plurality of ribs 26 and a second portion 46 of the plurality of ribs 26. The first portion 44 of the plurality of ribs 26 is arranged perpendicular to the second portion 46 of the plurality of ribs 26.
Referring to
A comparison test was conducted between the polymer cover shown in
The invention has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. As is now apparent to those skilled in the art, many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, wherein reference numerals are merely for convenience and are not to be in any way limiting, the invention may be practiced otherwise than as specifically described.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/942,521 filed on Jun. 7, 2007, the disclosure of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60942521 | Jun 2007 | US |