Article of footwear having a sole structure with perimeter and central chambers

Information

  • Patent Grant
  • 11051578
  • Patent Number
    11,051,578
  • Date Filed
    Wednesday, November 29, 2017
    7 years ago
  • Date Issued
    Tuesday, July 6, 2021
    3 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Mohandesi; Jila M
    Agents
    • Honigman LLP
    • Szalach; Matthew H.
    • O'Brien; Jonathan
Abstract
An article of footwear is disclosed below as having an upper and a sole structure secured to the upper. The sole structure includes a perimeter chamber, a central chamber, and an outsole. The perimeter chamber extends adjacent to at least a portion of a lateral sidewall and a medial sidewall of the sole structure. The central chamber is positioned within a central area of the sole structure, the central area being located between the lateral sidewall and the medial sidewall. The outsole defines at least a portion of a lower surface of the sole structure, and has a perimeter section secured below the perimeter chamber and a central section secured below the central chamber. Various features may be incorporated into the sole structure. For example, the perimeter chamber may be spaced from the central chamber and the perimeter section may be spaced from the central section to define a gap extending upward and into the sole structure from the lower surface.
Description
BACKGROUND

Conventional articles of athletic footwear include two primary elements, an upper and a sole structure. The upper is generally formed from a plurality of elements (e.g., textiles, foam, leather, synthetic leather) that are stitched or adhesively bonded together to form an interior void for securely and comfortably receiving a foot. The sole structure incorporates multiple layers that are conventionally referred to as a sockliner, a midsole, and an outsole. The sockliner is a thin, compressible member located within the void of the upper and adjacent to a plantar (i.e., lower) surface of the foot to enhance comfort. The midsole is secured to the upper and forms a middle layer of the sole structure that attenuates ground reaction forces (i.e., imparts cushioning) during walking, running, or other ambulatory activities. The outsole forms a ground-contacting element of the footwear and is usually fashioned from a durable and wear-resistant rubber material that includes texturing to impart traction.


The primary material forming many conventional midsoles is a polymer foam, such as polyurethane or ethylvinylacetate. In some articles of footwear, the midsole may also incorporate a fluid-filled chamber that increases durability of the footwear and enhances ground reaction force attenuation of the sole structure. In some footwear configurations, the fluid-filled chamber may be at least partially encapsulated within the polymer foam, as in U.S. Pat. No. 5,755,001 to Potter, et al., U.S. Pat. No. 6,837,951 to Rapaport, and U.S. Pat. No. 7,132,032 to Tawney, et al. In other footwear configurations, the fluid-filled chamber may substantially replace the polymer foam, as in U.S. Pat. No. 7,086,180 to Dojan, et al. In general, the fluid-filled chambers are formed from a polymer material that is sealed and pressurized, but may also be substantially unpressurized or pressurized by an external source. In some configurations, textile or foam tensile members may be located within the chamber, or reinforcing structures may be bonded to an exterior surface of the chamber to impart shape to or retain an intended shape of the chamber.


Fluid-filled chambers suitable for footwear applications may be manufactured through various processes, including a two-film technique, thermoforming, and blowmolding. In the two-film technique, two planar sheets of polymer material are bonded together in various locations to form the chamber. In order to pressurize the chamber, a nozzle or needle connected to a fluid pressure source is inserted into a fill inlet formed in the chamber. Following pressurization, the fill inlet is sealed and the nozzle is removed. Thermoforming is similar to the two-film technique, but utilizes a heated mold that forms or otherwise shapes the sheets of polymer material during the manufacturing process. In blowmolding, a molten or otherwise softened elastomeric material in the shape of a tube (i.e., a parison) is placed in a mold having the desired overall shape and configuration of the chamber. The mold has an opening at one location through which pressurized air is provided. The pressurized air induces the liquefied elastomeric material to conform to the shape of the inner surfaces of the mold, thereby forming the chamber, which may then be pressurized.


SUMMARY

An article of footwear is disclosed below as having an upper and a sole structure secured to the upper. The sole structure includes a perimeter chamber, a central chamber, and an outsole. The perimeter chamber extends adjacent to at least a portion of a lateral sidewall and a medial sidewall of the sole structure. The central chamber is positioned within a central area of the sole structure, the central area being located between the lateral sidewall and the medial sidewall. The outsole defines at least a portion of a lower surface of the sole structure, and has a perimeter section secured below the perimeter chamber and a central section secured below the central chamber. Various features may be incorporated into the sole structure. For example, the perimeter chamber may be spaced from the central chamber and the perimeter section may be spaced from the central section to define a gap extending upward and into the sole structure from the lower surface.


Also, an article of footwear is disclosed below as having an upper and a sole structure secured to the upper. The sole structure includes a perimeter element, a central element, and an outsole. The perimeter element extends adjacent to at least a portion of a lateral sidewall and a medial sidewall of the sole structure. The central element is positioned within a central area of the sole structure, the central area being located between the lateral sidewall and the medial sidewall. The outsole defines at least a portion of a lower surface of the sole structure, and has a perimeter section secured below the perimeter element and a central section secured below the central element. Various features may be incorporated into the sole structure. For example, the perimeter element may be spaced from the central element and the perimeter section may be spaced from the central section to define a gap extending upward and into the sole structure from the lower surface.


The advantages and features of novelty characterizing aspects of the invention are pointed out with particularity in the appended claims. To gain an improved understanding of the advantages and features of novelty, however, reference may be made to the following descriptive matter and accompanying figures that describe and illustrate various configurations and concepts related to the invention.





FIGURE DESCRIPTIONS

The foregoing Summary and the following Detailed Description will be better understood when read in conjunction with the accompanying figures.



FIG. 1 is lateral side elevational view of an article of footwear.



FIG. 2 is a medial side elevational view of the article of footwear.



FIG. 3 is a perspective view of a sole structure of the article of footwear.



FIG. 4 is an exploded perspective view of the sole structure.



FIGS. 5A and 5B are cross-sectional views of the sole structure, as defined by section lines 5A and 5B in FIG. 3.



FIG. 6 is a perspective view of a perimeter chamber and a central chamber of the sole structure.



FIG. 7 is a top plan view of the perimeter chamber and the central chamber.



FIG. 8 is a side elevational view of the perimeter chamber and the central chamber.



FIG. 9 is a rear elevational view of the perimeter chamber and the central chamber.



FIGS. 10A and 10B are cross-sectional views of the perimeter chamber and the central chamber, as defined by section lines 10A and 10B in FIG. 7.



FIGS. 11A and 11B are cross-sectional views corresponding with FIG. 5A and depicting the sole structure when subjected to a compressive force.



FIGS. 12A-12F are cross-sectional views corresponding with FIG. 5A and depicting further configurations of the sole structure.





DETAILED DESCRIPTION

The following discussion and accompanying figures disclose various sole structure configurations for articles of footwear. Concepts related to the sole structure configurations are disclosed with reference to footwear that is suitable for running. The sole structure configurations are not limited to footwear designed for running, however, and may be utilized with a wide range of athletic footwear styles, including basketball shoes, cross-training shoes, cycling shoes, football shoes, soccer shoes, tennis shoes, and walking shoes, for example. The sole structure configurations may also be utilized with footwear styles that are generally considered to be non-athletic, including dress shoes, loafers, sandals, and boots. The concepts disclosed herein may, therefore, apply to a wide variety of footwear styles, in addition to the specific style discussed in the following material and depicted in the accompanying figures.


General Footwear Structure


An article of footwear 10 is depicted in FIGS. 1 and 2 as including an upper 20 and a sole structure 30. For reference purposes, footwear 10 may be divided into three general regions: a forefoot region 11, a midfoot region 12, and a heel region 13, as shown in FIGS. 1 and 2. Footwear 10 also includes a lateral side 14 and a medial side 15. Forefoot region 11 generally includes portions of footwear 10 corresponding with the toes and the joints connecting the metatarsals with the phalanges. Midfoot region 12 generally includes portions of footwear 10 corresponding with the arch area of the foot, and heel region 13 corresponds with rear portions of the foot, including the calcaneus bone. Lateral side 14 and medial side 15 extend through each of regions 11-13 and correspond with opposite sides of footwear 10. Regions 11-13 and sides 14-15 are not intended to demarcate precise areas of footwear 10. Rather, regions 11-13 and sides 14-15 are intended to represent general areas of footwear 10 to aid in the following discussion. In addition to footwear 10, regions 11-13 and sides 14-15 may also be applied to upper 20, sole structure 30, and individual elements thereof.


Upper 20 is depicted as having a substantially conventional configuration incorporating a plurality material elements (e.g., textiles, foam, leather, and synthetic leather) that are stitched or adhesively bonded together to form an interior void for securely and comfortably receiving a foot. The material elements may be selected and located with respect to upper 20 in order to selectively impart properties of durability, air-permeability, wear-resistance, flexibility, and comfort, for example. An ankle opening 21 in heel region 13 provides access to the interior void. In addition, upper 20 may include a lace 22 that is utilized in a conventional manner to modify the dimensions of the interior void, thereby securing the foot within the interior void and facilitating entry and removal of the foot from the interior void. Lace 22 may extend through apertures in upper 20, and a tongue portion of upper 20 may extend between the interior void and lace 22. Given that various aspects of the present discussion primarily relate to sole structure 30, upper 20 may exhibit the general configuration discussed above or the general configuration of practically any other conventional or non-conventional upper. Accordingly, the structure of upper 20 may vary significantly within the scope of the present invention.


Sole structure 30 is secured to upper 20 and has a configuration that extends between upper 20 and the ground. In general, the various elements of sole structure 30 attenuate ground reaction forces (i.e., imparts cushioning), affect the overall motion of the foot, and impart traction during walking, running, or other ambulatory activities. Additional details concerning the configuration of sole structure 30 will be described below.


Sole Structure Configuration


Sole structure 30 is depicted in FIGS. 3-5B and includes a midsole element 40, a perimeter chamber 50, a central chamber 60, and an outsole 70. In addition to these elements, sole structure 30 may incorporate one or more plates, moderators, or reinforcing structures, for example, that further enhance the ground reaction force attenuation characteristics of sole structure 30 or the performance properties of footwear 10. Additionally, sole structure 30 may incorporate a sockliner (not depicted) that is located with in a lower portion of the void in upper 20 to enhance the comfort of footwear 10.


Midsole element 40 extends throughout a length of footwear 10 (i.e., through each of regions 11-13) and a width of footwear 10 (i.e., between sides 14 and 15). The primary surfaces of midsole element 40 are an upper surface 41, an opposite lower surface 42, and a side surface 43 that extends between surfaces 41 and 42. Upper surface 41 is joined to a lower area of upper 20, thereby joining sole structure 30 to upper 20. Lower surface 42 is joined with outsole 70 in forefoot region 11 and portions of midfoot region 12, but is secured to each of perimeter chamber 50 and central chamber 60 in at least heel region 13. Additionally, side surface 43 forms a portion of an exposed sidewall of sole structure 30 on both lateral side 14 and medial side 15.


A variety of materials may be utilized to form midsole element 40. As an example, midsole element 40 may be formed from a polymer foam material, such as polyurethane or ethylvinylacetate, that enhances the ground reaction force attenuation characteristics of sole structure 30 during walking, running, or other ambulatory activities. In some configurations, midsole element 40 may also be (a) a plate formed from a semi-rigid polymer material or (b) a combination of a plate and foam material. In addition to the foam material, midsole element 40 may incorporate one or more plates, moderators, or reinforcing structures, for example, that further enhance the ground reaction force attenuation characteristics of sole structure 30 or the overall performance properties of footwear 10. In further configurations, midsole element 40 may also encapsulate a fluid-filled chamber in forefoot region 11. Accordingly, the materials and overall configuration of midsole element 40 may vary significantly.


Perimeter chamber 50 and central chamber 60 are shown together and in a proper spatial relationship in FIGS. 6-10B. Each of chambers 50 and 60 enclose fluids (i.e., either a gas, liquid, or gel) and may be pressurized. In general, perimeter chamber 50 is located at a perimeter of sole structure 30, whereas central chamber 60 is located within a central area of sole structure 30. Although chambers 50 and 60 may contact each other or may be formed as a single unit in some configurations of footwear 10, a gap 31 generally extends between portions of chambers 50 and 60. As discussed in greater detail below, an upper portion 32 of gap 31 is located closer to the sidewall of sole structure 30 than a lower portion 33 of gap 31. That is, gap 31 extends in a generally diagonal direction such that lower portion 33 is located closer to a center of sole structure 30 than upper portion 32.


Perimeter chamber 50 has a generally U-shaped configuration. The exterior of perimeter chamber 50 defines an upper surface 51, an opposite lower surface 52, an exterior side surface 53 that extends between one side of surfaces 51 and 52, and an interior side surface 54 that extends between an opposite side of surfaces 51 and 52. Additionally, perimeter chamber 50 has a lateral portion 55 located adjacent to lateral side 14 and an opposite medial portion 56 located adjacent to medial side 15. When incorporated into sole structure 30, upper surface 51 is secured to lower surface 42 of midsole element 40, and lower surface 52 is secured to outsole 70. Although lateral portion 55 and medial portion 56 may have the same length and general dimensions (i.e., shape, height, thickness), the length and dimensions of lateral portion 55 and medial portion 56 may be different to vary the properties of sole structure 30 on sides 14 and 15. In some configurations, perimeter chamber 50 may also have various indentations or flex grooves that assist with enhancing the flexibility of sole structure 30 in specific areas.


Areas of perimeter chamber 50 extends around or adjacent to at least a portion of the perimeter of sole structure 30. More particularly, each of lateral portion 55 and medial portion 56 are exposed on the exterior of footwear 10. In this configuration, exterior side surface 53 extends along or adjacent to lateral side 14, extends around a rear area of heel region 13, and extends along or adjacent to medial side 15, thereby forming a portion of an exposed sidewall of sole structure 30 on lateral side 14 and medial side 15. In further configurations, however, perimeter chamber 50 may be spaced inward from the sidewall or may protrude outward significantly from the sidewall. Furthermore, although perimeter chamber 50 is depicted as extending into a portion of midfoot region 12, perimeter chamber 50 may be limited to heel region 13 or may extend throughout each of regions 11-13.


Central chamber 60 has a generally rounded configuration. The exterior of central chamber 60 defines an upper surface 61, an opposite lower surface 62, and a side surface 63. In general, central chamber 60 has a configuration wherein upper surface 61 has a greater area than lower surface 62, thereby causing side surface 63 to taper inward between surfaces 61 and 62. Moreover, upper surface 61 may have a shape that includes two rounded ends having different sizes. As such, central chamber 60 exhibits a general configuration of a fluid-filled bladder disclosed in U.S. Pat. No. 6,796,056 to Swigart, which is incorporated herein by reference. Within sole structure 30, upper surface 61 is secured to lower surface 42 of midsole element 40, and lower surface 62 is secured to outsole 70.


Central chamber 60 is located within the central area of sole structure 30, thereby being positioned between lateral portion 55 and medial portion 56 of perimeter chamber 50. At least a portion of central chamber 60 is spaced from perimeter chamber 50 to define gap 31 between central chamber 60 and perimeter chamber 50. Although chambers 50 and 60 may contact each other or may be formed as a single unit in some configurations of footwear 10, gap 31 generally extends between portions of chambers 50 and 60. For example, gap 31 may extend between at least central chamber 60 and areas of interior side surface 54 in lateral portion 55 and medial portion 56.


The relative elevations of perimeter chamber 50 and central chamber 60, as well as the configuration of midsole element 40, may form a depression that receives and seats the heel area of the foot. Referring to FIGS. 5A and 5B, for example, upper surfaces 41 of midsole element 40 forms a depression in sole structure 30, and the relative elevations of upper surfaces 51 and 61 correspond with the depression. More particularly, upper surface 51 of perimeter chamber 50 is above or located as a higher elevation than upper surface 61 of central chamber 60. In this configuration, the heel of the foot is seated within sole structure 30, which may enhance the overall stability of footwear 10 during walking, running, or other ambulatory activities.


A wide range of polymer materials may be utilized for chambers 50 and 60. In selecting materials for chambers 50 and 60, engineering properties of the materials (e.g., tensile strength, stretch properties, fatigue characteristics, dynamic modulus, and loss tangent) as well as the ability of the materials to prevent the diffusion of the fluid contained by chambers 50 and 60 may be considered. When formed of thermoplastic urethane, for example, the outer barrier of chambers 50 and 60 may have a thickness of approximately 1.0 millimeter, but the thickness may range from 0.25 to 2.0 millimeters or more, for example. In addition to thermoplastic urethane, examples of polymer materials that may be suitable for chambers 50 and 60 include polyurethane, polyester, polyester polyurethane, and polyether polyurethane. Chambers 50 and 60 may also be formed from a material that includes alternating layers of thermoplastic polyurethane and ethylene-vinyl alcohol copolymer, as disclosed in U.S. Pat. Nos. 5,713,141 and 5,952,065 to Mitchell, et al. A variation upon this material may also be utilized, wherein a center layer is formed of ethylene-vinyl alcohol copolymer, layers adjacent to the center layer are formed of thermoplastic polyurethane, and outer layers are formed of a regrind material of thermoplastic polyurethane and ethylene-vinyl alcohol copolymer. Another suitable material for chambers 50 and 60 is a flexible microlayer membrane that includes alternating layers of a gas barrier material and an elastomeric material, as disclosed in U.S. Pat. Nos. 6,082,025 and 6,127,026 to Bonk, et al. Additional suitable materials are disclosed in U.S. Pat. Nos. 4,183,156 and 4,219,945 to Rudy. Further suitable materials include thermoplastic films containing a crystalline material, as disclosed in U.S. Pat. Nos. 4,936,029 and 5,042,176 to Rudy, and polyurethane including a polyester polyol, as disclosed in U.S. Pat. Nos. 6,013,340; 6,203,868; and 6,321,465 to Bonk, et al.


The polymer materials forming the exteriors or outer barriers of chambers 50 and 60 enclose a fluid pressurized between zero and three-hundred-fifty kilopascals (i.e., approximately fifty-one pounds per square inch) or more. In addition to air and nitrogen, the fluids contained by chambers 50 and 60 may include octafluorapropane or be any of the gasses disclosed in U.S. Pat. No. 4,340,626 to Rudy, such as hexafluoroethane and sulfur hexafluoride, for example. In some configurations, either or both of chambers 50 and 60 may incorporate a valve that permits adjustment in the pressures of the fluids. Although the pressures of the fluids within chambers 50 and 60 may be the same, a difference in the pressures may be more than 70 kilopascals (i.e., approximately 10 pounds per square inch) in some configurations. For example, the pressure within perimeter chamber 50 may be at least 103.5 kilopascals (i.e., approximately 15 pounds per square inch) above an ambient pressure of air surrounding footwear 10, and the pressure within central chamber 60 may be less than 34.5 kilopascals (approximately 5 pounds per square inch) above the ambient pressure of the air surrounding footwear 10. Although the pressure within perimeter chamber 50 may be greater than the pressure within central chamber 60, the pressures may be equal or the pressure within perimeter chamber 50 may be less than the pressure within central chamber 60.


As discussed above, sole structure 30 may form a depression that receives and seats the heel area of the foot, which is at least partially caused by the relative elevations of upper surfaces 51 and 61, to enhance the overall stability of footwear 10. A further factor that may enhance stability relates to the relative pressures within chambers 50 and 60. Given that perimeter chamber 50 may be pressurized more than central chamber 60, perimeter chamber 50 may be less compressible than central chamber 60. In this configuration, the central area of sole structure 30, which includes central chamber 60, may compress more easily than the peripheral area, which includes perimeter chamber 50. The difference in pressures between chambers 50 and 60 may, therefore, further seat the heel of the foot within sole structure 30, which may further enhance the overall stability of footwear 10 during walking, running, or other ambulatory activities.


Outsole 70 forms a ground-contacting element of footwear 10 and may be formed from a durable and wear-resistant rubber material that includes texturing to impart traction. Outsole 70, which may be absent in some configurations of footwear 10, includes a perimeter section 71 and a central section 72. Perimeter section 71 is secured below perimeter chamber 50, and central section 72 is secured below central chamber 60. More particularly, perimeter section 71 may be secured directly to lower surface 52 of perimeter chamber 50, and central section 72 may be secured directly to lower surface 62 of central chamber 60. Although sections 71 and 72 may be joined in some configurations, sections 71 and 72 are depicted as being separate and spaced elements of outsole 70. When formed as separate and spaced sections of outsole 70, sections 71 and 72 may move independently of each other as chambers 50 and 60 are compressed or otherwise deformed during ambulatory activities.


Gap 31 generally extends between portions of chambers 50 and 60 and through outsole 70. In other words, gap 31 extends upward and into sole structure 30 from a lower surface of outsole 70. Although gap 41 may have a vertical orientation, upper portion 32 of gap 31 is located closer to the sidewall of sole structure 30 than lower portion 33 of gap 31. That is, gap 31 extends in a generally diagonal direction such that lower portion 33 is located closer to a center of sole structure 30 than upper portion 32. In order to impart the diagonal orientation to gap 31, interior side surface 54 of perimeter chamber 50 is sloped and extends toward the central area of sole structure 30, and side surface 63 of central chamber 60 is also sloped toward the central area. More particularly, interior side surface 54 tapers outward between upper surface 51 and lower surface 52, and side surface 63 tapers inward between upper surface 61 and lower surface 62.


An advantage of the diagonal orientation of gap 31 relates to the stability of footwear 10. Referring to FIG. 11A, a force 80 is shown as compressing sole structure 30 and thrusting toward lateral side 14, which may correspond to a cutting motion that is utilized in many athletic activities to move an individual side-to-side. When force 80 deforms sole structure 30 in this manner, the sloping aspect of interior side surface 54 is placed in tension, as represented by arrow 81. The tension in interior side surface 54 resists the deformation of sole structure 30, thereby resisting the collapse of lateral side 14. Similarly, referring to FIG. 11B, force 80 is shown as compressing sole structure 30 and thrusting toward medial side 15, which may correspond to a pronation motion that occurs during running, for example. When force 80 deforms sole structure 30 in this manner, the sloping aspect of interior side surface 54 is placed in tension, as represented by arrow 82. The tension in interior side surface 54 resists the deformation of sole structure 30, thereby resisting the collapse of medial side 15. The diagonal orientation of gap 31, which is partially due to the slope in interior side surface 54, resists deformation in sole structure 30, thereby enhancing the overall stability of footwear 10 during walking, running, or other ambulatory activities.


Based upon the above discussion, many features of sole structure 30 enhance the overall stability of footwear 10. More particularly, the stability of footwear 10 is enhanced by (a) the depression in sole structure 30 from the relative elevations of upper surfaces 51 and 61 of chambers 50 and 60, (b) the different compressibilities of chambers 50 and 60 from the different pressures of fluids within chambers 50 and 60, and (c) the diagonal orientation of gap 31 from the slope in interior side surface 54 of perimeter chamber 50. While any of these features may be utilized independently to enhance stability, incorporating two or more of the features into sole structure 30 has an advantage of further enhancing the overall stability of footwear 10.


Further Configurations


The configuration sole structure 30 discussed above and depicted in the figures provides one example of a suitable configuration for footwear 10. A variety of other configurations, having different features, may also be utilized. Referring to FIG. 12A, for example, chambers 50 and 60 are depicted as being interconnected by tie elements 64. When chambers 50 and 60 are formed to have a one-piece configuration, for example, tie elements 64 may be a web of polymer material that joins chambers 50 and 60 during the manufacturing process. In some configurations, tie elements 64 may also include conduits that allow fluid to pass between chambers 50 and 60. Referring to FIG. 12B, central chamber 60 is depicted as having a solid configuration and may, for example, be a foam element located within the central area of sole structure 30. Central chamber 60 may also be a foam-filled or foam-and-fluid-filled chamber in some configurations. Moreover, perimeter chamber 50 may have a similar solid configuration. Referring to FIG. 12C, sole structure 30 has a configuration wherein midsole element 40 extends over sides of perimeter chamber 50 and also replaces central chamber 60. Referring to FIG. 12D, outsole 70 is formed to have a one-piece configuration that extends over gap 31. Although gap 31 may extend upward and into sole structure 30, outsole 70 may cover gap 31 in some configurations. As another example, FIG. 12E depicts a configuration wherein a pair of valves 65 are associated with chambers 50 and 60, which may allow adjustment of the fluid pressures within chambers 50 and 60. Additionally, perimeter chamber 50 may also be a foam element, as depicted in FIG. 12F, as well as a foam-filled or foam-and-fluid-filled chamber.


The invention is disclosed above and in the accompanying figures with reference to a variety of configurations. The purpose served by the disclosure, however, is to provide an example of the various features and concepts related to the invention, not to limit the scope of the invention. One skilled in the relevant art will recognize that numerous variations and modifications may be made to the configurations described above without departing from the scope of the present invention, as defined by the appended claims.

Claims
  • 1. A sole structure for an article of footwear having an upper, the sole structure comprising: a perimeter chamber extending adjacent to a lateral sidewall and a medial sidewall of the sole structure and tapering in a direction away from a center of the sole structure and toward the upper at an inner side surface of the perimeter chamber; anda central chamber positioned within a central area of the sole structure and tapering in a direction toward the center of the sole structure and away from the upper at an outer side surface of the central chamber that opposes the inner side surface of the perimeter chamber, the entire central chamber (i) being located between the lateral sidewall and the medial sidewall and (ii) discretely formed and spaced apart from the perimeter chamber.
  • 2. The sole structure of claim 1, wherein the perimeter chamber extends continuously from the lateral sidewall, along a heel region of the sole structure, to the medial sidewall.
  • 3. The sole structure of claim 1, further comprising an outsole defining at least a portion of a lower surface of the sole structure, the outsole having (a) a perimeter section secured below the perimeter chamber and (b) a central section secured below the central chamber.
  • 4. The sole structure of claim 3, wherein the perimeter chamber is spaced from the central chamber and the perimeter section is spaced from the central section to define a gap extending upward and into the sole structure from the lower surface, the gap defined by the inner side surface of the perimeter chamber and the outer side surface of the central chamber and extending away from the center of the sole structure as the gap extends in a direction away from the outsole.
  • 5. The sole structure of claim 4, wherein a distance between the gap and the center of the sole structure increases as the gap extends away from the outsole.
  • 6. The sole structure of claim 3, wherein the perimeter chamber is spaced from the central chamber to define a gap extending upward and into the sole structure from a ground-contacting surface of the sole structure, the gap defined by the inner side surface of the perimeter chamber and the outer side surface of the central chamber and extending away from the center of the sole structure as the gap extends in a direction away from the ground-contacting surface.
  • 7. The sole structure of claim 6, wherein a distance between the gap and the center of the sole structure increases as the gap extends away from the ground-contacting surface.
  • 8. The sole structure of claim 1, wherein the perimeter chamber encloses a fluid with a first pressure and the central chamber encloses a fluid with a second pressure, the first pressure being greater than the second pressure.
  • 9. The sole structure of claim 1, wherein an outer side surface of the perimeter chamber is exposed at the lateral sidewall and at the medial sidewall.
  • 10. The sole structure of claim 1, wherein at least one of the perimeter chamber and the central chamber is a fluid-filled chamber.
  • 11. A sole structure for an article of footwear having an upper, the sole structure comprising: a perimeter chamber extending adjacent to a lateral sidewall and a medial sidewall of the sole structure and including an inner side surface that extends away from a center of the sole structure and toward the upper; anda central chamber positioned within a central area of the sole structure, the entire central chamber (i) being located between the lateral sidewall and the medial sidewall, (ii) including an outer side surface that opposes the inner side surface of the perimeter chamber and extends away from the center of the sole structure and toward the upper, and (iii) discretely formed and spaced apart from the perimeter chamber.
  • 12. The sole structure of claim 11, wherein the perimeter chamber extends continuously from the lateral sidewall, along a heel region of the sole structure, to the medial sidewall.
  • 13. The sole structure of claim 11, further comprising an outsole defining at least a portion of a lower surface of the sole structure, the outsole having (a) a perimeter section secured below the perimeter chamber and (b) a central section secured below the central chamber.
  • 14. The sole structure of claim 13, wherein the perimeter chamber is spaced from the central chamber and the perimeter section is spaced from the central section to define a gap extending upward and into the sole structure from the lower surface, the gap defined by the inner side surface of the perimeter chamber and the outer side surface of the central chamber and extending away from the center of the sole structure as the gap extends in a direction away from the outsole.
  • 15. The sole structure of claim 14, wherein a distance between the gap and the center of the sole structure increases as the gap extends away from the outsole.
  • 16. The sole structure of claim 11, wherein the perimeter chamber is spaced from the central chamber to define a gap extending upward and into the sole structure from a ground-contacting surface of the sole structure, the gap defined by the inner side surface of the perimeter chamber and the outer side surface of the central chamber and extending away from the center of the sole structure as the gap extends in a direction away from the ground-contacting surface.
  • 17. The sole structure of claim 16, wherein a distance between the gap and the center of the sole structure increases as the gap extends away from the ground-contacting surface.
  • 18. The sole structure of claim 11, wherein the perimeter chamber encloses a fluid with a first pressure and the central chamber encloses a fluid with a second pressure, the first pressure being greater than the second pressure.
  • 19. The sole structure of claim 11, wherein an outer side surface of the perimeter chamber is exposed at the lateral sidewall and at the medial sidewall.
  • 20. The sole structure of claim 11, wherein at least one of the perimeter chamber and the central chamber is a fluid-filled chamber.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application is a continuation of application Ser. No. 14/181,113, filed Feb. 14, 2014, which is a divisional of application Ser. No. 12/491,973, filed Jun. 25, 2009, (now U.S. Pat. No. 8,650,775, issued Feb. 18, 2014), the entire disclosures of which are hereby incorporated by reference.

US Referenced Citations (135)
Number Name Date Kind
2677906 Reed May 1954 A
2703770 Melzer Mar 1955 A
3030640 Gosman Apr 1962 A
3608215 Fukuoka Sep 1971 A
3685176 Rudy Aug 1972 A
3758964 Nishimura Sep 1973 A
4183156 Rudy Jan 1980 A
4187620 Seiner Feb 1980 A
4217705 Donzis Aug 1980 A
4219945 Rudy Sep 1980 A
4358902 Cole et al. Nov 1982 A
4506460 Rudy Mar 1985 A
4547919 Wang Oct 1985 A
4577417 Cole Mar 1986 A
4698864 Graebe Oct 1987 A
4722131 Huang Feb 1988 A
4782602 Lakic Nov 1988 A
4803029 Iversen et al. Feb 1989 A
4817304 Parker et al. Apr 1989 A
4823482 Lakic Apr 1989 A
4845861 Moumdjian Jul 1989 A
4874640 Donzis Oct 1989 A
4891855 Cheng-Chung Jan 1990 A
4906502 Rudy Mar 1990 A
4912861 Huang Apr 1990 A
4936029 Rudy Jun 1990 A
4991317 Lakic Feb 1991 A
4999931 Vermeulen Mar 1991 A
5005575 Geri Apr 1991 A
5022109 Pekar Jun 1991 A
5025575 Lakic Jun 1991 A
5042176 Rudy Aug 1991 A
5044030 Balaton Sep 1991 A
5158767 Cohen et al. Oct 1992 A
5179792 Brantingham Jan 1993 A
5193246 Huang Mar 1993 A
5199191 Moumdjian Apr 1993 A
5224277 Sang Do Jul 1993 A
5224278 Jeon Jul 1993 A
5228156 Wang Jul 1993 A
5235715 Donzis Aug 1993 A
5245766 Warren Sep 1993 A
5253435 Auger et al. Oct 1993 A
5257470 Auger et al. Nov 1993 A
5313717 Allen et al. May 1994 A
5335382 Huang Aug 1994 A
5337492 Anderie et al. Aug 1994 A
5353459 Potter et al. Oct 1994 A
5367791 Gross et al. Nov 1994 A
5406719 Potter Apr 1995 A
5493792 Bates et al. Feb 1996 A
5572804 Skaja et al. Nov 1996 A
5592706 Pearce Jan 1997 A
5595004 Lyden et al. Jan 1997 A
5669161 Huang Sep 1997 A
5686167 Rudy Nov 1997 A
5704137 Dean et al. Jan 1998 A
5713141 Mitchell et al. Feb 1998 A
5741568 Rudy Apr 1998 A
5755001 Potter et al. May 1998 A
5771606 Litchfield Jun 1998 A
5794359 Jenkins et al. Aug 1998 A
5832630 Potter Nov 1998 A
5846063 Lakic Dec 1998 A
5907911 Huang Jun 1999 A
5916664 Rudy Jun 1999 A
5925306 Huang Jul 1999 A
5952065 Mitchell et al. Sep 1999 A
5976451 Skaja et al. Nov 1999 A
5979078 McLaughlin Nov 1999 A
5993585 Goodwin et al. Nov 1999 A
6009637 Pavone Jan 2000 A
6013340 Bonk et al. Jan 2000 A
6027683 Huang Feb 2000 A
6029962 Shorten et al. Feb 2000 A
6061929 Ritter May 2000 A
6065150 Huang May 2000 A
6082025 Bonk et al. Jul 2000 A
6098313 Skaja Aug 2000 A
6127010 Rudy Oct 2000 A
6127026 Bonk et al. Oct 2000 A
6128837 Huang Oct 2000 A
6192606 Pavone Feb 2001 B1
6203868 Bonk et al. Mar 2001 B1
6253466 Harmon-Weiss et al. Jul 2001 B1
6258421 Potter Jul 2001 B1
6266897 Seydel et al. Jul 2001 B1
6321465 Bonk et al. Nov 2001 B1
D451264 Marvin Dec 2001 S
D453988 Smith Mar 2002 S
6374514 Swigart Apr 2002 B1
6385864 Sell, Jr. et al. May 2002 B1
6402879 Tawney Jun 2002 B1
6430843 Potter et al. Aug 2002 B1
6457262 Swigart Oct 2002 B1
6463612 Potter Oct 2002 B1
6516540 Seydel et al. Feb 2003 B2
6550085 Roux Apr 2003 B2
6571490 Tawney Jun 2003 B2
6665958 Goodwin Dec 2003 B2
6754981 Edwards Jun 2004 B1
6783184 DiBattista et al. Aug 2004 B2
6796056 Swigart Sep 2004 B2
6837951 Rapaport Jan 2005 B2
6892477 Potter et al. May 2005 B2
6918198 Chi Jul 2005 B2
6931764 Swigart et al. Aug 2005 B2
6971193 Potter et al. Dec 2005 B1
7000335 Swigart et al. Feb 2006 B2
7020988 Holden et al. Apr 2006 B1
7051456 Swigart May 2006 B2
7070845 Thomas et al. Jul 2006 B2
7076891 Goodwin Jul 2006 B2
7086179 Dojan et al. Aug 2006 B2
7086180 Dojan et al. Aug 2006 B2
7128796 Hensley et al. Oct 2006 B2
7131218 Schindler Nov 2006 B2
7132032 Tawney et al. Nov 2006 B2
7141131 Foxen Nov 2006 B2
7181867 Litchfield et al. Feb 2007 B2
7200957 Hubbard et al. Apr 2007 B2
7244483 Tawney et al. Jul 2007 B2
7278226 Holden et al. Oct 2007 B2
7451554 Hazenberg et al. Nov 2008 B2
7475498 Litchfield et al. Jan 2009 B2
7555848 Aveni et al. Jul 2009 B2
7555851 Hazenberg et al. Jul 2009 B2
7810255 Schindler Oct 2010 B2
7832118 Holden et al. Nov 2010 B2
7877900 Russell Feb 2011 B2
7946059 Borel May 2011 B2
7966750 Schindler Jun 2011 B2
8650775 Peyton Feb 2014 B2
20100325914 Peyton Dec 2010 A1
20110005101 Sills Jan 2011 A1
Foreign Referenced Citations (2)
Number Date Country
1115624 Jan 1996 CN
100434005 Nov 2008 CN
Non-Patent Literature Citations (14)
Entry
European Patent Office, Extended European Search Report for EP Application No. 18181204.1 dated Oct. 25, 2018.
Office Action dated Aug. 15, 2014 in Chinese Patent Application No. 201080027258.0.
Response to Office Action dated Aug. 25, 2014 in European Patent Application No. 10745032.2.
Response to Office Action dated Dec. 30, 2014 in Chinese Patent Application No. 201080027258.0.
Office Action dated Dec. 30, 2013 in Chinese Patent Application No. 201080027258.0.
Response to Office Action dated May 14, 2014 in Chinese Patent Application No. 201080027258.0.
Office Action dated Apr. 23, 2014 in European Patent Application No. 10745032.2.
International Search Report and Written Opinion dated Feb. 24, 2011 in PCT/US2010/039839.
USPTO, Final Office Action dated Jun. 11, 2012 for U.S. Appl. No. 12/491,973.
USPTO, Non-Final Office Action dated Mar. 6, 2012 for U.S. Appl. No. 12/491,973.
USPTO, Non-Final Office Action dated Mar. 31, 2017 for U.S. Appl. No. 14/181,113.
USPTO, Final Office Action dated Oct. 25, 2016 for U.S. Appl. No. 14/181,113.
USPTO, Non-Final Office Action dated Jun. 1, 2016 for U.S. Appl. No. 14/181,113.
European Patent Office, Extended EP Search Report for EP Application No. 19211252.2, dated Mar. 20, 2020.
Related Publications (1)
Number Date Country
20180077996 A1 Mar 2018 US
Divisions (1)
Number Date Country
Parent 12491973 Jun 2009 US
Child 14181113 US
Continuations (1)
Number Date Country
Parent 14181113 Feb 2014 US
Child 15825799 US