Conventional articles of athletic footwear include two primary elements, an upper and a sole structure. The upper is generally formed from a plurality of elements (e.g., textiles, foam, leather, synthetic leather) that are stitched or adhesively bonded together to form an interior void for securely and comfortably receiving a foot. The sole structure incorporates multiple layers that are conventionally referred to as a sockliner, a midsole, and an outsole. The sockliner is a thin, compressible member located within the void of the upper and adjacent to a plantar (i.e., lower) surface of the foot to enhance comfort. The midsole is secured to the upper and forms a middle layer of the sole structure that attenuates ground reaction forces (i.e., imparts cushioning) during walking, running, or other ambulatory activities. The outsole forms a ground-contacting element of the footwear and is usually fashioned from a durable and wear-resistant rubber material that includes texturing to impart traction.
The primary material forming many conventional midsoles is a polymer foam, such as polyurethane or ethylvinylacetate. In some articles of footwear, the midsole may also incorporate a fluid-filled chamber that increases durability of the footwear and enhances ground reaction force attenuation of the sole structure. In some footwear configurations, the fluid-filled chamber may be at least partially encapsulated within the polymer foam, as in U.S. Pat. No. 5,755,001 to Potter, et al., U.S. Pat. No. 6,837,951 to Rapaport, and U.S. Pat. No. 7,132,032 to Tawney, et al. In other footwear configurations, the fluid-filled chamber may substantially replace the polymer foam, as in U.S. Pat. No. 7,086,180 to Dojan, et al. In general, the fluid-filled chambers are formed from a polymer material that is sealed and pressurized, but may also be substantially unpressurized or pressurized by an external source. In some configurations, textile or foam tensile members may be located within the chamber, or reinforcing structures may be bonded to an exterior surface of the chamber to impart shape to or retain an intended shape of the chamber.
Fluid-filled chambers suitable for footwear applications may be manufactured through various processes, including a two-film technique, thermoforming, and blowmolding. In the two-film technique, two planar sheets of polymer material are bonded together in various locations to form the chamber. In order to pressurize the chamber, a nozzle or needle connected to a fluid pressure source is inserted into a fill inlet formed in the chamber. Following pressurization, the fill inlet is sealed and the nozzle is removed. Thermoforming is similar to the two-film technique, but utilizes a heated mold that forms or otherwise shapes the sheets of polymer material during the manufacturing process. In blowmolding, a molten or otherwise softened elastomeric material in the shape of a tube (i.e., a parison) is placed in a mold having the desired overall shape and configuration of the chamber. The mold has an opening at one location through which pressurized air is provided. The pressurized air induces the liquefied elastomeric material to conform to the shape of the inner surfaces of the mold, thereby forming the chamber, which may then be pressurized.
An article of footwear is disclosed below as having an upper and a sole structure secured to the upper. The sole structure includes a perimeter element and a central element, one or both of which may be a fluid-filled chamber. The perimeter element extends adjacent to a sidewall of the sole structure. The central element is centrally-positioned and at least partially spaced from the perimeter element to define a gap between the central element and the perimeter element. Various features may be incorporated into the sole structure. For example, the gap may have an upper portion and a lower portion, with the upper portion being located closer to the sidewall than the lower portion. As another example, the perimeter element may have a first compressibility and the central element may have a second compressibility, with the first compressibility being less than the second compressibility. When formed as fluid-filled chambers, the difference in compressibility may be due to differences in fluid pressure. As yet another example, the upper surface of the perimeter element may be at a greater elevation or higher than an upper surface of the central element.
The advantages and features of novelty characterizing aspects of the invention are pointed out with particularity in the appended claims. To gain an improved understanding of the advantages and features of novelty, however, reference may be made to the following descriptive matter and accompanying figures that describe and illustrate various configurations and concepts related to the invention.
The foregoing Summary and the following Detailed Description will be better understood when read in conjunction with the accompanying figures.
The following discussion and accompanying figures disclose various sole structure configurations for articles of footwear. Concepts related to the sole structure configurations are disclosed with reference to footwear that is suitable for running. The sole structure configurations are not limited to footwear designed for running, however, and may be utilized with a wide range of athletic footwear styles, including basketball shoes, cross-training shoes, cycling shoes, football shoes, soccer shoes, tennis shoes, and walking shoes, for example. The sole structure configurations may also be utilized with footwear styles that are generally considered to be non-athletic, including dress shoes, loafers, sandals, and boots. The concepts disclosed herein may, therefore, apply to a wide variety of footwear styles, in addition to the specific style discussed in the following material and depicted in the accompanying figures.
General Footwear Structure
An article of footwear 10 is depicted in
Upper 20 is depicted as having a substantially conventional configuration incorporating a plurality material elements (e.g., textiles, foam, leather, and synthetic leather) that are stitched or adhesively bonded together to form an interior void for securely and comfortably receiving a foot. The material elements may be selected and located with respect to upper 20 in order to selectively impart properties of durability, air-permeability, wear-resistance, flexibility, and comfort, for example. An ankle opening 21 in heel region 13 provides access to the interior void. In addition, upper 20 may include a lace 22 that is utilized in a conventional manner to modify the dimensions of the interior void, thereby securing the foot within the interior void and facilitating entry and removal of the foot from the interior void. Lace 22 may extend through apertures in upper 20, and a tongue portion of upper 20 may extend between the interior void and lace 22. Given that various aspects of the present discussion primarily relate to sole structure 30, upper 20 may exhibit the general configuration discussed above or the general configuration of practically any other conventional or non-conventional upper. Accordingly, the structure of upper 20 may vary significantly within the scope of the present invention.
Sole structure 30 is secured to upper 20 and has a configuration that extends between upper 20 and the ground. In general, the various elements of sole structure 30 attenuate ground reaction forces (i.e., imparts cushioning), affect the overall motion of the foot, and impart traction during walking, running, or other ambulatory activities. Additional details concerning the configuration of sole structure 30 will be described below.
Sole Structure Configuration
Sole structure 30 is depicted in
Midsole element 40 extends throughout a length of footwear 10 (i.e., through each of regions 11-13) and a width of footwear 10 (i.e., between sides 14 and 15). The primary surfaces of midsole element 40 are an upper surface 41, an opposite lower surface 42, and a side surface 43 that extends between surfaces 41 and 42. Upper surface 41 is joined to a lower area of upper 20, thereby joining sole structure 30 to upper 20. Lower surface 42 is joined with outsole 70 in forefoot region 11 and portions of midfoot region 12, but is secured to each of perimeter chamber 50 and central chamber 60 in at least heel region 13. Additionally, side surface 43 forms a portion of an exposed sidewall of sole structure 30 on both lateral side 14 and medial side 15.
A variety of materials may be utilized to form midsole element 40. As an example, midsole element 40 may be formed from a polymer foam material, such as polyurethane or ethylvinylacetate, that enhances the ground reaction force attenuation characteristics of sole structure 30 during walking, running, or other ambulatory activities. In some configurations, midsole element 40 may also be (a) a plate formed from a semi-rigid polymer material or (b) a combination of a plate and foam material. In addition to the foam material, midsole element 40 may incorporate one or more plates, moderators, or reinforcing structures, for example, that further enhance the ground reaction force attenuation characteristics of sole structure 30 or the overall performance properties of footwear 10. In further configurations, midsole element 40 may also encapsulate a fluid-filled chamber in forefoot region 11. Accordingly, the materials and overall configuration of midsole element 40 may vary significantly.
Perimeter chamber 50 and central chamber 60 are shown together and in a proper spatial relationship in
Perimeter chamber 50 has a generally U-shaped configuration. The exterior of perimeter chamber 50 defines an upper surface 51, an opposite lower surface 52, an exterior side surface 53 that extends between one side of surfaces 51 and 52, and an interior side surface 54 that extends between an opposite side of surfaces 51 and 52. Additionally, perimeter chamber 50 has a lateral portion 55 located adjacent to lateral side 14 and an opposite medial portion 56 located adjacent to medial side 15. When incorporated into sole structure 30, upper surface 51 is secured to lower surface 42 of midsole element 40, and lower surface 52 is secured to outsole 70. Although lateral portion 55 and medial portion 56 may have the same length and general dimensions (i.e., shape, height, thickness), the length and dimensions of lateral portion 55 and medial portion 56 may be different to vary the properties of sole structure 30 on sides 14 and 15. In some configurations, perimeter chamber 50 may also have various indentations or flex grooves that assist with enhancing the flexibility of sole structure 30 in specific areas.
Areas of perimeter chamber 50 extends around or adjacent to at least a portion of the perimeter of sole structure 30. More particularly, each of lateral portion 55 and medial portion 56 are exposed on the exterior of footwear 10. In this configuration, exterior side surface 53 extends along or adjacent to lateral side 14, extends around a rear area of heel region 13, and extends along or adjacent to medial side 15, thereby forming a portion of an exposed sidewall of sole structure 30 on lateral side 14 and medial side 15. In further configurations, however, perimeter chamber 50 may be spaced inward from the sidewall or may protrude outward significantly from the sidewall. Furthermore, although perimeter chamber 50 is depicted as extending into a portion of midfoot region 12, perimeter chamber 50 may be limited to heel region 13 or may extend throughout each of regions 11-13.
Central chamber 60 has a generally rounded configuration. The exterior of central chamber 60 defines an upper surface 61, an opposite lower surface 62, and a side surface 63. In general, central chamber 60 has a configuration wherein upper surface 61 has a greater area than lower surface 62, thereby causing side surface 63 to taper inward between surfaces 61 and 62. Moreover, upper surface 61 may have a shape that includes two rounded ends having different sizes. As such, central chamber 60 exhibits a general configuration of a fluid-filled bladder disclosed in U.S. Pat. No. 6,796,056 to Swigart, which is incorporated herein by reference. Within sole structure 30, upper surface 61 is secured to lower surface 42 of midsole element 40, and lower surface 62 is secured to outsole 70.
Central chamber 60 is located within the central area of sole structure 30, thereby being positioned between lateral portion 55 and medial portion 56 of perimeter chamber 50. At least a portion of central chamber 60 is spaced from perimeter chamber 50 to define gap 31 between central chamber 60 and perimeter chamber 50. Although chambers 50 and 60 may contact each other or may be formed as a single unit in some configurations of footwear 10, gap 31 generally extends between portions of chambers 50 and 60. For example, gap 31 may extend between at least central chamber 60 and areas of interior side surface 54 in lateral portion 55 and medial portion 56.
The relative elevations of perimeter chamber 50 and central chamber 60, as well as the configuration of midsole element 40, may form a depression that receives and seats the heel area of the foot. Referring to
A wide range of polymer materials may be utilized for chambers 50 and 60. In selecting materials for chambers 50 and 60, engineering properties of the materials (e.g., tensile strength, stretch properties, fatigue characteristics, dynamic modulus, and loss tangent) as well as the ability of the materials to prevent the diffusion of the fluid contained by chambers 50 and 60 may be considered. When formed of thermoplastic urethane, for example, the outer barrier of chambers 50 and 60 may have a thickness of approximately 1.0 millimeter, but the thickness may range from 0.25 to 2.0 millimeters or more, for example. In addition to thermoplastic urethane, examples of polymer materials that may be suitable for chambers 50 and 60 include polyurethane, polyester, polyester polyurethane, and polyether polyurethane. Chambers 50 and 60 may also be formed from a material that includes alternating layers of thermoplastic polyurethane and ethylene-vinyl alcohol copolymer, as disclosed in U.S. Pat. Nos. 5,713,141 and 5,952,065 to Mitchell, et al. A variation upon this material may also be utilized, wherein a center layer is formed of ethylene-vinyl alcohol copolymer, layers adjacent to the center layer are formed of thermoplastic polyurethane, and outer layers are formed of a regrind material of thermoplastic polyurethane and ethylene-vinyl alcohol copolymer. Another suitable material for chambers 50 and 60 is a flexible microlayer membrane that includes alternating layers of a gas barrier material and an elastomeric material, as disclosed in U.S. Pat. Nos. 6,082,025 and 6,127,026 to Bonk, et al. Additional suitable materials are disclosed in U.S. Pat. Nos. 4,183,156 and 4,219,945 to Rudy. Further suitable materials include thermoplastic films containing a crystalline material, as disclosed in U.S. Pat. Nos. 4,936,029 and 5,042,176 to Rudy, and polyurethane including a polyester polyol, as disclosed in U.S. Pat. Nos. 6,013,340; 6,203,868; and 6,321,465 to Bonk, et al.
The polymer materials forming the exteriors or outer barriers of chambers 50 and 60 enclose a fluid pressurized between zero and three-hundred-fifty kilopascals (i.e., approximately fifty-one pounds per square inch) or more. In addition to air and nitrogen, the fluids contained by chambers 50 and 60 may include octafluorapropane or be any of the gasses disclosed in U.S. Pat. No. 4,340,626 to Rudy, such as hexafluoroethane and sulfur hexafluoride, for example. In some configurations, either or both of chambers 50 and 60 may incorporate a valve that permits adjustment in the pressures of the fluids. Although the pressures of the fluids within chambers 50 and 60 may be the same, a difference in the pressures may be more than 70 kilopascals (i.e., approximately 10 pounds per square inch) in some configurations. For example, the pressure within perimeter chamber 50 may be at least 103.5 kilopascals (i.e., approximately 15 pounds per square inch) above an ambient pressure of air surrounding footwear 10, and the pressure within central chamber 60 may be less than 34.5 kilopascals (approximately 5 pounds per square inch) above the ambient pressure of the air surrounding footwear 10. Although the pressure within perimeter chamber 50 may be greater than the pressure within central chamber 60, the pressures may be equal or the pressure within perimeter chamber 50 may be less than the pressure within central chamber 60.
As discussed above, sole structure 30 may form a depression that receives and seats the heel area of the foot, which is at least partially caused by the relative elevations of upper surfaces 51 and 61, to enhance the overall stability of footwear 10. A further factor that may enhance stability relates to the relative pressures within chambers 50 and 60. Given that perimeter chamber 50 may be pressurized more than central chamber 60, perimeter chamber 50 may be less compressible than central chamber 60. In this configuration, the central area of sole structure 30, which includes central chamber 60, may compress more easily than the peripheral area, which includes perimeter chamber 50. The difference in pressures between chambers 50 and 60 may, therefore, further seat the heel of the foot within sole structure 30, which may further enhance the overall stability of footwear 10 during walking, running, or other ambulatory activities.
Outsole 70 forms a ground-contacting element of footwear 10 and may be formed from a durable and wear-resistant rubber material that includes texturing to impart traction. Outsole 70, which may be absent in some configurations of footwear 10, includes a perimeter section 71 and a central section 72. Perimeter section 71 is secured below perimeter chamber 50, and central section 72 is secured below central chamber 60. More particularly, perimeter section 71 may be secured directly to lower surface 52 of perimeter chamber 50, and central section 72 may be secured directly to lower surface 62 of central chamber 60. Although sections 71 and 72 may be joined in some configurations, sections 71 and 72 are depicted as being separate and spaced elements of outsole 70. When formed as separate and spaced sections of outsole 70, sections 71 and 72 may move independently of each other as chambers 50 and 60 are compressed or otherwise deformed during ambulatory activities.
Gap 31 generally extends between portions of chambers 50 and 60 and through outsole 70. In other words, gap 31 extends upward and into sole structure 30 from a lower surface of outsole 70. Although gap 31 may have a vertical orientation, upper portion 32 of gap 31 is located closer to the sidewall of sole structure 30 than lower portion 33 of gap 31. That is, gap 31 extends in a generally diagonal direction such that lower portion 33 is located closer to a center of sole structure 30 than upper portion 32. In order to impart the diagonal orientation to gap 31, interior side surface 54 of perimeter chamber 50 is sloped and extends toward the central area of sole structure 30, and side surface 63 of central chamber 60 is also sloped toward the central area. More particularly, interior side surface 54 tapers outward between upper surface 51 and lower surface 52, and side surface 63 tapers inward between upper surface 61 and lower surface 62.
An advantage of the diagonal orientation of gap 31 relates to the stability of footwear 10. Referring to
Based upon the above discussion, many features of sole structure 30 enhance the overall stability of footwear 10. More particularly, the stability of footwear 10 is enhanced by (a) the depression in sole structure 30 from the relative elevations of upper surfaces 51 and 61 of chambers 50 and 60, (b) the different compressibilities of chambers 50 and 60 from the different pressures of fluids within chambers 50 and 60, and (c) the diagonal orientation of gap 31 from the slope in interior side surface 54 of perimeter chamber 50. While any of these features may be utilized independently to enhance stability, incorporating two or more of the features into sole structure 30 has an advantage of further enhancing the overall stability of footwear 10.
Further Configurations
The configuration sole structure 30 discussed above and depicted in the figures provides one example of a suitable configuration for footwear 10. A variety of other configurations, having different features, may also be utilized. Referring to
The invention is disclosed above and in the accompanying figures with reference to a variety of configurations. The purpose served by the disclosure, however, is to provide an example of the various features and concepts related to the invention, not to limit the scope of the invention. One skilled in the relevant art will recognize that numerous variations and modifications may be made to the configurations described above without departing from the scope of the present invention, as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2677906 | Reed | May 1954 | A |
2703770 | Melzer | Mar 1955 | A |
3030640 | Gosman | Apr 1962 | A |
3608215 | Fukuoka | Sep 1971 | A |
3685176 | Rudy | Aug 1972 | A |
3758964 | Nishimura | Sep 1973 | A |
4187620 | Selner | Feb 1980 | A |
4217705 | Donzis | Aug 1980 | A |
4358902 | Cole et al. | Nov 1982 | A |
4506460 | Rudy | Mar 1985 | A |
4547919 | Wang | Oct 1985 | A |
4698864 | Graebe | Oct 1987 | A |
4722131 | Huang | Feb 1988 | A |
4782602 | Lakic | Nov 1988 | A |
4803029 | Iversen et al. | Feb 1989 | A |
4817304 | Parker et al. | Apr 1989 | A |
4823482 | Lakic | Apr 1989 | A |
4845861 | Moumdjian | Jul 1989 | A |
4874640 | Donzis | Oct 1989 | A |
4891855 | Cheng-Chung | Jan 1990 | A |
4906502 | Rudy | Mar 1990 | A |
4912861 | Huang | Apr 1990 | A |
4991317 | Lakic | Feb 1991 | A |
4999931 | Vermeulen | Mar 1991 | A |
5022109 | Pekar | Jun 1991 | A |
5025575 | Lakic | Jun 1991 | A |
5042176 | Rudy | Aug 1991 | A |
5044030 | Balaton | Sep 1991 | A |
5158767 | Cohen et al. | Oct 1992 | A |
5179792 | Brantingham | Jan 1993 | A |
5193246 | Huang | Mar 1993 | A |
5199191 | Moumdjian | Apr 1993 | A |
5224277 | Sang Do | Jul 1993 | A |
5224278 | Jeon | Jul 1993 | A |
5228156 | Wang | Jul 1993 | A |
5235715 | Donzis | Aug 1993 | A |
5245766 | Warren | Sep 1993 | A |
5253435 | Auger et al. | Oct 1993 | A |
5257470 | Auger et al. | Nov 1993 | A |
5313717 | Allen et al. | May 1994 | A |
5335382 | Huang | Aug 1994 | A |
5337492 | Anderie et al. | Aug 1994 | A |
5353459 | Potter et al. | Oct 1994 | A |
5367791 | Gross et al. | Nov 1994 | A |
5406719 | Potter | Apr 1995 | A |
5493792 | Bates et al. | Feb 1996 | A |
5572804 | Skaja et al. | Nov 1996 | A |
5592706 | Pearce | Jan 1997 | A |
5595004 | Lyden et al. | Jan 1997 | A |
5669161 | Huang | Sep 1997 | A |
5686167 | Rudy | Nov 1997 | A |
5704137 | Dean et al. | Jan 1998 | A |
5741568 | Rudy | Apr 1998 | A |
5771606 | Litchfield et al. | Jun 1998 | A |
5832630 | Potter | Nov 1998 | A |
5846063 | Lakic | Dec 1998 | A |
5907911 | Huang | Jun 1999 | A |
5916664 | Rudy | Jun 1999 | A |
5925306 | Huang | Jul 1999 | A |
5952065 | Mitchell et al. | Sep 1999 | A |
5976451 | Skaja et al. | Nov 1999 | A |
5979078 | McLaughlin | Nov 1999 | A |
5993585 | Goodwin et al. | Nov 1999 | A |
6009637 | Pavone | Jan 2000 | A |
6013340 | Bonk et al. | Jan 2000 | A |
6027683 | Huang | Feb 2000 | A |
6029962 | Shorten et al. | Feb 2000 | A |
6065150 | Huang | May 2000 | A |
6098313 | Skaja | Aug 2000 | A |
6127010 | Rudy | Oct 2000 | A |
6128837 | Huang | Oct 2000 | A |
6192606 | Pavone | Feb 2001 | B1 |
6253466 | Harmon-Weiss et al. | Jul 2001 | B1 |
6258421 | Potter | Jul 2001 | B1 |
6374514 | Swigart | Apr 2002 | B1 |
6385864 | Sell, Jr. et al. | May 2002 | B1 |
6402879 | Tawney et al. | Jun 2002 | B1 |
6430843 | Potter et al. | Aug 2002 | B1 |
6457262 | Swigart | Oct 2002 | B1 |
6463612 | Potter | Oct 2002 | B1 |
6550085 | Roux | Apr 2003 | B2 |
6571490 | Tawney et al. | Jun 2003 | B2 |
6665958 | Goodwin | Dec 2003 | B2 |
6783184 | DiBattista et al. | Aug 2004 | B2 |
6796056 | Swigart | Sep 2004 | B2 |
6837951 | Rapaport | Jan 2005 | B2 |
6892477 | Potter et al. | May 2005 | B2 |
6918198 | Chi | Jul 2005 | B2 |
6931764 | Swigart et al. | Aug 2005 | B2 |
6971193 | Potter et al. | Dec 2005 | B1 |
7000335 | Swigart et al. | Feb 2006 | B2 |
7020988 | Holden et al. | Apr 2006 | B1 |
7051456 | Swigart et al. | May 2006 | B2 |
7070845 | Thomas et al. | Jul 2006 | B2 |
7076891 | Goodwin | Jul 2006 | B2 |
7086179 | Dojan et al. | Aug 2006 | B2 |
7128796 | Hensley et al. | Oct 2006 | B2 |
7131218 | Schindler | Nov 2006 | B2 |
7141131 | Foxen et al. | Nov 2006 | B2 |
7200957 | Hubbard et al. | Apr 2007 | B2 |
7244483 | Tawney et al. | Jul 2007 | B2 |
7278226 | Holden et al. | Oct 2007 | B2 |
7451554 | Hazenberg et al. | Nov 2008 | B2 |
7475498 | Litchfield et al. | Jan 2009 | B2 |
7555848 | Aveni et al. | Jul 2009 | B2 |
7555851 | Hazenberg et al. | Jul 2009 | B2 |
7832118 | Holden et al. | Nov 2010 | B2 |
Entry |
---|
International Search Report and Written Opinion in PCT Application No. PCT/US2010/039839, mailed on Feb. 24, 2011. |
Number | Date | Country | |
---|---|---|---|
20100325914 A1 | Dec 2010 | US |