Article of footwear having a textile upper

Information

  • Patent Grant
  • 11849795
  • Patent Number
    11,849,795
  • Date Filed
    Wednesday, October 7, 2020
    3 years ago
  • Date Issued
    Tuesday, December 26, 2023
    9 months ago
Abstract
An upper for an article of footwear and a method of manufacturing the upper for an article of footwear are disclosed. The upper incorporates a textile element with edges that are joined together to define at least a portion of a void for receiving a foot. The joined edges form a plurality of seams within the textile element, including a longitudinal seam extending on the lower region of the upper from a heel region to a forefoot region. Various warp knitting or weft knitting processes, including circular knitting, may be utilized to form the textile element.
Description
BACKGROUND

The present invention relates to footwear. The invention concerns, more particularly, an article of footwear incorporating an upper that is at least partially formed from a textile material.


DESCRIPTION OF BACKGROUND ART

Conventional articles of athletic footwear include two primary elements, an upper and a sole structure. The upper provides a covering for the foot that securely receives and positions the foot with respect to the sole structure. In addition, the upper may have a configuration that protects the foot and provides ventilation, thereby cooling the foot and removing perspiration. The sole structure is secured to a lower surface of the upper and is generally positioned between the foot and the ground. In addition to attenuating ground reaction forces and absorbing energy (i.e., imparting cushioning), the sole structure may provide traction and control potentially harmful foot motion, such as over pronation. Accordingly, the upper and the sole structure operate cooperatively to provide a comfortable structure that is suited for a wide variety of ambulatory activities, such as walking and running. The general features and configuration of the conventional upper are discussed in greater detail below.


The upper forms a void on the interior of the footwear for receiving the foot. The void has the general shape of the foot, and access to the void is provided by an ankle opening. Accordingly, the upper extends over the instep and toe areas of the foot, along the medial and lateral sides of the foot, and around the heel area of the foot. A lacing system is often incorporated into the upper to selectively increase the size of the ankle opening and permit the wearer to modify certain dimensions of the upper, particularly girth, to accommodate feet with varying proportions. In addition, the upper may include a tongue that extends under the lacing system to enhance the comfort of the footwear, and the upper may include a heel counter to limit movement of the heel.


Various materials may be utilized in manufacturing the upper. The upper of an article of athletic footwear, for example, may be formed from multiple material layers that include an exterior layer, an intermediate layer, and an interior layer. The materials forming the exterior layer of the upper may be selected based upon the properties of wear-resistance, flexibility, and air permeability, for example. With regard to the exterior layer, the toe area and the heel area may be formed of leather, synthetic leather, or a rubber material to impart a relatively high degree of wear-resistance. Leather, synthetic leather, and rubber materials may not exhibit the desired degree of flexibility and air permeability. Accordingly, various other areas of the exterior layer of the upper may be formed from a synthetic or natural textile. The exterior layer of the upper may be formed, therefore, from numerous material elements that each impart different properties to specific portions of the upper.


An intermediate layer of the upper may be formed from a lightweight polymer foam material that provides cushioning and protects the foot from objects that may contact the upper. Similarly, an interior layer of the upper may be formed of a moisture-wicking textile that removes perspiration from the area immediately surrounding the foot. In some articles of athletic footwear, the various layers may be joined with an adhesive, and stitching may be utilized to join elements within a single layer or to reinforce specific areas of the upper.


Although the materials selected for the upper vary significantly, textile materials often form at least a portion of the exterior layer and interior layer. A textile may be defined as any manufacture from fibers, filaments, or yarns characterized by flexibility, fineness, and a high ratio of length to thickness. Textiles generally fall into two categories. The first category includes textiles produced directly from webs of filaments or fibers by randomly interlocking to construct non-woven fabrics and felts. The second category includes textiles formed through a mechanical manipulation of yarn, thereby producing a woven fabric, for example.


Yarn is the raw material utilized to form textiles in the second category. In general, yarn is defined as an assembly having a substantial length and relatively small cross-section that is formed of at least one filament or a plurality of fibers. Fibers have a relatively short length and require spinning or twisting processes to produce a yarn of suitable length for use in textiles. Common examples of fibers are cotton and wool. Filaments, however, have an indefinite length and may merely be combined with other filaments to produce a yarn suitable for use in textiles. Modern filaments include a plurality of synthetic materials such as rayon, nylon, polyester, and polyacrylic, with silk being the primary, naturally-occurring exception. Yarn may be formed of a single filament, which is conventionally referred to as a monofilament yarn, or a plurality of individual filaments grouped together. Yarn may also include separate filaments formed of different materials, or the yarn may include filaments that are each formed of two or more different materials. Similar concepts also apply to yarns formed from fibers. Accordingly, yarns may have a variety of configurations that generally conform to the definition provided above.


The various techniques for mechanically manipulating yarn into a textile include interweaving, intertwining and twisting, and interlooping. Interweaving is the intersection of two yarns that cross and interweave at right angles to each other. The yarns utilized in interweaving are conventionally referred to as warp and weft. Intertwining and twisting encompasses procedures such as braiding and knotting where yarns intertwine with each other to form a textile. Interlooping involves the formation of a plurality of columns of intermeshed loops, with knitting being the most common method of interlooping.


The textiles utilized in footwear uppers generally provide a lightweight, air-permeable structure that is flexible and comfortably receives the foot. In order to impart other properties to the footwear, including durability and stretch-resistance, additional materials are commonly combined with the textile, including leather, synthetic leather, or rubber, for example. With regard to durability, U.S. Pat. No. 4,447,967 to Zaino discloses an upper formed of a textile material that has a polymer material injected into specific zones to reinforce the zones against abrasion or other forms of wear. Regarding stretch resistance, U.S. Pat. No. 4,813,158 to Brown and U.S. Pat. No. 4,756,098 to Boggia both disclose a substantially inextensible material that is secured to the upper, thereby limiting the degree of stretch in specific portions of the upper.


From the perspective of manufacturing, utilizing multiple materials to impart different properties to an article of footwear may be an inefficient practice. For example, the various materials utilized in a conventional upper are not generally obtained from a single supplier. Accordingly, a manufacturing facility must coordinate the receipt of specific quantities of materials with multiple suppliers that may have distinct business practices or may be located in different regions or countries. The various materials may also require additional machinery or different assembly line techniques to cut or otherwise prepare the material for incorporation into the footwear. In addition, incorporating separate materials into an upper may involve a plurality of distinct manufacturing steps requiring multiple individuals. Employing multiple materials, in addition to textiles, may also detract from the breathability of footwear. Leather, synthetic leather, or rubber, for example, are not generally permeable to air. Accordingly, positioning leather, synthetic leather, or rubber on the exterior of the upper may inhibit air flow through the upper, thereby increasing the amount of perspiration, water vapor, and heat trapped within the upper and around the foot.


The present invention is an upper for an article of footwear, the upper incorporating a textile element formed with a knitting machine, for example. In one aspect of the invention, the textile element has edges that are joined together to define at least a portion of a void for receiving a foot. In another aspect of the invention, the textile element has a first area and a second area of unitary construction. The first area is formed of a first stitch configuration, and the second area is formed of a second stitch configuration that is different from the first stitch configuration to impart varying textures to a surface of the textile element. The knitting machine may have a configuration that forms the textile element through either warp knitting or weft knitting.


Another aspect of the invention involves a method of manufacturing an article of footwear. The method includes a step of mechanically manipulating a yarn with a circular knitting machine, for example, to form a cylindrical textile structure. In addition, the method involves removing at least one textile element from the textile structure, and incorporating the textile element into an upper of the article of footwear.


In another aspect of the invention, an article of footwear has an upper and a sole structure secured to the upper. The upper incorporates a textile element formed with a knitting machine. The textile element is removed from a textile structure that includes an outline of the textile element, and the textile element has edges that are joined together to define at least a portion of a void for receiving a foot.


The advantages and features of novelty characterizing the present invention are pointed out with particularity in the appended claims. To gain an improved understanding of the advantages and features of novelty, however, reference may be made to the following descriptive matter and accompanying drawings that describe and illustrate various embodiments and concepts related to the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing Summary of the Invention, as well as the following Detailed Description of the Invention, will be better understood when read in conjunction with the accompanying drawings.



FIG. 1 is a lateral elevational view of an article of footwear having an upper in accordance with the present invention.



FIG. 2 is a lateral elevation view of the upper.



FIG. 3 is a top plan view of the upper.



FIG. 4 is a rear elevational view of the upper.



FIG. 5 is a bottom plan view of the upper.



FIG. 6 is a first cross-sectional view of the upper, as defined by section line 6-6 in FIG. 2.



FIG. 7 is a second cross-sectional view of the upper, as defined by section line 7-7 in FIG. 2.



FIG. 8 is a plan view of a textile element that forms at least a portion of the upper.



FIG. 9 is a perspective view of a textile structure that incorporates two of the textile element.



FIG. 10 is a plan view of another textile element.



FIG. 11 is a plan view of yet another textile element.



FIG. 12 is a lateral elevational view of another article of footwear having an upper in accordance with the present invention.



FIG. 13 is a lateral elevational view of yet another article of footwear having an upper in accordance with the present invention.



FIG. 14 is a cross-sectional view of the footwear depicted in FIG. 13, as defined by section line 14-14.





DETAILED DESCRIPTION

The following discussion and accompanying figures disclose an article of footwear 10 and a method of manufacturing footwear 10, or components thereof, in accordance with the present invention. Footwear 10 is depicted in the figures and discussed below as having a configuration that is suitable for athletic activities, particularly running. The concepts disclosed with respect to footwear 10 may, however, be applied to footwear styles that are specifically designed for a variety of other athletic activities, including basketball, baseball, football, soccer, walking, and hiking, for example, and may also be applied to various non-athletic footwear styles. Accordingly, one skilled in the relevant art will recognize that the concepts disclosed herein may be applied to a wide range of footwear styles and are not limited to the specific embodiments discussed below and depicted in the figures.


The primary elements of footwear 10 are depicted in FIG. 1 as being a sole structure 20 and an upper 30. Sole structure 20 is secured to a lower portion of upper 30 and provides a durable, wear-resistant component that imparts cushioning as footwear 10 impacts the ground. Upper 30 is at least partially formed from a textile element 40 that defines an interior void for comfortably receiving a foot and securing a position of the foot relative to sole structure 20. Various edges of textile element 40 are then secured together to form the shape of upper 30. In some embodiments, textile element 40 may form substantially all of upper 30, or textile element 40 may only be a portion of an upper.


Sole structure 20 has a generally conventional configuration that includes a midsole 21 and an outsole 22. Midsole 21 is secured to a lower portion of upper 30 and is formed of a polymer foam material, such as ethylvinylacetate or polyurethane. Accordingly, midsole 21 attenuates ground reaction forces and absorbs energy (i.e., provides cushioning) as sole structure 20 impacts the ground. To enhance the force attenuation and energy absorption characteristics of sole structure 20, midsole 21 may incorporate a fluid-filled bladder, as disclosed in U.S. Pat. Nos. 4,183,156 and 4,219,945 to Rudy. Alternately or in combination, midsole 21 may incorporate a plurality of discrete, columnar support elements, as disclosed in U.S. Pat. Nos. 5,343,639 and 5,353,523 to Kilgore et al. Outsole 22 is secured to a lower surface of midsole 21 and may be formed from carbon black rubber compound to provide a durable, wear-resistant surface for engaging the ground. Outsole 22 may also incorporate a textured lower surface to enhance the fraction characteristics of footwear 10. In addition, footwear 10 may include an insole (not depicted), which is a relatively thin, cushioning member located within upper 30 and adjacent to a plantar surface of the foot for enhancing the comfort of footwear 10.


Sole structure 20 is described above as having the elements of a conventional sole structure for athletic footwear. Other footwear styles, including, dress shoes and boots, for example, may have other types of conventional sole structures specifically tailored for use with the respective types of footwear. In addition to a conventional configuration, however, sole structure 20 may also exhibit a unique, non-conventional structure. Accordingly, the particular configuration of sole structure 20 may vary significantly within the scope of the present invention to include a wide range of configurations, whether conventional or non-conventional.


Upper 30 is depicted in FIGS. 2-7 as having a lateral region 31, an opposite medial region 32, an instep region 33, a lower region 34, and a heel region 35. Lateral region 31 extends through a longitudinal length of footwear 10 and is generally configured to contact and cover a lateral side of the foot. Medial region 32 has a similar configuration that generally corresponds with a medial side of the foot. Instep region 33 is positioned between lateral region 31 and medial region 32, and instep region 33 extends over an instep area of the foot. Lower region 34 forms a bottom surface of upper 30 and also extends through the longitudinal length of footwear 10. Heel region 35 forms a rear portion of upper 30 and is generally configured to contact and cover a heel area of the foot. In addition, lateral region 31, medial region 32, instep region 33, and heel region 35 cooperatively define an ankle opening 36 for providing the foot with access to the void within upper 30.


Upper 30 is at least partially formed from textile element 40, which forms regions 31-35, and may also include laces or other elements associated with a conventional upper for footwear. Textile element 40 is a single material element that is formed to exhibit a unitary (i.e., one-piece) construction, and textile element 40 is formed or otherwise shaped to extend around the foot. As depicted in FIGS. 2-7, textile element 40 forms both an exterior surface and an interior surface of upper 30. Textile element 40 may be formed as a part of a larger textile element. Textile element 40 is then removed from the larger textile element and various edges of textile element 40 are secured together to form the shape of upper 30. A plurality of seams 51-54 are formed, therefore, when joining the edges of the textile element. Seam 51 extends along the longitudinal length of lower region 34 and is centrally-located with respect to lateral region 31 and medial region 32. Seam 52 is also centrally-located and extends upward along heel region 35. A seam 53 is positioned in a forefoot area of upper 30 and joins a portion of lower region 34 with both of lateral region 31 and medial region 32. In addition, a seam 54 is positioned in a rear area of upper 30 and joins a portion of lower region 34 with heel region 35.


Textile element 40 exhibits the general shape depicted in FIG. 8 prior to the formation of seams 51-54. Following formation of seams 51-54, however, textile element 40 exhibits the shape of upper 30 depicted in FIGS. 2-7. Seams 51-54 are formed by securing various edges of textile element 40 together. More specifically, (1) seam 51 is formed by securing an edge 41a with an edge 41b; (2) seam 52 is formed by securing an edge 42a with an edge 42b; (3) a first portion of seam 53 is formed by securing an edge 43a with an edge 43b; (4) a second portion of seam 53 is formed by securing an edge 43c with an edge 43d; (5) a first portion of seam 54 is formed by securing an edge 44a with an edge 44b; and (6) a second portion of seam 54 is formed by securing an edge 44c with an edge 44d. Referring to FIG. 8, the positions of regions 31-35 and ankle opening 36 are identified to provide a frame of reference relating to the various portions of textile element 40.


In order to join edges 41a and 41b to form seam 51, textile element 40 is folded or otherwise overlapped such that edge 41a is placed adjacent to edge 41b. Stitching, an adhesive, or heat bonding, for example, is then utilized to secure edge 41a and edge 41b. Textile element 40, as depicted in FIG. 8, has a generally planar configuration. Upon the formation of seam 51, however, one portion of textile element 40 overlaps the other portion of textile element 40. The volume between the overlapping portions effectively forms a portion of the void within upper 30 for receiving the foot.


The folding or overlapping of textile element 40 to form seam 51 places edge 42a adjacent to edge 42b, which facilitates the formation of seam 52. With reference to FIG. 8, an edge 45 forms a generally u-shaped area in textile element 40. Upon the joining of edges 42a and 42b to form seam 52, the u-shaped area becomes an aperture in textile element 40 and effectively forms ankle opening 36. Each of edges 43a-43d and edges 44a-44d are formed from a generally v-shaped area of textile element 40. Accordingly, seams 53 and 54 may be formed by closing the v-shaped areas and securing the various edges together.


Following the formation of each of seams 51-54, the manufacturing of upper 30 is essentially complete. Various finishing steps may be performed, such as reinforcing ankle opening 36, for example. Upper 30 (i.e., textile element 40) is then secured to sole structure 20, with an adhesive, for example. The insole is then placed into the void within upper 30 and adjacent to lower region 34. In some embodiments, various reinforcing members may be added to the exterior or interior surface of upper 20 in order to limit the degree of stretch in upper 20 or provide enhanced wear-resistance. In addition, a lacing system may be added to provide adjustability.


Textile element 40 is a single material element with a unitary construction, as discussed above. As defined for purposes of the present invention, unitary construction is intended to express a configuration wherein portions of a textile element are not joined together by seams or other connections, as depicted with textile element 40 in FIG. 8. Although the various edges 41a-44d are joined together to form seams 51-54, the various portions of textile element 40 are formed as an unitary element without seams, as discussed below.


Textile element 40 is primarily formed from one or more yarns that are mechanically-manipulated through either an interweaving, intertwining and twisting, or interlooping process, for example. As discussed in the Background of the Invention section above, interweaving is the intersection of two yarns that cross and interweave at right angles to each other. The yarns utilized in interweaving are conventionally referred to as warp and weft. Intertwining and twisting encompasses procedures such as braiding and knotting where yarns intertwine with each other to form a textile. Interlooping involves the formation of a plurality of columns of intermeshed loops, with knitting being the most common method of interlooping. Textile element 40 may, therefore, be formed from one of these processes for manufacturing a textile.


A variety of mechanical processes have been developed to manufacture a textile. In general, the mechanical processes may be classified as either warp knitting or weft knitting. With regard to warp knitting, various specific sub-types that may be utilized to manufacture a textile include tricot, raschel, and double needle-bar raschel (which further includes jacquard double needle-bar raschel). With regard to weft knitting, various specific sub-types that may be utilized to manufacture a textile include circular knitting and flat knitting. Various types of circular knitting include sock knitting (narrow tube), body garment (seamless or wide tube), and jacquard.


Textile element 40 may be formed through any of the mechanical processes discussed above. Accordingly, textile element 40 may be formed on either a warp knitting machine or a weft knitting machine. One suitable knitting machine for forming textile element 40 is a wide-tube circular knit jacquard machine. Another suitable knitting machine for forming textile element 40 is a wide-tube circular knitting machine that is produced in the Lonati Group by Santoni S.p.A. of Italy under the SM8 TOP1 model number. This Santoni S.p.A. wide-tube circular knitting machine may form a textile structure having a diameter that ranges from 10 inches to 20 inches, with 8 feeds for each diameter. The machine exhibits a maximum 140 revolutions per minute for 10 inch diameters, and a maximum 120 revolutions per minute for 13 inch diameters. Furthermore, the machine gauge is variable between 16, 22, 24, 26, 28, and 32 needles per inch, and is suitable for various needle gauges ranging from 48 to 75.


A wide-tube circular knitting machine, as produced by Santoni S.p.A., forms a generally cylindrical textile structure and is capable of forming various types of stitches within a single textile structure. In general, the wide-tube circular knitting machine may be programmed to alter the design on the textile structure through needle selection. That is, the type of stitch that is formed at each location on the textile structure may be selected by programming the wide-tube circular knitting machine such that specific needles either accept or do not accept yarn at each stitch location. In this manner, various patterns, textures, or designs may be selectively and purposefully imparted to the textile structure.


An example of a textile structure 60 that may be formed with a wide-tube circular knitting machine is depicted in FIG. 9. Textile structure 60 has a generally cylindrical configuration, and the types of stitches vary throughout textile structure 60 so that a pattern is formed with the outline of textile element 40. That is, differences in the stitches within textile structure 60 form an outline with the shape and proportions of textile element 40.


The Santoni S.p.A. wide-tube circular knitting machine may form a textile structure having a diameter that ranges from 10 inches to 16 inches, as discussed above. Assuming that textile structure 60 exhibits a diameter of 10 inches, then the circumference of textile structure 60 is approximately 31 inches. In many circumstances, the total width of textile element 40 will be approximately 12 inches, depending upon the size of footwear 10. The outlines for at least two textile elements 40 may, therefore, be formed on textile structure 60. Referring to FIG. 9, the outline of textile element 40 is depicted on a front portion of textile structure 60, and the outline of another textile element 40 is depicted on a rear portion of textile structure 60. Accordingly, a first textile element 40 and a second textile element 40 may be simultaneously formed in a single textile structure 60. As the diameter of textile element 60 is increased or the width of textile element 40 decreases, however, an even greater number of textile elements 40 may be outlined on textile structure 60.


Textile structure 60 may be formed with a wide-tube circular knitting machine, as discussed above. The types of stitches that form textile structure 60 may be varied to form an outline of one or more textile elements 40 on textile structure 60. That is, the wide-tube circular knitting machine may be programmed to form different types of stitches in textile structure 60 so as to outline one or more textile elements 40. Each textile element 40 is then removed from textile structure 60 with a die-cutting, laser-cutting, or other conventional cutting operation. Once textile element 40 is removed from textile structure 60, seams 51-54 may be formed and textile element 40 may be incorporated into footwear 10.


The yarn forming textile element 40 may be generally defined as an assembly having a substantial length and relatively small cross-section that is formed of at least one filament or a plurality of fibers. Fibers have a relatively short length and require spinning or twisting processes to produce a yarn of suitable length for use in an interlooping process. Common examples of fibers are cotton and wool. Filaments, however, have an indefinite length and may merely be combined with other filaments to produce a yarn suitable for use in an interloping process. Modern filaments include a plurality of synthetic materials such as rayon, nylon, polyester, and acrylic, with silk being the primary, naturally-occurring exception. Yarn may be formed of a single filament (conventionally referred to as a monofilament yarn) or a plurality of individual filaments. Yarn may also be formed of separate filaments formed of different materials, or the yarn may be formed of filaments that are each formed of two or more different materials. Similar concepts also apply to yarns formed from fibers. Accordingly, yarns may have a variety of configurations within the scope of the present invention that generally conform to the definition provided above.


In order to provide the stretch and recovery properties to upper 30, and particularly textile element 40, a yarn that incorporates an elastane fiber may be utilized. Elastane fibers are available from E.I. duPont de Nemours Company under the LYCRA trademark. Such fibers may have the configuration of covered LYCRA, wherein the fiber includes a LYCRA core that is surrounded by a nylon sheath. One suitable yarn, for example, includes a 70 denier elastane core that is covered with nylon having a 2 ply, 80 denier, 92 filament structure. Other fibers or filaments exhibiting elastic properties may also be utilized.


As discussed above, a yarn that incorporates elastane fibers is suitable for textile element 40. A plurality of other yarns, whether elastic or inelastic, are also suitable for textile element 40. The characteristics of the yarn selected for textile element 40 depend primarily upon the materials that form the various filaments and fibers. Cotton, for example, provides a soft hand, natural aesthetics, and biodegradability. Elastane fibers, as discussed above, provide substantial stretch and recoverability. Rayon provides high luster and moisture absorption. Wool also provides high moisture absorption, in addition to insulating properties. Polytetrafluoroethylene coatings may provide a low friction contact between the textile and the skin. Nylon is a durable and abrasion-resistant material with high strength. Finally, polyester is a hydrophobic material that also provides relatively high durability. Accordingly, the materials comprising the yarn may be selected to impart a variety of physical properties to textile element 40, and the physical properties may include, for example, strength, stretch, support, stiffness, recovery, fit, and form.


Textile element 40 is depicted as having a generally smooth, non-varied stitch configuration. That is, similar stitches are utilized throughout textile element 40 to impart a common texture to the various portions of textile element 40. As discussed above, however, a wide-tube circular knitting machine is generally capable of forming various types of stitches within a single textile structure. The wide-tube circular knitting machine may, therefore, vary the stitches within textile element 40 to produce various patterns, designs, or textures, for example. Various types of stitches may also be formed with other types of knitting machines. With reference to FIG. 10, a textile element 40′ with the general shape of textile element 40 is depicted as having various areas with different textures. For example, a central area that corresponds with instep region 33 has a first texture 46′ that is generally smooth. In addition, textile element 40′ includes a second texture 47′ that is a plurality of longitudinal ribs. When incorporated into footwear 10, the ribs will extend longitudinally along lateral region 31 and medial region 32, and the ribs may extend into heel region 35. The ribs may be present for aesthetic purposes, or may affect the stretch properties of upper 20, for example. Accordingly, textile element 40′ exhibits areas with different textures in a single element of textile material.


Many conventional articles of footwear incorporate uppers with various material elements that each exhibit different properties. For example, a first material element may be smooth, and a second material element may be textured. The first and second material elements are then stitched together to form a portion of the conventional upper. Textile element 40′ also exhibits smooth and textured areas. In contrast with the conventional upper, however, first texture 46′ and second texture 47′ are incorporated into a single, unitary element of textile, rather than two separate elements that are stitched or otherwise joined together.


A textile structure 40″ is depicted in FIG. 11 and has the general shape of both textile element 40 and textile element 40′. Textile element 40″ includes areas with three different textures. A first texture 46″ is generally smooth and has the configuration of various strips that extends laterally across areas corresponding with lateral region 31, medial region 32, and instep region 33. Various portions of textile element 40″ also include a second texture 47″, which is generally rough in comparison with first texture 46″. In addition, the area of textile element 40″ corresponding with instep region 33 includes a third texture 48″. The different textures 46″-48″ are formed by merely varying the type of stitch formed by the wide-tube circular knitting machine at each location of textile element 40″. Textures 46″-48″ may exhibit aesthetic differences, or the differences may be structural. For example, the degree of stretch in areas with textures 46″-48″ may be different, or the wear resistance of the areas may vary depending upon the stitch utilized. The air-permeability of textile element 40″ may also vary in the different areas. Third texture 48″ is formed to include a plurality of apertures that extend through textile element 40″. The apertures may be formed by omitting stitches at specific locations during the wide-tube circular knitting process, and the apertures facilitate the transfer of air between the void within upper 20 and the area outside of upper 20. Accordingly, the various stitches formed in textile element 40″, or one of textile elements 40 or 40′, may be utilized to vary the texture, physical properties, or aesthetics of footwear 10 within a single, unitary element of material.


In addition to varying the stitch types to form textures 46′-47′ and 46″-48″, the type of yarn utilized in various areas of textile elements 40′ and 40″ may be changed to impart different properties. As discussed above, yarn may be formed from cotton, wool, elastane, rayon, nylon, and polyester, for example. Each of these yarn types may impart differing properties to the areas corresponding with textures 46′-47′ and 46″-48″. For example, elastane may be utilized to impart stretch, wool may be utilized for insulation, and nylon may be utilized for durability. Accordingly, different yarn types may be utilized to impart different properties. The types of knitting that may be utilized to form different zones with different properties (e.g., yarn characteristics, textures, etc.) may vary significantly to include the various warp knitting and weft knitting processes discussed earlier, such as tricot, raschel, double needle-bar raschel, circular knitting, and flat knitting, for example.


An article of footwear 110 is depicted in FIG. 12 and includes a sole structure 120 and an upper 130. Upper 130 includes a textile element 140 having the general configuration of textile element 40. As with textile element 40, textile element 140 forms both an exterior surface and an interior surface of upper 130. In addition, upper 130 includes a lace 131 and a plurality of elements 132-135 that also form a portion of the exterior surface. Lace 131 extends through a plurality of apertures formed in textile element 140. The apertures may be formed by omitting stitches at specific locations. Element 132 is positioned in a forefoot area of footwear 110 and may be formed of leather or rubber, for example, to provide additional wear-resistance. Element 133 extends around the ankle opening to reinforce and limit stretch in the area of the ankle opening. Element 134 extends around the heel region to counter movement of the heel and seat the heel above sole structure 120. Furthermore, elements 135 are substantially inextensible strips of material, such as leather or synthetic leather, that limit stretch on the lateral side of footwear 110. Whereas upper 30 was almost exclusively formed by textile element 40, upper 130 also includes lace 131 and elements 132-135. Accordingly, an upper in accordance with the present invention may incorporate a plurality of additional components.


Another article of footwear 210 is depicted in FIGS. 13-14 and includes a sole structure 220 and an upper 230. Upper 230 includes a textile element 240 that forms an interior layer. In addition, upper 230 includes an intermediate layer 250 and an exterior layer 260. As discussed in the Background of the Invention section above, the upper of a conventional article of footwear may be formed from multiple material layers that include an exterior layer, an intermediate layer, and an interior layer. The materials forming the exterior layer of the upper may be selected based upon the properties of wear-resistance, flexibility, and air permeability, for example. The intermediate layer of the upper may be formed from a lightweight polymer foam material that provides cushioning and protects the foot from objects that may contact the upper. Similarly, an interior layer of the upper may be formed of a moisture-wicking textile that removes perspiration from the area immediately surrounding the foot.


Upper 230 has a configuration that is similar to the configuration of the conventional upper in that various material layers are utilized. In contrast with the conventional upper, however, the interior layer is formed of textile element 240, which is manufactured through the process discussed above. That is, textile element 240 is a single element of textile that forms the interior layer of upper 230. A benefit to utilizing textile element 240 for the interior layer is that textile element 240 includes few seams that may contact the foot. In addition, the stitches utilized at various locations of textile element 240 may modify the texture of the interior surface of upper 230, thereby limiting the degree of slip that occurs between the foot and upper 230 or enhancing the air-permeability of upper 230 in specific locations.


Various warp knitting or weft knitting processes may be utilized to form textile element 40, or the various other textile elements discussed above. An advantage of this process is that various stitches may be incorporated into specific locations of textile element 40 to modify the physical properties or aesthetics of textile element 40. Whereas a conventional upper includes various elements that stitched or adhesively joined, textile element 40 is a single, unitary element of material. From the perspective of manufacturing, utilizing multiple materials to impart different properties to an article of footwear may be an inefficient practice. By forming textile element 40 to be a single, unitary element of material, however, efficiency is increased in that upper 20 may include a single textile element, rather than numerous joined elements.


A variety of knitting processes may be utilized to form textile element 40, as discussed above. As a specific example, a jacquard double needle-bar raschel knitting machine may be utilized to form a flat textile structure, and may also be utilized to form the textile structure to have the configuration of a spacer mesh textile. Unlike textile structure 60, which exhibits a generally cylindrical configuration, the textile structure formed with the jacquard double needle-bar raschel knitting machine will have a flat configuration Like textile structure 60, however, an outline of a textile element may be imparted to the textile structure formed with the jacquard double needle-bar raschel knitting machine. That is, differences in the stitches within the textile structure may form an outline with the shape and proportions of the intended textile element. Accordingly, the textile element may be removed from the textile structure and incorporated into footwear 10. In addition, the jacquard double needle-bar raschel knitting machine may be utilized to impart various textures, different properties, or different yarn types to the textile element. Similarly, other types of knitting, such as flat knitting, may be utilized within the scope of the present invention to impart various textures, different properties, or different yarn types to the textile element.


The present invention is disclosed above and in the accompanying drawings with reference to a variety of embodiments. The purpose served by the disclosure, however, is to provide an example of the various features and concepts related to the invention, not to limit the scope of the invention. One skilled in the relevant art will recognize that numerous variations and modifications may be made to the embodiments described above without departing from the scope of the present invention, as defined by the appended claims.

Claims
  • 1. An upper for an article of footwear, the upper comprising: a medial region, a lateral region, an instep region between the medial region and the lateral region, and a lower region; anda knit textile element having a one-piece unitary construction and forming at least part of the medial region, at least part of the lateral region, and the instep region, the knit textile element having a first integrally knit texture in the instep region and a second integrally knit texture in at least one of a portion of the lateral region adjacent the instep region and a portion of the medial region adjacent the instep region, the first integrally knit texture being different than the second integrally knit texture, the first integrally knit texture having a different degree of stretch than the second integrally knit texture,the knit textile element having a plurality of seams formed by joining edges of the knit textile element, the plurality of seams of the knit textile element including a longitudinal seam extending on the lower region of the upper from a heel region of the upper to a forefoot area of the upper, the longitudinal seam being centrally located on the lower region of the upper between the medial region and the lateral region.
  • 2. The upper for the article of footwear of claim 1, wherein the knit textile element forms the medial region, the lateral region, the lower region, and the heel region of the upper.
  • 3. The upper for the article of footwear of claim 1, wherein the upper comprises an ankle opening.
  • 4. The upper for the article of footwear of claim 3, wherein the plurality of seams includes a heel seam that linearly extends from the lower region to the ankle opening at the heel region of the upper.
  • 5. The upper for the article of footwear of claim 4, wherein the heel seam is centrally located between the medial region and the lateral region at the heel region.
  • 6. The upper for the article of footwear of claim 4, wherein the heel seam intersects the longitudinal seam.
  • 7. The upper for the article of footwear of claim 1, wherein the longitudinal seam includes one or more of a stitched seam, a heat bonded seam, or an adhesively secured seam.
  • 8. An article of footwear comprising the upper of claim 1, wherein the lower side of the upper is secured to a sole structure for the article of footwear.
  • 9. The upper for the article of footwear of claim 1, wherein the second integrally knit texture is smooth.
  • 10. The upper for the article of footwear of claim 1, wherein the first integrally knit texture comprises apertures formed by omitted stitches and extending through the knit textile element.
  • 11. The upper for the article of footwear of claim 1, wherein the second integrally knit texture is present in portions of the instep region adjacent the first integrally knit texture.
  • 12. An article of footwear comprising an upper secured to a sole structure, the upper comprising: a medial region, a lateral region, and an instep region between the medial region and the lateral region; anda knit textile element having a one-piece unitary construction and forming at least part of the medial region, at least part of the lateral region, and the instep region, the knit textile element having a first integrally knit texture in the instep region and a second integrally knit texture in at least one of a portion of the lateral region adjacent the instep region and a portion of the medial region adjacent the instep region, the first integrally knit texture being different than the second integrally knit texture, the first integrally knit texture having a different degree of stretch than the second integrally knit texture,the knit textile element having a plurality of seams formed by joining edges of the knit textile element.
  • 13. The article of footwear of claim 12, wherein the knit textile element forms the medial region, the lateral region, a lower region of the upper, and a heel region of the upper.
  • 14. The article of footwear of claim 12, wherein the plurality of seams of the knit textile element includes a longitudinal seam extending on a lower region of the upper from a heel region of the upper to a forefoot area of the upper.
  • 15. The article of footwear of claim 14, wherein the longitudinal seam is centrally located on the lower region of the upper between the medial region and the lateral region.
  • 16. The article of footwear of claim 12, wherein the plurality of seams includes a heel seam that extends from a lower region of the upper to an ankle opening at a heel region of the upper.
  • 17. The article of footwear of claim 16, wherein the heel seam intersects a longitudinal seam positioned along the lower region of the upper.
  • 18. The article of footwear of claim 12, wherein the second integrally knit texture is smooth.
  • 19. The article of footwear of claim 12, wherein the first integrally knit texture comprises apertures formed by omitted stitches.
  • 20. The article of footwear of claim 12, wherein the second integrally knit texture is present in portions of the instep region adjacent the first integrally knit texture.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application, entitled “Article of Footwear Having A Textile Upper” is a continuation application of U.S. patent application Ser. No. 16/145,640, filed Sep. 28, 2018, which is a continuation application of U.S. patent application Ser. No. 15/703,394, filed Sep. 13, 2017, now U.S. Pat. No. 10,130,135, issued Nov. 20, 2018, which is a continuation application of U.S. patent application Ser. No. 15/610,089, filed May 31, 2017, now U.S. Pat. No. 9,986,781, issued Jun. 5, 2018, which is a continuation of U.S. patent application Ser. No. 14/503,514, filed Oct. 1, 2014, now U.S. Pat. No. 9,743,705, issued Aug. 29, 2017, which is a division of U.S. patent application Ser. No. 14/079,748, filed Nov. 14, 2013, now abandoned, which is a continuation of U.S. patent application Ser. No. 13/413,233, filed Mar. 6, 2012, now abandoned, which is a continuation application of U.S. patent application Ser. No. 13/236,742, filed Sep. 20, 2011, now U.S. Pat. No. 8,266,749, issued Sep. 18, 2012, which is a continuation application of U.S. patent application Ser. No. 12/879,517, filed Sep. 10, 2010, now U.S. Pat. No. 8,042,288, issued Oct. 25, 2011, which is a continuation application of U.S. patent application Ser. No. 12/032,995, filed Feb. 18, 2008, now U.S. Pat. No. 7,814,598, issued Oct. 19, 2010, which is a divisional application of U.S. patent application Ser. No. 10/791,289, filed Mar. 3, 2004, now U.S. Pat. No. 7,347,011, issued Mar. 25, 2008, each of which applications are being entirely incorporated herein by reference.

US Referenced Citations (195)
Number Name Date Kind
601192 Woodside Mar 1898 A
761520 Matthew May 1904 A
1215198 Rothstein Feb 1917 A
1597934 Stimpson Aug 1926 A
1803554 Knilans May 1931 A
1841518 Henry Jan 1932 A
1888172 Joha Nov 1932 A
1902780 Holden et al. Mar 1933 A
RE18804 Joha Apr 1933 E
1910251 Joha May 1933 A
1956969 Ayers May 1934 A
2001293 Wallace May 1935 A
2047724 Zuckerman Jul 1936 A
2147197 Glidden Feb 1939 A
2150730 Schuessler Mar 1939 A
2178941 Schuessler Nov 1939 A
2314098 Mcdonald Mar 1943 A
2330199 Holmes Sep 1943 A
2343390 Ushakoff Mar 1944 A
2400692 Herbert May 1946 A
2440393 Clark Apr 1948 A
2467237 Sherman et al. Apr 1949 A
2538673 Ansley Jan 1951 A
2569764 Jonas Oct 1951 A
2586045 Hoza Feb 1952 A
2603891 Gustav Jul 1952 A
2608078 Anderson Aug 1952 A
2641004 Whiting et al. Jun 1953 A
2675631 Carr Apr 1954 A
2701458 Ducharme Feb 1955 A
2994322 Cullen et al. Aug 1961 A
3114213 Bowers Dec 1963 A
3583081 Hayashi Jun 1971 A
3694940 Stohr Oct 1972 A
3704474 Winkler Dec 1972 A
3766566 Tadokoro Oct 1973 A
3769723 Masterson et al. Nov 1973 A
3778856 Chriestie et al. Dec 1973 A
3863272 Guille Feb 1975 A
3952427 Von et al. Apr 1976 A
3972086 Belli et al. Aug 1976 A
3985003 Reed Oct 1976 A
4027402 Liu et al. Jun 1977 A
4031586 Von et al. Jun 1977 A
4038840 Castello Aug 1977 A
4057981 Runac Nov 1977 A
4151662 Vistins May 1979 A
4172293 Vistins Oct 1979 A
4183156 Rudy Jan 1980 A
4211806 Civardi et al. Jul 1980 A
4219945 Rudy et al. Sep 1980 A
4232458 Bartels Nov 1980 A
4255949 Thorneburg Mar 1981 A
4258480 Famolare, Jr. Mar 1981 A
4276671 Melton Jul 1981 A
4317292 Melton Mar 1982 A
4354318 Frederick et al. Oct 1982 A
4373361 Thorneburg Feb 1983 A
4438574 Johnson Mar 1984 A
4447967 Zaino May 1984 A
4465448 Aldridge Aug 1984 A
4607439 Sogabe et al. Aug 1986 A
4624115 Safrit et al. Nov 1986 A
4737396 Kamat Apr 1988 A
4750339 Simpson et al. Jun 1988 A
4756098 Boggia Jul 1988 A
4785558 Shiomura Nov 1988 A
4813158 Brown Mar 1989 A
4852272 Chilewich et al. Aug 1989 A
5031423 Ikenaga Jul 1991 A
5081854 Lonati Jan 1992 A
5095720 Tibbals, Jr. Mar 1992 A
5117567 Berger Jun 1992 A
5152025 Hirmas Oct 1992 A
5192601 Neisler Mar 1993 A
5323627 Lonati et al. Jun 1994 A
5343639 Kilgore et al. Sep 1994 A
5345638 Nishida Sep 1994 A
5353523 Kilgore et al. Oct 1994 A
5353524 Brier Oct 1994 A
5371957 Gaudio Dec 1994 A
5461884 Mccartney et al. Oct 1995 A
5511323 Dahlgren Apr 1996 A
5557527 Kotaki et al. Sep 1996 A
5572860 Mitsumoto et al. Nov 1996 A
5575090 Condini Nov 1996 A
5604997 Dieter Feb 1997 A
5623840 Roell Apr 1997 A
5729918 Smets Mar 1998 A
5735145 Pernick Apr 1998 A
5746013 Fay, Sr. May 1998 A
5765296 Ludemann et al. Jun 1998 A
5797200 Hess Aug 1998 A
5884419 Davidowitz et al. Mar 1999 A
5996189 Wang Dec 1999 A
6029376 Cass Feb 2000 A
6032387 Johnson Mar 2000 A
6052921 Oreck Apr 2000 A
6088936 Bahl Jul 2000 A
6151802 Reynolds Nov 2000 A
6170175 Funk Jan 2001 B1
6308438 Throneburg Oct 2001 B1
6330814 Fujiwara Dec 2001 B1
6333105 Tanaka et al. Dec 2001 B1
6401364 Burt Jun 2002 B1
6482492 Hung Nov 2002 B1
6558784 Norton et al. May 2003 B1
6588237 Cole et al. Jul 2003 B2
6754983 Hatfield et al. Jun 2004 B2
6779369 Shepherd Aug 2004 B2
6845284 Bingham et al. Jan 2005 B2
6910288 Dua Jun 2005 B2
6922917 Kerns et al. Aug 2005 B2
6931762 Dua Aug 2005 B1
6984596 Dickerson Jan 2006 B2
6986269 Dua Jan 2006 B2
D517297 Jones et al. Mar 2006 S
7016867 Lyden Mar 2006 B2
7051460 Orei et al. May 2006 B2
7056402 Koerwien et al. Jun 2006 B2
7107235 Lyden Sep 2006 B2
7207196 Lonati et al. Apr 2007 B2
7347011 Dua et al. Mar 2008 B2
7441348 Dawson Oct 2008 B1
7543397 Kilgore et al. Jun 2009 B2
7568298 Kerns Aug 2009 B2
7682219 Falla Mar 2010 B2
7814598 Dua Oct 2010 B2
8042288 Dua et al. Oct 2011 B2
8069692 Chung et al. Dec 2011 B2
8266749 Dua et al. Sep 2012 B2
8490299 Dua et al. Jul 2013 B2
8745895 Sokolowski et al. Jun 2014 B2
9084449 Bell et al. Jul 2015 B2
9681704 Podhajny Jun 2017 B2
9743705 Thomas et al. Aug 2017 B2
9907350 Dua et al. Mar 2018 B2
9907351 Dua et al. Mar 2018 B2
9918510 Dua et al. Mar 2018 B2
9918511 Dua et al. Mar 2018 B2
9924758 Dua et al. Mar 2018 B2
9924759 Dua et al. Mar 2018 B2
9930923 Dua et al. Apr 2018 B2
9936758 Dua et al. Apr 2018 B2
9943130 Dua et al. Apr 2018 B2
9961954 Dua et al. May 2018 B2
9986781 Dua et al. Jun 2018 B2
10130135 Dua et al. Nov 2018 B2
10130136 Dua et al. Nov 2018 B2
10182617 Craig Jan 2019 B2
10426227 Lee Oct 2019 B2
20020078599 Delgorgue et al. Jun 2002 A1
20020148258 Cole et al. Oct 2002 A1
20030126762 Tseng Jul 2003 A1
20030191427 Jay et al. Oct 2003 A1
20040118018 Dua Jun 2004 A1
20040181972 Csorba Sep 2004 A1
20050115284 Dua Jun 2005 A1
20050193592 Dua et al. Sep 2005 A1
20050273988 Christy Dec 2005 A1
20050284000 Kers Dec 2005 A1
20060059715 Aveni Mar 2006 A1
20060130359 Dua et al. Jun 2006 A1
20060162187 Byrnes et al. Jul 2006 A1
20070022627 Sokolowski et al. Feb 2007 A1
20070180730 Greene et al. Aug 2007 A1
20070294920 Baychar Dec 2007 A1
20080017294 Bailey et al. Jan 2008 A1
20080078102 Kilgore et al. Apr 2008 A1
20080110048 Dua et al. May 2008 A1
20080110049 Sokolowski et al. May 2008 A1
20080189830 Egglesfield Aug 2008 A1
20080196181 Dua et al. Aug 2008 A1
20080313939 Ardill Dec 2008 A1
20090068908 Hinchcliff Mar 2009 A1
20100051132 Glenn Mar 2010 A1
20100154256 Dua Jun 2010 A1
20100170651 Scherb et al. Jul 2010 A1
20100199520 Dua et al. Aug 2010 A1
20100287790 Sokolowski et al. Nov 2010 A1
20100325916 Dua et al. Dec 2010 A1
20110030244 Motawi et al. Feb 2011 A1
20110078921 Greene et al. Apr 2011 A1
20120005922 Dua et al. Jan 2012 A1
20120159813 Dua et al. Jun 2012 A1
20120255201 Little Oct 2012 A1
20130239625 Tatler et al. Sep 2013 A1
20140150294 Thomas et al. Jun 2014 A1
20150013080 Thomas et al. Jan 2015 A1
20160088893 Meir Mar 2016 A1
20160088894 Meir et al. Mar 2016 A1
20160208421 Baines et al. Jul 2016 A1
20170258172 Dua et al. Sep 2017 A1
20180000187 Dua et al. Jan 2018 A1
20190029358 Dua et al. Jan 2019 A1
Foreign Referenced Citations (31)
Number Date Country
1429512 Sep 1922 CN
1067566 Jan 1993 CN
1411762 Apr 2003 CN
627878 Mar 1936 DE
870963 Mar 1953 DE
1084173 Jun 1960 DE
19738433 Apr 1998 DE
19728848 Jan 1999 DE
0279950 Aug 1988 EP
0448714 Oct 1991 EP
0728860 Aug 1996 EP
0758693 Feb 1997 EP
0898002 Feb 1999 EP
1233091 Aug 2002 EP
1437057 Jul 2004 EP
1563752 Aug 2005 EP
1602762 Dec 2005 EP
1972706 Sep 2008 EP
2171172 Sep 1973 FR
538865 Aug 1941 GB
1539886 Feb 1979 GB
2018837 Oct 1979 GB
1603487 Nov 1981 GB
6-113905 Apr 1994 JP
8-109553 Apr 1996 JP
11-302943 Nov 1999 JP
7304678 Oct 1974 NL
9003744 Apr 1990 WO
0032861 Jun 2000 WO
0231247 Apr 2002 WO
2004097092 Nov 2004 WO
Non-Patent Literature Citations (199)
Entry
Petitioner Adidas AG's Notice of Supplemental Evidence in Response to Patent Owner's Objections to Evidence Under 37 C.F.R. § 42.64(8)(1) for Inter Partes Review, IPR2016-00922, May 12, 2017, 4 pages.
Petitioner Adidas AG's Request for Rehearing Under 37 C.F.R. § 42.71 on the Decision Not to Institute Inter Partes Review for Inter Partes Review, IPR2017-00263, Jul. 7, 2017, 17 pages.
Petitioner Adidas AG's Request for Rehearing Under 37 C.F.R. § 42.71 on the Decision Not to Institute Inter Partes Review for Inter Partes Review, IPR2017-00264, Jul. 7, 2017, 17 pages.
Petitioner Exhibit List, IPR2013-00067, Nov. 12, 2013.
Petitioner Opposition to Patent Owner Motion to Amend, IPR2013-00067, Nov. 12, 2013.
Petitioner Power of Attorney, IPR2013-00067, Jul. 11, 2013.
Petitioner Power of Attorney, IPR2013-00067, Nov. 28, 2012, 2 pages.
Petitioner's Demonstratives for Inter Partes Review, IPR2016-00922, Jul. 10, 2017.
Petitioner's Demonstratives for Inter Partes Review, IPR2016-00921, Jul. 10, 2017, 84 pages.
Petitioner's Exhibit List, IPR2013-00067, Feb. 6, 2014.
Petitioner's Exhibit List for Inter Partes Review, IPR2016-00921, May 12, 2017, 4 pages.
Petitioner's Exhibit List for Inter Partes Review, IPR2016-00922, May 12, 2017, 4 pages.
Petitioner's Motion to Exclude Evidence, IPR2013-00067, Jan. 7, 2014.
Petitioner's Oral Hearing Demonstratives, IPR2013-00067, Feb. 6, 2014.
Petitioner's Power of Attorney, IPR2013-00067, Nov. 26, 2013.
Petitioner's Reply to Patent Owner's Opposition to Petitioner's Motion to Exclude Evidence, IPR2013-00067, Jan. 28, 2014.
Petitioner's Reply to Patent Owner's Response for Inter Partes Review, IPR2016-00921, Apr. 21, 2017, 32 pages.
Petitioner's Reply to Patent Owner's Response for Inter Partes Review, IPR2016-00922, Apr. 21, 2017, 34 pages.
Petitioner's Request for Oral Argument, IPR2013-00067, Jan. 7, 2014.
Petitioner's Request for Oral Argument for Inter Partes Review, IPR2016-00921, Jun. 12, 2017, 4 pages.
Petitioner's Request for Oral Argument for Inter Partes Review, IPR2016-00922, Jun. 12, 2017, 4 pages.
Petitioner's Updated Exhibit List, IPR2016-00921, Jul. 11, 2017, 4 pages.
Petitioner's Updated Exhibit List, IPR2016-00922, Jul. 11, 2017, 4 pages.
Petitioner's Updated Mandatory Notices Pursuant to 37 C.F.R. § 42.8 for Inter Partes Review, IPR2016-00921, Apr. 21, 2017, 5 pages.
Petitioner's Updated Mandatory Notices Pursuant to 37 C.F.R. § 42.8 for Inter Partes Review, IPR2016-00922, Apr. 21, 2017, 5 pages.
Raymond F. Tonkel Declaration, IPR2013-00067, Aug. 19, 2013.
Record of Oral Hearing for Inter Partes Review IPR2016-00921 and for Inter Partes Review, IPR2016-00922, Jul. 26, 2017, 74 pages.
Reply Brief, Tendered from Appellant Nike, May 27, 2015.
Reply Brief Filed for Appellant Nike, May 27, 2015.
Revised Petition for Inter Partes Review Under 35 U.S.C. §§ 311-319 and 37 C.F.R. § 42.100, IPR2013-00067, Dec. 10, 2012, 64 pages.
R-H Websters Dictionary Excerpt, IPR2013-00067, Aug. 19, 2013.
Scheduling Order, IPR2013-00067, May 17, 2013.
Scheduling Order, IPR2016-00921, Oct. 21, 2016, 9 pages.
Scheduling Order, IPR2016-00922, Oct. 21, 2016, 9 pages.
Statement of Compliance With Fed. Cir. R. 33 for Appellant Nike, Appellee, Adidas AG and Intervenor Lee, Jun. 8, 2015.
Stipulation Regarding Discovery Relating to Expert Witness, IPR2013-00067, Jul. 11, 2013.
Submission of Patent Owner's Trial Hearing Demonstratives, IPR2013-00067, Feb. 6, 2014.
Submission of Power of Attorney, IPR2013-00067, Jan. 25, 2013.
Submission of Power of Attorney, IPR2013-00067, Nov. 26, 2013.
Supplemental Declaration Edward C. Frederick, Ph.D., IPR2013-00067, Nov. 12, 2013.
Textile Machinery-Knitting Machines-Nominal Diameters of Circular Machines, International Standard, ISO 8117, Second Edition, Feb. 15, 2003, 6 pages.
Transcript of Declaration of Lenny M. Holden for Inter Partes Review IPR2016- 00921, Submitted to the US Patent andTrademark Office on Jan. 23, 2017 as Exhibit 2004 to the Patent Owner Response Under 37 C.F.R. § 42.120 dated Jan. 23, 2017 for Inter Partes Review IPR2016-00921 and for Inter Partes Review IPR2016-00922, Jan. 10, 2017, 226 pages.
Trial Instituted Document, IPR2016-00920, Oct. 20, 2016, 8 pages.
Trial Instituted Document, IPR2016-00921, Oct. 21, 2016, 24 pages.
Trial Instituted Document, IPR2016-00922, Oct. 21, 2016, 24 pages.
United States Court of Appeals for the Federal Circuit, Jun. 30, 2014.
U.S. Pat. No. 2,147,197 with markings, IPR2013-00067, Aug. 19, 2013.
U.S. Pat. No. 7,347,011 with markings, IPR2013-00067, Aug. 19, 2013.
File History for U.S. Pat. No. 7,347,011, Exhibit 1003 in IPR2013-00067, Nov. 28, 2012, 202 pages.
File History for U.S. Pat. No. 7,814,598, Exhibit 1002 in IPR2016-00921, Apr. 19, 2016, 346 pages.
File History for U.S. Pat. No. 8,042,288, Exhibit 1002 in IPR2016-00920, Apr. 19, 2016, 324 pages.
File History for U.S. Pat. No. 8,266,749, Exhibit 1002 in IPR2016-00922, Apr. 19, 2016, 309 pages.
Final Written Decision, IPR2013-00067, Apr. 28, 2014.
Final Written Decision Under 35 U.S.C. § 318 (a) and 37 C.F.R. § 42.73 for Inter Partes Review, IPR2016-00921, Oct. 19, 2017, 49 pages.
Final Written Decision Under 35 U.S.C. § 318 (a) and 37 C.F.R. § 42.73 for Inter Partes Review, IPR2016-00922, Oct. 19, 2017, 52 pages.
Form PTO SB 42, IPR2016-00920, Apr. 19, 2016, 2 pages.
Form PTO SB 42, IPR2016-00921, Apr. 19, 2016, 2 pages.
Form PTO SB 42, IPR2016-00922, Apr. 19, 2016, 2 pages.
Form PTO SB 42, IPR2013-00067, Nov. 12, 2013.
Form PTO SB 42, IPR2017-00263, Nov. 14, 2016, 2 pages.
Form PTO SB 42, IPR2017-00264, Nov. 14, 2016, 2 pages.
Form PTO SB 42, IPR2013-00067, Nov. 28, 2012.
IDS Under 37 C.F.R. 1.501, Exhibit 1004 in IPR2013-00067, Nov. 28, 2012, 2 pages.
Intervenor Brief, Tendered from Intervenor Lee, Apr. 9, 2015.
Joint Appendix, Tendered from Appellant Nike, Jun. 8, 2015.
Knitting Wear, Santoni S.P.A. Publication, SM8 Top 1, 2 pages.
List of Related Matters, IPR2013-00067, Dec. 14, 2012.
Lyden Letter, Apr. 21, 2010, 1 page.
Mandate Issued to the United States Patent and Trademark Office, Apr. 4, 2016.
Mandatory Notice Information, Feb. 28, 2013.
Mandatory Notice Information, IPR2013-00067, Jan. 25, 2013.
Mandatory Notice Information (Addition of Back-Up Counsel), IPR2013-00067, Jan. 28, 2014.
Mandatory Notice Information (Addition of Back-Up Counsel), IPR2013-00067, Nov. 26, 2013.
Motion of Appellant Nike, Inc. to Extend the Time to Dec. 15, 2014 to File the Appellant/Petitioner's Principal Brief, Sep. 17, 2014.
Motion of Appellant Nike, Inc. to Extend the Time to May 27, 2015 at 11 :59 pm to File the Reply Brief, Apr. 13, 2015.
Motion of Appellee Adidas AG to Extend the Time to Apr. 10, 2015 to File the Appellee/Respondent/Cross-Appellant's Principal Brief, Dec. 18, 2015.
Motion of Director of the USPTO for Leave to Intervene, Dec. 18, 2014.
Motion of Intervenor Lee for Additional Time at Oral Argument, Sep. 3, 2015.
Motion to Amend, IPR2013-00067, Aug. 19, 2013.
Motion to Authorize Withdrawal of Counsel and Appointment of New POA, IPR2013-00067, Jul. 11, 2013.
Nike Aug. 29, 2013 Ex List, IPR2013-00067, Aug. 29, 2013.
Nike Flyknit: Quantum Leap for Flat Knitting, Editor—Billy Hunter, IPR2013-00067, Nov. 12, 2013.
Notice of Appeal, IPR2013-00067, Jun. 30, 2014.
Notice of Cross Examination, IPR2013-00067, Jul. 11, 2013.
Notice of Cross-Examination of Lenny M. Holden, IPR2016-00921, Dec. 19, 2016, 3 pages.
Notice of Cross-Examination of Lenny M. Holden, IPR2016-00922, Dec. 19, 2016, 3 pages.
Notice of Filing Date accorded to Petition and Time for Filing Patent Owner Preliminary Response, IPR2016-00920, Apr. 25, 2016, 4 pages.
Notice of Filing Date accorded to Petition and Time for Filing Patent Owner Preliminary Response, IPR2016-00921, Apr. 25, 2016, 4 pages.
Notice of Filing Date accorded to Petition and Time for Filing Patent Owner Preliminary Response, IPR2016-00922, Apr. 25, 2016, 4 pages.
Notice of Filing Date accorded to Petition and Time for Filing Patent Owner Preliminary Response, IPR2013-00067, Dec. 4, 2012, 8 pages.
Notice of Filing Date accorded to Petition and Time for Filing Patent Owner Preliminary Response, IPR2017-00263, Dec. 9, 2016, 5 pages.
Notice of Filing Date accorded to Petition and Time for Filing Patent Owner Preliminary Response, IPR2017-00264, Dec. 9, 2016, 5 pages.
Notice of Stipulation, IPR2013-00067, Jun. 14, 2014.
Opening Brief, Tendered from Appellee Adidas AG, Apr. 10, 2015.
Opening Brief, Tendered from Appellant Nike, Dec. 15, 2014.
Opinion and Judgment filed, Feb. 11, 2016.
Oral Hearing Transcript, IPR2013-00067, Mar. 5, 2014.
Spencer, David J. , “Knitting Technology, A comprehensive handbook and practical guide”, Third Edition ; Woodhead Publishing Limited, Abington Hall, Abington Cambridge, CB1 6AH, England, ISBN 1855733331, Exhibit 1012 in IPR2013-00067, Nov. 28, 2012, 413 pages.
Final Written Decision received for U.S. Pat. No. 7,347,011 by the Patent Trial and Appeal Board, dated Mar. 1, 2021, IPR2013-00067, adidas AG, Petitioner, v. Nike, Inc., Patent Owner, 40 pages.
Order—Case Transfer to Administrative Patent Judge Josiah C. Cocks, IPR2013-00067, Aug. 12, 2013.
Order—Conduct of the Proceeding—37 CFR 42.5, IPR2013-00067, Aug. 2, 2013.
Order—Conduct of the Proceeding, IPR2013-00067, Jun. 19, 2014.
Order Conduct of the Proceeding § 42.5, IPR2013-00067, Jan. 23, 2014.
Order Filed Granting Motion to Seek More Time for Argument Filed by Intervenor Lee, Sep. 8, 2015.
Order Granting Director's Motion for Leave to Intervene and Granting Motion to Extend Time to File Appellee's Response Brief, Sep. 29, 2014.
Order Granting Motion to Extend Time to File Appellant/Petitioner Principal Brief, Sep. 18, 2014.
Order Granting Motion to Extend Time to File Reply Brief Filed by Appellant Nike, Apr. 14, 2015.
Order Oral Hearing Under 37 C.F.R. § 42.70 for Inter Partes Review, IPR2016-00921, Jun. 14, 2017, 6 pages.
Order Trial Hearing, IPR2013-00067, Jan. 13, 2014.
Order—Conduct of Remand Proceeding, Aug. 10, 2016.
Patent Owner Corrected Preliminary Response Under 37 C.F.R. § 42.107 for Inter Partes Review, IPR2017-00263, Mar. 27, 2017, 24 pages.
Patent Owner Corrected Preliminary Response Under 37 C.F.R. § 42.107 for Inter Partes Review, IPR2017-00264, Mar. 27, 2017, 24 pages.
Patent Owner Exhibit List, IPR2013-00067, Aug. 19, 2013.
Patent Owner Exhibit List, IPR2013-00067, Dec. 11, 2013.
Patent Owner Exhibit List, IPR2013-00067, Jan. 7, 2014.
Patent Owner Nike Inc.'s Demonstratives for Inter Partes Review, IPR2016-00921, Jul. 11, 2017.
Patent Owner Nike Inc.'s Request for Oral Argument for Inter Partes Review, IPR2016-00921, Jun. 12, 2017, 4 pages.
Patent Owner Nike Inc.'s Request for Oral Argument for Inter Partes Review, IPR2016-00922, Jun. 12, 2017, 4 pages.
Patent Owner Nike, Inc.'s Notice of Cross-Examination of Sabit Adanur, IPR2013-00067, Nov. 26, 2013.
Patent Owner Nike, Inc.'s Notice of Second Cross Examination of Edward Frederick, IPR2013-00067, Nov. 26, 2013.
Patent Owner Nike's Exhibit List, IPR2016-00922, Jul. 11, 2017.
Patent Owner Nike's Exhibit List, IPR2016-00921, Jul. 11, 2017, 3 pages.
Patent Owner Opposition to Motion to Exclude, IPR2013-00067, Jan. 21, 2014.
Patent Owner Preliminary Response Under 37 C.F.R. § 42.107 for Inter Partes Review, IPR2017-00263, Mar. 9, 2017, 24 pages.
Patent Owner Preliminary Response Under 37 C.F.R. § 42.107 for Inter Partes Review, IPR2017-00264, Mar. 9, 2017, 24 pages.
Patent Owner Request for Oral Argument, IPR2013-00067, Jan. 7, 2014.
Patent Owner Response Under 37 C.F.R. § 42.120 for Inter Partes Review, IPR2016-00921, Jan. 23, 2017, 64 pages.
Patent Owner Response Under 37 C.F.R. § 42.120 for Inter Partes Review, IPR2016-00922, Jan. 23, 2017, 66 pages.
Patent Owner Updated Mandatory Notice Under 37 C.F.R. § 42.8 for Inter Partes Review, IPR2017-00263, Mar. 28, 2017, 5 pages.
Patent Owner Updated Mandatory Notice Under 37 C.F.R. § 42.8 for Inter Partes Review, IPR2017-00264, Mar. 28, 2017, 5 pages.
Patent Owner's List of Proposed Motions, IPR2013-00067, Jun. 14, 2014.
Patent Owner's Mandatory Notices, IPR2017-00263, Dec. 5, 2016, 5 pages.
Patent Owner's Mandatory Notices, IPR2017-00264, Dec. 5, 2016, 5 pages.
Patent Owner's Mandatory Notices, IPR2016-00920, May 10, 2016, 5 pages.
Patent Owner's Mandatory Notices, IPR2016-00921, May 10, 2016, 5 pages.
Patent Owner's Mandatory Notices, IPR2016-00922, May 10, 2016, 5 pages.
Patent Owner's Objections to Admissibility of Evidence Served With Petitioner's Reply to Patent Owner's Response Pursuant to 37 C.F.R. § 42.64(b) for Inter Partes Review, IPR2016-00921, Apr. 28, 2017, 4 pages.
Patent Owner's Objections to Admissibility of Evidence Served With Petitioner's Reply to Patent Owner's Response Pursuant to 37 C.F.R. § 42.64(b) for Inter Partes Review, IPR2016-00922, Apr. 28, 2017, 4 pages.
Patent Owner's Preliminary Response to Petition, IPR2013-00067, Feb. 28, 2013.
Patent Owner's Reply to Petitioner's Opposition to Motion to Amend, IPR2013-00067, Dec. 11, 2013.
Petition for Inter Partes Review Under 35 U.S.C. §§ 311-319 and 37 C.F.R. § 42.100, IPR2013-00067, Nov. 28, 2012, 65 pages.
Petition for Inter-Partes Review Under 35 U.S.C. §§ 311-319 and 37 C.F.R. § 42.100, IPR2016-00921, Apr. 19, 2016, 57 pages.
Petition for Inter-Partes Review Under 35 U.S.C. §§ 311-319 and 37 C.F.R. § 42.100, IPR2016-00920, Apr. 19, 2016, 67 pages.
Petition for Inter-Partes Review Under 35 U.S.C. §§ 311-319 and 37 C.F.R. § 42.100, IPR2016-00922, Apr. 19, 2016, 67 pages.
Petition for Inter-Partes Review Under 35 U.S.C. §§ 311-319 and 37 C.F.R. § 42.100, IPR2017-00263, Nov. 14, 2016, 50 pages.
Petition for Inter-Partes Review Under 35 U.S.C. §§ 311-319 and 37 C.F.R. § 42.100, IPR2017-00264, Nov. 14, 2016, 59 pages.
Petitioner adidas AG's Amended Notice of Cross Examination of Raymond Tonkel, IPR2013-00067, Nov. 1, 2013.
Petitioner Adidas AG's Notice of Supplemental Evidence in Response to Patent Owner's Objections to Evidence Under 37 C.F.R. § 42.64(8)(1) for Inter Partes Review, IPR2016-00921, May 12, 2017, 4 pages.
Watel, J., “The Milanese Machine: Little Progress Made in Development of Milanese Fabric”, IPR2013-00067, Nov. 12, 2013.
Appendix Filed for Nike, Inc., Jun. 8, 2015.
Brief Filed for Appellant Nik, Dec. 15, 2014.
Brief Filed for Appellee Adidas AG, Apr. 10, 2015.
Brief Filed for Intervenor Lee, Apr. 9, 2015.
C.V. for Lenny M. Holden, 3 pages.
Certificate of Compliance With Fed. Cir. R. 17 (Agency) for Appellant Nike, Sep. 23, 2014.
Certificate of Compliance With Fed. Cir. R. 17 (Agency) for Appellee Adidas AG, Sep. 25, 2014.
Chapter 16 of Textiles in Sport, IPR2013-00067, Aug. 19, 2013.
Citation of Supplemental Authority Pursuant to Fed. R. P. 280) for Appellant Nike, Aug. 24, 2015.
Corrected Certificate of Service, IPR2013-00067, Aug. 19, 2013.
Corrected Certified List from the United States Patent and Trademark Office, Aug. 26, 2014.
Corrected Opinion and Judgment filed, Feb. 11, 2016.
Cross Examination Deposition of Raymond Tonkel, IPR2013-00067, Nov. 12, 2013.
Decision Denying Institution of Inter Partes Review Under 37 C.F.R. § 42.108 for Inter Partes Review, IPR2017-00263, Jun. 7, 2017, 11 pages.
Decision Denying Institution of Inter Partes Review Under 37 C.F.R. § 42.108 for Inter Partes Review, IPR2017-00264, Jun. 7, 2017, 12 pages.
Decision Denying Petitioner's Request for Rehearing Under 37 C.F.R. § 42.71 for Inter Partes Review, IPR2017-00263, Jul. 20, 2017, 12 pages.
Decision Institution of Inter Partes Review 37 C.F.R. § 42.108, IPR2013-00067, May 17, 2013.
Decision Motion to Withdraw§ 42.10(e), IPR2013-00067, Oct. 30, 2013.
Decision on Appeal, IPR2013-00067, Aug. 19, 2013.
Decision on Remand, IPR2013-00067, Sep. 18, 2018, 65 pages.
Declaration and Curriculum Vitae of Dr. Edward C. Frederick, Exhibit 1001 in IPR2013-00067, Nov. 28, 2012, 178 pages.
Declaration of Lenny M. Holden from the US Patent and Trademark Office Inter Partes Review, IPR2016-00921, Apr. 19, 2016, 154 pages.
Declaration of Lenny M. Holden from the US Patent and Trademark Office Inter Partes Review, IPR2016-00922, Apr. 19, 2016, 154 pages.
Declaration of Lenny M. Holden from the US Patent and Trademark Office Inter Partes Review, IPR2016-00920, Apr. 19, 2016, 166 pages.
Declaration of Lenny M. Holden from the US Patent and Trademark Office Inter Partes Review, IPR2017-00263, Nov. 14, 2016, 82 pages.
Declaration of Lenny M. Holden from the US Patent and Trademark Office Inter Partes Review, IPR2017-00264, Nov. 14, 2016,, 106 pages.
Declaration of Sabut Adanur Ph.D, IPR2013-00067, Nov. 12, 2013.
Declaration of Tiffany L. Williams, Submitted to the US Patent and Trademark Office as Exhibit 1015 to the Petitioner Adidas AG's Notice of Supplemental Evidence in Response to Patent Owner's Objections to Evidence Under 37 C.F.R. § 42.64(8)(1) for Inter Partes Review IPR2016-00921, May 12, 2017.
Definition of ‘Impart’, Merriam-Webster, Available on Internet at: <https://www.merriam-webster.com/dictionary/impart>, Apr. 10, 2017, 11 pages.
Edward C. Frederick, Ph.D Declaration, IPR2013-00067, Aug. 19, 2013.
Edward C. Frederick, Ph.D Deposition Errata Sheet, IPR2013-00067, Aug. 29, 2013.
Edward C. Frederick, Ph.D Deposition Transcript, IPR2013-00067, Aug. 19, 2013.
Excerpt of Bharat J. Gaijar, Wrap Knit Fabrics Technologies, IPR2013-00067, Nov. 12, 2013.
Excerpt of Knitted Fabrics, IPR2013-00067, Nov. 12, 2013.
Excerpts from Man-Made Fiber and Textile Dictionary, IPR2013-00067, Aug. 19, 2013.
Exhibit 2015, IPR2013-00067, Dec. 11, 2013.
Exhibit 2016, IPR2013-00067, Dec. 11, 2013.
Exhibit 2017, IPR2013-00067, Dec. 11, 2013.
Exhibit 2018, IPR2013-00067, Dec. 11, 2013.
Exhibit 2020, IPR2013-00067, Dec. 11, 2013.
Exhibit 2021, IPR2013-00067, Dec. 11, 2013.
Exhibit 2022, IPR2013-00067, Jan. 7, 2014.
Exhibit 2023, IPR2013-00067, Jan. 7, 2014.
Xhibit 3001, IPR2013-00067, Apr. 28, 2014.
Exhibit 3001, IPR2016-00921 and IPR2016-00922, Oct. 19, 2017, 4 pages.
Exhibit 3002, IPR2013-00067, Apr. 28, 2014.
Burall, P., “CoID Design Awards”, Design, Jun. 1969, 4 pages.
Ebrle et al., “Clothing Technology ; Sixth German Edition and Third English Edition”, Verlag EuropaLehrmittel, Nourney, Vollmer GmbH & Co., D-42781 Haa-Guriten ; ISBN 3-8085-6223-4, Exhibit 1013 in IPR2013-00067, Nov. 28, D 2012, 3 pages.
Hunter, Billy, “Editor Viewpoint: Nike Flyknit: Ready, Steady, Go”, IPR2013-00067, Nov. 12, 2013.
Koester, A.W., “Analyzing the Color, Design and Texture of Fabric”, Oregon State University Extn Service, 1993, 8 pages.
Related Publications (1)
Number Date Country
20210015199 A1 Jan 2021 US
Divisions (2)
Number Date Country
Parent 14079748 Nov 2013 US
Child 14503514 US
Parent 10791289 Mar 2004 US
Child 12032995 US
Continuations (8)
Number Date Country
Parent 16145640 Sep 2018 US
Child 17064912 US
Parent 15703394 Sep 2017 US
Child 16145640 US
Parent 15610089 May 2017 US
Child 15703394 US
Parent 14503514 Oct 2014 US
Child 15610089 US
Parent 13413233 Mar 2012 US
Child 14079748 US
Parent 13236742 Sep 2011 US
Child 13413233 US
Parent 12879517 Sep 2010 US
Child 13236742 US
Parent 12032995 Feb 2008 US
Child 12879517 US