1. Field of the Invention
This invention relates to footwear, and more particularly to an athletic shoe having an adjustable ride.
2. Background Art
One of the problems associated with footwear, especially athletic shoes, has always been striking a balance between support and cushioning. Throughout the course of an average day, the feet and legs of an individual are subjected to substantial impact forces. Running, jumping, walking, and even standing exert forces upon the feet and legs of an individual which can lead to soreness, fatigue, and injury.
The human foot is a complex and remarkable piece of machinery, capable of withstanding and dissipating many impact forces. The natural padding of fat at the heel and forefoot, as well as the flexibility of the arch, help to cushion the foot.
An athlete's stride is partly the result of energy which is stored in the flexible tissues of the foot. For example, a typical gait cycle for running or walking begins with a “heel strike” and ends with a “toe-off”. During the gait cycle, the main distribution of forces on the foot begins adjacent to the lateral side of the heel (outside of the foot) during the “heel strike” phase of the gait, then moves toward the center axis of the foot in the arch area, and then moves to the medial side of the forefoot area (inside of the foot) during “toe-off”. During a typical walking or running stride, the achilles tendon and the arch stretch and contract, storing and releasing energy in the tendons and ligaments. When the restrictive pressure on these elements is released, the stored energy is also released, thereby reducing the burden which must be assumed by the muscles.
Although the human foot possesses natural cushioning and rebounding characteristics, the foot alone is incapable of effectively overcoming many of the forces encountered during athletic activity. Unless an individual is wearing shoes which provide proper cushioning and support, the soreness and fatigue associated with athletic activity is more acute, and its onset accelerated. The discomfort for the wearer that results may diminish the incentive for further athletic activity. Equally important, inadequately cushioned footwear can lead to injuries such as blisters; muscle, tendon, and ligament damage; and bone stress fractures. Improper footwear can also lead to other ailments, including back pain.
Proper footwear should complement the natural functionality of the foot, in part, by incorporating a sole (typically including an outsole, midsole and insole) which absorbs shocks. However, the sole should also possess enough resiliency to prevent the sole from being “mushy” or “collapsing,” thereby unduly draining the stored energy of the wearer.
In light of the above, numerous attempts have been made to incorporate into a shoe improved cushioning and resiliency. For example, attempts have been made to enhance the natural resiliency and energy return of the foot by providing shoes with soles which store energy during compression and return energy during expansion. These attempts have included the formation of shoe soles that include springs, gels or foams such as ethylene vinyl acetate (EVA) or polyurethane (PU). However, all of these tend to either break down over time or do not provide adequate cushioning characteristics.
Another concept practiced in the footwear industry to improve cushioning and energy return has been the use of fluid-filled systems within shoe soles. These devices attempt to enhance cushioning and energy return by transferring a pressurized fluid between the heel and forefoot areas of a shoe. The basic concept of these devices is to have cushions containing pressurized fluid disposed adjacent the heel and forefoot areas of a shoe.
However, a cushioning device which is pressurized with fluid at the factory is comparatively expensive to manufacture. Further, pressurized fluid tends to escape from such a cushioning device, requiring large molecule fluids such as Freon gas to be used as the inflating fluid. A cushioning device which contains air at ambient pressure provides several benefits over similar devices containing pressurized fluid. For example, generally a cushioning device which contains air at ambient pressure will not leak and lose air, because there is no pressure gradient in the resting state.
Athletes, particularly runners, often have a pair of training shoes and a pair of racing flats. The training shoes are worn for every day training and are selected for their ample cushioning to prevent the injuries and ailments mentioned above. However, on race day, a runner typically wears a pair of racing flats, which have a comparatively thin sole in comparison to the training shoes and less cushioning to make the shoes lighter so that the wearer can run faster. Carrying around two pairs of shoes can be cumbersome and expensive. There is a need in the art to have a single shoe that can serve as both a training shoe and a racing flat. Further, for athletes that use two different shoes for running and general training (e.g., weight training), there is a need for a shoe that can better serve both activities.
Disclosed herein is a sole for an article of footwear comprising a sole member, an outsole, and a gap member. The gap member extends from the outsole and has a flexible portion and an end connected to the sole member such that the gap member spans a gap between the sole member and the outsole. The flexible portion allows the end to remain connected to the sole member when a size of the gap is changed.
Also disclosed herein is an outsole comprising a surface and a gap member. The gap member extends from the surface and has a flexible portion and an end connectable to a portion of an article of footwear such that the gap member spans a gap between the portion of the article of footwear (e.g., a sole member) and the outsole. The flexible portion allows the end to remain connected to the portion of the article of footwear when a size of the gap is changed.
In addition, disclosed herein is an article of footwear comprising an upper and a sole. The sole comprises an outsole and a gap member. The gap member extends from the outsole and has a flexible portion and an end connected to a portion of the article of footwear such that the gap member spans a gap between the portion of the article of footwear and the outsole. The flexible portion allows the end to remain connected to the portion of the article of footwear when a size of the gap is changed.
Further, disclosed herein is a sole for an article of footwear comprising an upper sole member, a lower sole member, an inflatable bladder positioned between the upper sole member and the lower sole member, an outsole attached to the lower sole member, and a gap member. The gap member extends from the outsole and has a flexible portion and an end connected to the upper sole member such that the gap member spans a gap between the lower sole member and the upper sole member. The flexible portion allows the end to remain connected to the upper sole member when a size of the gap is changed
The present invention is now described with reference to the Figures, in which like reference numerals are used to indicate identical or functionally similar elements. Also in the Figures, the left most digit of each reference numeral corresponds to the Figure in which the reference numeral first appears. While specific configurations and arrangements can be used without departing from the spirit and scope of the invention, it will be apparent to a person skilled in the relevant art that this invention can also be employed in other applications.
A sole of a shoe is shown generally at 100 in
The inflating and deflating action allows for an adjustable ride to the shoe. For example, the shoe can simulate a racing flat in a less inflated state (e.g., a deflated state) and a more cushioned training shoe in an inflated state. Alternatively, the shoe can have a more cushioned, inflated state for running and a lower profile, less inflated state that can be more stable for training (e.g., weight training). The magnitude of the distance between upper sole member 108 and lower sole member 110 (e.g., d1 or d2) may be different at different points along the sole. For example, the magnitude of the distance between upper sole member 108 and lower sole member 110 (e.g., d1 or d2) may be different at various points along the sole in a generally heel-to-toe direction or in a generally medial-to-lateral direction. The magnitude of the change in distance between upper sole member 108 and lower sole member 110 in the inflated versus deflated state (e.g., d1-d2) may also vary along or across the sole. Sole 100 also has an air pressure regulator 114 that regulates the air pressure in inflatable bladder 112. Air pressure regulator 114 adjusts the pressure threshold at which air is released from inflatable bladder 112 through a pressure release valve. Air pressure regulator 114 may be adjusted so the system is fully open (little or no air accumulates in inflatable bladder 112), regulated (pressure in inflatable bladder 112 varies depending on the setting, as air is allowed to purge through the pressure release valve above the set pressure threshold), or fully closed (inflatable bladder 112 inflates to a maximum inflation pressure and no air is allowed to pass through the pressure release valve).
The sole of the present invention has at least one inflatable bladder and can include a plurality of inflatable bladders such as a first inflatable bladder 116 for a heel area 102 and a second inflatable bladder 118 for a forefoot area 104. Alternatively, there may be a single inflatable bladder that spans substantially the entire sole. Other alternative embodiments with varying numbers and placements of inflatable bladders are also envisioned as would be readily apparent to a person of ordinary skill in the relevant art. Inflatable bladders may be fully visible, partially visible or not visible in the assembly in either the inflated state or the deflated state.
One skilled in the relevant art would readily appreciate that the type of inflatable bladder for use in the shoe of the present invention is not limited. One example of an inflatable bladder includes two films of monolayer or multilayer sealable thermoplastic material through which air may not readily pass. Furthermore, the two sealable thermoplastic films may be a multilayer laminate of film and fabric or of film and a non-woven material. The two films utilized to form the inflatable bladder may be the same material or different materials such as a monolayer film and a multilayer laminate. The films of different materials may be cast or coextruded to form the inflatable bladder. An exemplary film includes an outer layer of 12 mil polyester urethane of 50 D Shore hardness, a scrim layer, and an inner layer of 8 mil polyester urethane of 95A Shore hardness. The scrim layer is present to increase puncture resistance and to increase the tensile strength and its material may include, but is not limited to, 210 denier nylon of high tenacity or polyester. The outer layer material should be of suitable thickness and hardness to increase puncture resistance of the bladder. The inner layers face each other in an assembled inflatable bladder.
The films are sealed around a periphery to form the inflatable bladder. In a preferred embodiment the majority of the peripheral seal is on an inside of the inflatable bladder. Such an inflatable bladder can be made wherein the two films are positioned on top of each other and welded or otherwise sealed along a plurality of the peripheral edges leaving at least one peripheral edge unsealed. The two films are then turned inside out such that the seal is in the interior of the inflatable bladder. Then the remaining peripheral edge(s) is welded or otherwise sealed together to form the inflatable bladder. Alternatively, the peripheral seal is on an outside of the inflatable bladder wherein the two films are positioned on top of each other and welded or otherwise sealed along the peripheral edges. The welding or sealing may include, but is not limited to, RF welding or heat sealing. Inflatable bladders can be shaped to have a plurality of interconnected inflatable chambers 120 as shown in
Another example of an inflatable bladder includes a chamber of natural or synthetic plastic or other material through which air may not readily pass. For example, the inflatable bladder can include a plastic part that includes a chamber or can include two or more plastic parts that are sealed together so as to form a chamber. Suitable plastic parts can include one or more films, injection molded parts, blow molded parts, rotomolded parts, cast parts, plastic dipped parts, composites, laminates, and combinations thereof. Parts can be sealed around a periphery to form the inflatable bladder. Sealing can include welding, adhesion, and other types of sealing including, for example, RF welding or heat sealing. In one embodiment, the inflatable bladder includes an injection molded top part and a thermoplastic film bottom which have been sealed together to foam the bladder. In other embodiments, the inflatable bladder includes a molded top part and a molded bottom part which have been sealed together to form the bladder. In some embodiments, the inflatable bladder includes rubber such as vulcanized rubber.
Upper sole member 108 and lower sole member 110 may be made from conventional materials as would be apparent to a person of ordinary skill in the relevant art, including, but not limited to, foam. Upper sole member 108 and lower sole member 110 may be formed using conventional means as would be apparent to a person of ordinary skill in the relevant art including, but not limited to, injection molding or compression molding. Upper sole member 108 and lower sole member 110 may each include one or more pieces.
A lower surface of upper sole member 108 and an upper surface of lower sole member 110 may have recesses corresponding to a shape of a portion of the inflatable bladder located between the upper sole member 108 and lower sole member 110. The recesses aid in minimizing the thickness of sole 100 in the deflated state, or less inflated state, or aid in locating inflatable bladder 112 between upper sole member 108 and lower sole member 110.
In one embodiment, at least one portion of the inflatable bladder folds over a side of the lower sole member and the at least one portion attaches to a lower surface of the lower sole member to provide stacked inflatable cushioning elements.
Inflatable bladder 400 has a main portion 402 and peripheral portions 404. Main portion 402 has at least one inflatable chamber 416 and is fluidly connected to at least one peripheral portion 404 through extensions 406. Inflatable bladder 400 has a welding flange 412 with an inside edge 414 defining a boundary of inflatable chamber 416. Air may enter inflatable bladder 400 through a barb connector attached at a location 418. Main portion 402 is located between a lower surface 516 of an upper sole member 508 and upper surface 302 of lower sole member 300. Peripheral portions 404 fold over lower sole member 300 such that extensions 406 align with grooves 306. Peripheral portions 404 are attached to lower surface 304 of lower sole member 300.
An outsole 510 may be placed over peripheral portions 404 of inflatable bladder 400 such that peripheral portions 404 are located between lower surface 304 of lower sole member 300 and outsole 510. The outsole material may be a lightweight, flexible, expandable material including, but not limited to, rubber or cast polyurethane, or a textile or suitable flexible substrate, that will expand to a profile of peripheral portions 404 when they are in an inflated state. The outsole material may also have treads or lugs formed thereon through direct injection, casting, cementing, or other known methods. Treads or lugs may also be directly attached to, or integrally part of, an inflatable bladder. For example, in some embodiments, treads or lugs can be formed on a lower portion of an inflatable bladder. Outsole 510 may also wrap up to side surface 512 of lower sole member 300 or extend beyond a gap between lower sole member 300 or upper sole member 508 and bond directly to upper sole member 508. Outsole 510 may also extend toward the leading edge or front edge of lower sole member 500 and connect to the shank 514.
Main portion 402 of inflatable bladder 400 has a first surface 408 that faces upper sole member 508 and a second surface 514 that faces lower sole member 300. First and second surfaces 408, 514 of main portion 402 of inflatable bladder 400 may be directly attached to lower surface 516 of upper sole member 508 or upper surface 302 of lower sole member 300, respectively. For example, in some embodiments, inflatable bladder 400 can include a molded first surface that faces upper sole member 508 or inflatable bladder can include a molded second surface that faces lower sole member 300. Alternatively, either first or second surface 408, 544 of main portion 402 may have one or more plates 410 attached thereto that are then attached to lower surface 516 of upper sole member 508 or upper surface 302 of lower sole member 300, respectively. In some embodiments, the first surface 408 of inflatable bladder 400 or the second surface 514 of inflatable bladder 400 includes an integral plate 410. Plates 410 can include a polymeric material, such as thermoplastic polyurethane. Plates 410 provide a mounting surface between inflatable bladder 400 and lower surface 516 of upper sole member 508 or upper surface 302 of lower sole member 300. Plates may also be located on first and second surfaces 408, 514 of peripheral portions 404 and bonded to lower surface 514 of lower sole member 300 and/or an inside surface of outsole material 510. It is noted that plates may also be located on first and second surfaces of the inflatable bladders depicted in
Plates 410 are strategically shaped, positioned, and made of suitable materials to control the profile of inflatable bladder 400 in its inflated state, to control the height of inflation, and locate inflatable bladder 400 between upper and lower sole members 508, 300. The greater the offset between an edge of plate 410 and an edge of inflatable bladder 400 (e.g., edge 414), the greater the thickness of inflation. The offset can also be varied to result in a tapered thickness or offset of inflation, either an increase in thickness or offset along a length of an inflatable bladder or a decrease in thickness along a length of an inflatable bladder. For example, the offset can be varied to result in less inflated thickness at a toe of a shoe and more inflated thickness as the forefoot region curves away from the toe.
When plates 410 are present on a surface of inflatable bladder 400, portions of the surface of inflatable bladder 400 not covered by plates 410 are preferably not attached to the upper sole member, the lower sole member, or anything else. This allows the unattached portions of the inflatable bladder to move away from the upper and lower sole members. However, there may be cases where it is preferred that an inflatable bladder be bonded to upper sole member 508, for example in the toe area or to an air transfer manifold 626.
Plates 410 are made from a polymeric material including, but not limited to, thermoplastic polyurethane. Plates 410 may be applied to inflatable bladder 400 through a variety of methods including, but not limited to, casting, silkscreen printing, or laminating through RF welding, direct injection or cold cementing. Another exemplary method for attaching plates 410 to inflatable bladder 400 includes applying a 3 mil film of low melting temperature adhesive film to a substrate of plate material, cutting out the formed assembly to a desired shape, and then affixing the adhesive side to the inflatable bladder through conventional methods including, without limitation, RF welding or heat pressing. Subsequently plates 410 may be cold cemented or otherwise attached to the upper sole member, lower sole member, or other surface. In some embodiments, inflatable bladder 400 can include a surface that includes an integral plate 410. For example, a plate 410 can be formed as part of a surface of inflatable bladder 400 such as by injection molding a plate as a surface of inflatable bladder 400.
In some embodiments, as best seen in
Inflatable bladder 1400 is inserted between an upper member 1502 and a lower member 1504 of sole 1500 such that plastic part 1300 sits in a cavity formed in upper surface 1608 of lower sole member 1504. Plastic part 1300 may be cemented or otherwise at ached to the cavity in upper surface 1608 of lower sole member 1504. Alternatively, plastic part 1300 may sit in a cavity formed in lower surface 1610 of upper sole member 1502. Plastic part 1200 has an upper surface 1206 that faces a lower surface 1610 of upper sole member 1502. Upper surface 1206 of plastic part 1200 may have a plurality of plates 1202 thereon for attaching plastic part 1200 to lower surface 1610 of upper sole member 1502. Plates 1202 are similar to and serve the same function as plates 410 discussed above. In some embodiments, plastic part 1200 includes integral plates 1202.
The shoes and soles disclosed herein may have a gap member that bridges a gap between an upper sole member and a lower sole member. The gap member can help to control shear stress between the upper sole member and the lower sole member and thereby act as a shear controlling member. A gap member is shown in
In order for a wearer to customize the amount of air in a bladder, the bladder is placed in fluid communication with an inflation mechanism and an air pressure regulator.
As shown in
Air enters inflation mechanism 622 through an air intake hole (not shown) in underfoot pump 624 and passes through a one-way valve (not shown) into manifold 626 when underfoot pump 624 is compressed. The one-way valve prevents air from flowing back into underfoot pump 624. Manifold 626 has one or more pathways that direct the air into bladders 716, 718, thereby inflating the bladders. The manifold may include flow restrictors that limit airflow to or from a bladder, and thereby tears in the bladder, bladder bursts, or backflow pressure can be eliminated or reduced.
An exemplary one-way valve is shown generally at 942 in
When underfoot pump 624 is compressed, air flows into an opening 962 in first end 944 of one-way valve 942 and through the valve body to the outlet opening (not shown). The force of the air pushes against elastomeric sleeve 961 covering the outlet opening causing it to expand allowing air to escape out the outlet opening past elastomeric sleeve 961 and into manifold 626. When the pressure is released from underfoot pump 624, elastomeric sleeve 961 returns to its original, unexpanded state such that air cannot flow back into valve 942 or into underfoot pump 624.
Inflation mechanism 622 described above, is merely exemplary and a variety of other inflation mechanisms may be utilized in the present invention. The inflation mechanism may include a manual, automatic, motorized, or electronically-controlled on-board inflation mechanism. In some embodiments, the inflation mechanism is a manually operated inflation device such as one which includes a hand-operated bulb. For example, the inflation mechanism can include a latex bulb which is physically attached to a part of the sole/shoe. Alternatively, the inflation mechanism may include a molded plastic chamber; an external or hand-held pump; or a source of pressurized gas such as pressurized CO2 gas. Alternatively, the inflation mechanism may be a portion of a monolithic bladder that is fluidly isolated from the remainder of the bladder. The isolated portion fluidly communicates with the remainder of the bladder via a one-way valve. The one-way valve allows the isolated portion to act as an inflation mechanism. Alternative inflation mechanisms are described more fully, for example, in U.S. Patent Application Pub. No. 2006/0162186, a copy of which is incorporated herein by reference.
Each inflation mechanism generally includes a one-way valve to be present between the inflation mechanism and the inflatable bladder so that once air enters the inflatable bladder it may not travel backwards into the inflation mechanism. Various types of one-way valves are suitable for use in conjunction with the various alternative inflation mechanisms such as that described in U.S. Pub. No. 2006/0162186, which is incorporated herein by reference.
The inflatable bladder inflated by the inflation mechanism may be fluidly connected to other inflatable bladders located throughout the shoe such that the inflation of one inflatable bladder may in turn inflate other inflatable bladders. Each inflatable bladder may have its own check valve and/or air pressure regulator.
In a preferred embodiment, the sole may have a gap member (e.g., a stiffening member for medial posting) attached to the medial side of the sole in a heel area as shown in
In one embodiment of the present invention, as shown in
As noted above with respect to sole 100, sole 1700 has a least one inflatable bladder and may include a plurality of inflatable bladders such as a first inflatable bladder 1716 for heel area 1802 and a second inflatable bladder 1718 for a forefoot area 1804. Alternatively, any of the arrangements, shapes, and materials previously described above for an inflatable bladder may be incorporated into sole 1700. For example, first inflatable bladder 1716 may be similar to inflatable bladder 1400 described above and second inflatable bladder 1718 may be similar to inflatable bladder 420 described above.
Upper sole member 1708 and lower sole member 1710 may each include one or more pieces. Upper sole member 1708 and lower sole member 1710 may be made from conventional materials as would be apparent to a person of ordinary skill in the relevant art, including, but not limited to, foam.
Outsole 1768 may have a ground engaging surface and an opposite surface which contacts lower sole member 1710. While outsole 1768 is only illustrated as contacting a lower sole member 1710 in heel area 1802, it may also contact a lower sole member 1710 in forefoot area 1804. The material for outsole 1768 may include, without limitation, natural or synthetic rubber, thermoplastic polyurethane, foam, or any combination thereof. Sole 1700 may have one or more gap members 1770, wherein each gap member 1770 has a flexible portion 1772 and an end 1774 that connects to upper sole member 1708 such that each gap member 1770 spans a gap in sole 1700. Alternatively, each end 1774 may connect to an upper of a shoe attached to sole 1700. Gap member 1770 may span a gap between outsole 1768 and upper sole member 1708 or between lower sole member 1710 and upper sole member 1708. The one or more gap members 1770 may extend from outsole 1768 or from lower sole member 1710 or may be separate pieces attached to a portion of the sole similar to gap member 1064. Each flexible portion 1772 of each gap member 1770 allows the associated end 1774 to remain connected to upper sole member 1708 (or upper) when a size in the gap is changed as a result of the inflation or deflation of inflatable bladder 1716. Each flexible portion 1772 may buckle from sole 1700 (e.g., buckle outward), flex, or contract as the size of the gap decreases (similar to the buckling of gap member 1064 shown in
As shown in
Gap members 1770 can restrict relative movement of upper sole member 1708 and lower sole member 1710, may control relative shear between upper sole member 1708 and lower sole member 1710, and/or may limit the overall inflation and/or deflation of inflatable bladder 1716. Gap members 1770 may be similarly placed as gap member 1064 or gap member 1506. In some embodiments, gap members may be placed in a forefoot portion of a shoe.
As shown in
A sole or a shoe incorporated with a sole disclosed herein allows the user to adjust the “ride” (cushioning sensation) of the sole/shoe from a state where the inflatable bladder(s) is less inflated (e.g., deflated) to a state in which the inflatable bladder(s) is more inflated to provide more cushioning. Inflating the inflatable bladder can increase the distance between the upper sole member and the lower sole member, thereby increasing the thickness of the sole. Thus, when the inflatable bladder is at least partially inflated, the article of footwear may be in a “run” mode more suitable for running. Conversely, a less inflated bladder can have a smaller distance between the upper sole member and the lower sole member, thereby decreasing the thickness of the sole. Thus, when the inflatable bladder is less inflated, the article of footwear may be in a “train” mode more suitable for training.
The present invention can be carried out on the entire sole, or any portion or combination of portions thereof, such as a forefoot area or a heel area.
As noted elsewhere, these example embodiments have been described for illustrative purposes only, and are not limiting. Other embodiments are possible and are covered by the methods and systems described herein. Such embodiments will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Thus, the breadth and scope of the methods and systems described herein should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
This application is a continuation of U.S. application Ser. No. 12/419,760, filed on Apr. 7, 2009, which is a continuation-in-part of U.S. patent application Ser. No. 11/610,382, filed on Dec. 13, 2006, now U.S. Pat. No. 7,694,438, the disclosures of which are hereby incorporated in their entirety by reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
508034 | Moore | Nov 1893 | A |
547645 | MacDonald | Oct 1895 | A |
566422 | Singleton | Aug 1896 | A |
580501 | Mobberley | Apr 1897 | A |
586155 | Bascom | Jul 1897 | A |
850327 | Tauber | Apr 1907 | A |
1069001 | Guy | Jul 1913 | A |
1148376 | Gay | Jul 1915 | A |
1193608 | Poulson | Aug 1916 | A |
1198476 | Pearson | Sep 1916 | A |
1304915 | Spinney | May 1919 | A |
1328154 | Jackerson | Jan 1920 | A |
1498838 | Harrison, Jr. | Jun 1924 | A |
1605985 | Rasmussen | Nov 1926 | A |
1942883 | Adolf | Jan 1934 | A |
1954122 | Fiori | Apr 1934 | A |
1979972 | Guild | Nov 1934 | A |
2007803 | Kelly | Jul 1935 | A |
2020240 | Cochran | Nov 1935 | A |
2036695 | Heigis | Apr 1936 | A |
2080469 | Gilbert | May 1937 | A |
2080499 | Nathansohn | May 1937 | A |
2177116 | Persichino | Oct 1939 | A |
2488382 | Davis | Nov 1949 | A |
2532742 | Stoiner | Dec 1950 | A |
2600239 | Gilbert | Jun 1952 | A |
2605560 | Gouabault | Aug 1952 | A |
2638690 | Bullard, III | May 1953 | A |
2677904 | Reed | May 1954 | A |
2682712 | Owsen et al. | Jul 1954 | A |
2717100 | Engelder | Sep 1955 | A |
2756517 | Youtz | Jul 1956 | A |
2774152 | Alber | Dec 1956 | A |
2863230 | Cortina | Dec 1958 | A |
2981010 | Aaskov | Apr 1961 | A |
3015414 | Wilson | Jan 1962 | A |
3027659 | Gianola | Apr 1962 | A |
3044190 | Urbany | Jul 1962 | A |
3068494 | Pinkwater | Dec 1962 | A |
3120712 | Menken | Feb 1964 | A |
3221932 | Anderson | Dec 1965 | A |
3225463 | Burnham | Dec 1965 | A |
3331146 | Karras | Jul 1967 | A |
3372495 | Finn | Mar 1968 | A |
3410004 | Finn | Nov 1968 | A |
3664043 | Polumbus, Jr. | May 1972 | A |
3685176 | Rudy | Aug 1972 | A |
3716930 | Brahm | Feb 1973 | A |
3744159 | Nishimura | Jul 1973 | A |
3751833 | Humphrey | Aug 1973 | A |
3760056 | Rudy | Sep 1973 | A |
3854228 | Conroy | Dec 1974 | A |
3973336 | Ahn | Aug 1976 | A |
3995653 | Mackal et al. | Dec 1976 | A |
4014048 | Rappleyea | Mar 1977 | A |
4106222 | Houck | Aug 1978 | A |
4129951 | Petrosky | Dec 1978 | A |
4169353 | Fresard | Oct 1979 | A |
4217705 | Donzis | Aug 1980 | A |
4219945 | Rudy | Sep 1980 | A |
4232459 | Vaccari | Nov 1980 | A |
4271606 | Rudy | Jun 1981 | A |
4361969 | Vermonet | Dec 1982 | A |
4397104 | Doak | Aug 1983 | A |
4417407 | Fukuoka | Nov 1983 | A |
4446634 | Johnson et al. | May 1984 | A |
4458430 | Peterson | Jul 1984 | A |
4462171 | Whispell | Jul 1984 | A |
4525941 | Ruth | Jul 1985 | A |
4571853 | Medrano | Feb 1986 | A |
4610099 | Signori | Sep 1986 | A |
4628945 | Johnson, Jr. | Dec 1986 | A |
4662087 | Beuch | May 1987 | A |
4662412 | Swallert | May 1987 | A |
4670995 | Huang | Jun 1987 | A |
4676009 | Davis et al. | Jun 1987 | A |
4700403 | Vacanti | Oct 1987 | A |
4702022 | Porcher | Oct 1987 | A |
4730403 | Walkhoff | Mar 1988 | A |
4744157 | Dubner | May 1988 | A |
4760651 | Pon-Tzu | Aug 1988 | A |
4763426 | Polus et al. | Aug 1988 | A |
4776110 | Shlang | Oct 1988 | A |
4805601 | Eischen, Sr. | Feb 1989 | A |
4823482 | Lakic | Apr 1989 | A |
4856208 | Zaccaro | Aug 1989 | A |
4887367 | Mackness et al. | Dec 1989 | A |
4906502 | Rudy | Mar 1990 | A |
4910889 | Bonaventure et al. | Mar 1990 | A |
4912861 | Huang | Apr 1990 | A |
D314172 | Whitley, II | Jan 1991 | S |
4991317 | Lakic | Feb 1991 | A |
4995173 | Spier | Feb 1991 | A |
5025575 | Lakic | Jun 1991 | A |
5074765 | Pekar | Dec 1991 | A |
5083320 | Halstead | Jan 1992 | A |
5113599 | Cohen et al. | May 1992 | A |
5129107 | Lorenzo | Jul 1992 | A |
5144708 | Pekar | Sep 1992 | A |
5155864 | Walker et al. | Oct 1992 | A |
5155865 | Walker et al. | Oct 1992 | A |
5155866 | Walker et al. | Oct 1992 | A |
5158767 | Cohen et al. | Oct 1992 | A |
5181279 | Ross | Jan 1993 | A |
5195254 | Tyng | Mar 1993 | A |
5199191 | Moumdjian | Apr 1993 | A |
5230249 | Sasaki et al. | Jul 1993 | A |
5253435 | Auger et al. | Oct 1993 | A |
5257470 | Auger et al. | Nov 1993 | A |
5279051 | Whatley | Jan 1994 | A |
5343638 | Legassie et al. | Sep 1994 | A |
5351710 | Phillips | Oct 1994 | A |
5353525 | Grim | Oct 1994 | A |
5392534 | Grim | Feb 1995 | A |
5406661 | Pekar | Apr 1995 | A |
5416988 | Potter et al. | May 1995 | A |
5444926 | Allen et al. | Aug 1995 | A |
5638565 | Pekar | Jun 1997 | A |
5692321 | Holstine | Dec 1997 | A |
5740619 | Broder | Apr 1998 | A |
5765298 | Potter et al. | Jun 1998 | A |
5771606 | Litchfield et al. | Jun 1998 | A |
5806208 | French | Sep 1998 | A |
5815951 | Jordan | Oct 1998 | A |
5893219 | Smith et al. | Apr 1999 | A |
5979078 | McLaughlin | Nov 1999 | A |
5987779 | Litchfield et al. | Nov 1999 | A |
6014823 | Lakic | Jan 2000 | A |
6134812 | Voss | Oct 2000 | A |
6161240 | Huang | Dec 2000 | A |
6195914 | Otis | Mar 2001 | B1 |
6237251 | Litchfield et al. | May 2001 | B1 |
6247248 | Clark | Jun 2001 | B1 |
6287225 | Touhey et al. | Sep 2001 | B1 |
6354020 | Kimball et al. | Mar 2002 | B1 |
6430843 | Potter et al. | Aug 2002 | B1 |
6505420 | Litchfield et al. | Jan 2003 | B1 |
6510624 | Lakic | Jan 2003 | B1 |
6550160 | Miller, II | Apr 2003 | B2 |
6553691 | Huang | Apr 2003 | B2 |
6785985 | Marvin et al. | Sep 2004 | B2 |
6845573 | Litchfield et al. | Jan 2005 | B2 |
6892477 | Potter et al. | May 2005 | B2 |
6988329 | Marvin et al. | Jan 2006 | B2 |
6996922 | Ryoo | Feb 2006 | B2 |
7047670 | Marvin et al. | May 2006 | B2 |
7051456 | Swigart et al. | May 2006 | B2 |
7152343 | Whatley | Dec 2006 | B2 |
7152625 | Marvin et al. | Dec 2006 | B2 |
7210249 | Passke et al. | May 2007 | B2 |
7600330 | Chen | Oct 2009 | B2 |
7694438 | Christensen et al. | Apr 2010 | B1 |
8256141 | Christensen et al. | Sep 2012 | B2 |
20040211085 | Passke et al. | Oct 2004 | A1 |
20050028404 | Marvin et al. | Feb 2005 | A1 |
20050132617 | Potter et al. | Jun 2005 | A1 |
20060162186 | Marvin et al. | Jul 2006 | A1 |
20060272179 | Passke et al. | Dec 2006 | A1 |
20070084082 | Dojan et al. | Apr 2007 | A1 |
20070084083 | Hazenberg et al. | Apr 2007 | A1 |
20080313928 | Adams et al. | Dec 2008 | A1 |
20090235557 | Christensen et al. | Sep 2009 | A1 |
Number | Date | Country |
---|---|---|
8305004 | Apr 1985 | BR |
3427644 | Jan 1986 | DE |
40189 | Nov 1981 | EP |
152401 | Aug 1985 | EP |
184781 | Jun 1986 | EP |
229273 | Jul 1987 | EP |
389215 | Sep 1990 | EP |
472110 | Feb 1992 | EP |
629360 | Dec 1994 | EP |
630592 | Dec 1994 | EP |
2496423 | Jun 1982 | FR |
520514 | Dec 1939 | GB |
2114425 | Aug 1983 | GB |
2165439 | Apr 1986 | GB |
2240254 | Jul 1991 | GB |
2271710 | Apr 1994 | GB |
95419 | Feb 1989 | TW |
WO 8703789 | Jul 1987 | WO |
WO 8910074 | Nov 1989 | WO |
WO 9004323 | May 1990 | WO |
WO 9118527 | Dec 1991 | WO |
WO 9314659 | Aug 1993 | WO |
WO 9321790 | Nov 1993 | WO |
Number | Date | Country | |
---|---|---|---|
20120210601 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12419760 | Apr 2009 | US |
Child | 13457227 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11610382 | Dec 2006 | US |
Child | 12419760 | US |