The present invention relates generally to an article of footwear that provides traction during athletic activity.
Various competitive athletic activities require players to make changes in directional movement quickly on a variety of playing surfaces. For example, the game of soccer requires players to make many directional changes in response to the position of a soccer ball on the playing field. When kicking a soccer ball, a player must plant a foot near the soccer ball with one foot in order to kick the ball with the opposite foot. The foot that is planted near the ball prior to kicking requires a certain amount of friction between the playing surface and the players planted foot in order to provide the player with a sufficient amount of balance and stability to properly kick the ball. The required friction may be provided by studs arranged on the sole of the footwear.
Generally, studs on the sole of the footwear may provide a degree of friction between the player's foot and the playing field. The friction caused by the studs on the planted foot may provide the player with additional stability enabling the player to kick the ball with unplanted foot.
In one aspect, an article of footwear is disclosed. In some embodiments, the article of footwear may include a sole structure having a heel region, wherein the heel region has a medial edge, a lateral edge, a forward portion and a back edge. In some embodiments, the article of footwear may also include a first plurality of elongated studs associated with a medial edge in the heel region, wherein each elongated stud extends approximately a first distance from a surface of the sole in the heel region, wherein a longitudinal axis of each of the elongated studs is oriented in substantially the same direction as the medial edge of the sole adjacent to each cleat. In some embodiments, the article of footwear may also include a second plurality of elongated studs associated with a lateral edge in the heel region, wherein each elongated stud extends approximately the first distance from the surface of the sole in the heel region, wherein a longitudinal axis of each of the elongated studs is oriented in substantially the same direction as the lateral edge of the sole adjacent to each cleat. In some embodiments, the article of footwear may also include a back lateral stud having a rounded shape associated with the back lateral edge of the heel, wherein the back lateral stud extends approximately a second distance from the sole.
In another aspect, one embodiment of an article of footwear may include a sole structure having a surface, a forefoot region and a heel region, wherein the heel region has a medial edge, lateral edge, forward region and back edge. In some embodiments, the article of footwear may also include a plurality of elongated studs extending approximately a first distance from a surface of the heel, wherein a longitudinal axis of each of the elongated studs are substantially oriented in the direction of the forefoot region. In some embodiments, the article of footwear may also include a back lateral stud associated with the back lateral edge of the heel, wherein the back lateral stud has a rounded shape, an outer surface, a base located on the surface of the sole, and a top surface opposite the base, wherein the back lateral stud extends approximately a second distance from the surface of the sole. In some embodiments, the article of footwear may also include a first blade-like support structure having a first edge, a second edge and a third edge, wherein the first edge is attached to the surface of the sole, wherein the second edge is attached to the outer surface of the back lateral stud from the surface of the sole to a first distance from the top surface of the back lateral stud, and wherein the third edge slopes from the first distance from the top surface of the back lateral stud to the surface of the heel. In some embodiments, the article of footwear may also include a second blade-like support structure having a first edge, a second edge and a third edge, wherein the first edge is attached to the surface of the sole, wherein the second edge is attached to the outer surface of the back lateral stud from the surface of the sole to a second distance from the top surface of the back lateral stud, and wherein the third edge slopes from the second distance from the top surface of the back lateral stud to the surface of the heel. In some embodiments, the article of footwear may also include a third blade-like support structure having a first edge, a second edge and a third edge, wherein the first edge is attached to the surface of the sole, wherein the second edge is attached to the outer surface of the back lateral stud from the surface of the sole to a third distance from the top surface of the back lateral stud, and wherein the third edge slopes from the third distance from the top surface of the back lateral stud to the surface of the heel.
In another aspect, an article of footwear may have a sole structure having a forefoot region and a heel region, wherein the heel region has a medial edge, lateral edge, forward region and back edge. In some embodiments, the article of footwear may also include a plurality of elongated studs extending approximately a first distance from a surface of the heel, wherein a longitudinal axis of each of the elongated studs are substantially oriented in the direction of the forefoot region, wherein each elongated stud has a flat top surface. In some embodiments, the article of footwear may also include a back lateral circular stud associated with the back lateral edge of the heel, the back lateral circular stud having a first circular portion extending from the heel, wherein the first circular portion has a first radius and a flat top surface, wherein the back lateral circular stud having a second circular portion having a second radius extending from the flat top surface of the first circular portion, wherein the second radius is less than the first radius.
Other systems, methods, features and advantages of the invention will be, or will become, apparent to one of ordinary skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description and this summary, be within the scope of the invention, and be protected by the following claims.
The invention can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views.
For consistency and convenience, directional adjectives are employed throughout this detailed description corresponding to the illustrated embodiments. The term “longitudinal” or “longitudinally” as used throughout this detailed description and in the claims refers to a direction extending a length of an article. In some cases, the longitudinal axis is the axis extending through the longest dimension of a component. For example, the longitudinal axis of an elongated cleat may be the direction extending through the longest portion of the elongated cleat.
The term “medial plane of the body” as used throughout this detailed description and in the claims refers to the plane that divides the human body into a right and left side. The term “lateral” as used throughout this detailed description and in the claims refers to a region or direction extending away from the medial plane of the body. For example, the lateral side of the foot may refer to the side of the foot facing away from the center of the body. Similarly, the term “medial” as used throughout this detailed description and in the claims refers to a region or direction extending towards the medial plane of the body. For example, the medial side of the foot may refer to the side of the foot facing towards the center of the body.
Furthermore, the term “vertical” or “central” as used throughout this detailed description and in the claims refers to a direction generally perpendicular to a direction that is parallel to the ground. Furthermore, the term “vertical axis” or “central axis” as used throughout this detailed description and in the claims refers to a direction that extends generally away from the sole of the foot. For example, in cases where an article is planted flat on a ground surface, the vertical or central direction may extend from the sole towards the ground surface. It will be understood that each of these directional adjectives may be applied to individual components of an article, such as an upper and/or a sole structure.
The studs discussed herein may vary in size in different dimensional directions. It should be understood that the terms “length” and “width” as used throughout this detailed description and in the claims refers to a direction generally associated with the longest and shortest dimensions, respectively, of an element in the plane parallel to the sole structure. It should also be understood that the term “height” as used throughout this detailed description and in the claims refers to a direction generally associated with the distance of an element as measured from the sole structure in the plane perpendicular to the sole structure. In some embodiments, the length and/or width of the studs may vary. Similarly, in some embodiments, the approximate heights of each stud may vary.
Referring to
In addition, sole 100 may include a medial edge 16 and lateral edge 18. In particular, medial edge 16 may refer to the edge of the sole facing towards the center of the body. Similarly, the lateral edge 18 may refer to the region of the sole that is facing away from the center of the body. Furthermore, both medial edge 16 and lateral edge 18 may extend through forefoot region 12, midfoot region 13, and heel region 14.
It will be understood that forefoot region 12, midfoot region 13, and heel region 14 are only intended for purposes of description and are not intended to demarcate precise regions of sole 100. Likewise, medial edge 16 and lateral edge 18 are intended to represent generally two portions or sides of the sole 100, rather than precisely demarcating the sole 100 into two halves. In addition, forefoot region 12, midfoot region 13, and heel region 14, as well as medial edge 16 and lateral edge 18, can also be applied to individual components of an article of footwear, such as a sole structure and/or an upper.
In some embodiments, sole 100 may be configured to provide traction for the wearer. In addition to providing traction, sole 100 may attenuate ground reaction forces when compressed between the foot and the ground during walking, running or other ambulatory activities. The configuration of sole 100 may vary significantly in different embodiments to include a variety of conventional or non-conventional structures. In some embodiments, sole 100 may include different components. For example, sole 100 may include an outsole, a midsole, and/or an insole. In some cases, one or more of these components may be optional.
In some cases, sole 100 may be configured according to one or more types of ground surfaces on which sole 100 may be used. Examples of ground surfaces include, but are not limited to: natural turf, synthetic turf, dirt, natural grass, soft natural grass, as well as other surfaces. In some embodiments, sole 100 may be provided with one or more cleat systems comprising a plurality of cleat members or stud members. The term “cleat members” or “stud members” as used in this detailed description and throughout the claims includes any provisions disposed on a sole for increasing traction through friction or penetration of a ground surface. Typically, cleat systems and/or cleat members may be configured for football, soccer, baseball or any type of activity that requires traction.
Sole 100 may include one or more cleat systems comprising a plurality of cleat members that extend away from the surface of the sole 100. Generally, cleat systems and/or cleat members may be associated with sole 100 in any manner. In some embodiments, cleat systems and/or cleat members may be integrally formed with sole 100. In other embodiments, sole 100 may include a partially rigid plate that extends across a substantial majority of a lower surface of sole 100. In some cases, cleats systems and/or cleat members may be attached to a partially rigid plate, such as by being screwed into holes within the plate or using any other provisions. Still further, in some cases, some cleats systems and/or cleat members may be integrally formed with sole 100. In still other cases, cleat systems and/or cleat members may be attached to and/or integrally formed with a partially rigid plate.
An article of footwear including cleat systems and/or cleat members can include provisions for maximizing traction between a sole and multiple types of ground surfaces. In some embodiments, a sole 100 can include cleat systems and/or cleat members disposed in different locations to achieve maximum traction on multiple types of surfaces. In other embodiments, a sole 100 can include distinct types of cleat systems and/or cleat members that each maximize traction for a distinct type of surface.
In some embodiments, sole 100 may include cleat members arranged as shown in
The heel region may also include a third elongated stud 36 and a fourth elongated stud 38 associated with the lateral edge 18 of the heel 14. In some embodiments, the third elongated stud 36 may have a longitudinal axis H that runs in substantially the same direction as the lateral edge 18 of the sole adjacent to the third elongated stud 36. In some embodiments, the fourth elongated stud 38 may have a longitudinal axis I that runs in substantially the same direction as the lateral edge 18 of the sole adjacent to the fourth elongated stud 38. Although
In one embodiment, the back lateral stud 40 may include a first stud portion 316 extending a first distance X from the surface 310 of the sole. In some embodiments, stud 40 may further include second stud portion 326. Second stud portion 326 may extend outwardly from top surface 320 of first stud portion 316. In some embodiments, second stud portion 326 may extend a second distance Y from the top surface 320 of the first stud portion.
In different embodiments, the geometry of each stud portion can vary. In some embodiments, a stud portion could have a substantially rounded shape. For example, in some cases, a stud portion could have an approximately cylindrical shape. In other cases, a stud portion could have an approximately conical shape. In one embodiment, one or more stud portions could have the approximate shape of a conical frustum. In other embodiments, a stud portion may not have a rounded shape.
In some cases, a stud portion may be square or rectangular in shape. In other cases, a stud portion may be triangular in shape. Additionally, it will be understood that while the current embodiments use elongated, rectangular and/or round cross-sectional shaped cleat members, cleat members may be formed in any of various shapes, including but not limited to hexagonal, cylindrical, conical, circular, square, rectangular, trapezoidal, diamond, ovoid, as well as other regular or irregular and geometric or non-geometric shapes.
In some embodiments, first stud portion 316 may have a generally rounded shape that is tapered. The first stud portion 316 may have a first radius A as measured from the centerline 305 of the stud to the outer surface 315 of the first stud portion 316 near the surface of the sole 310. In some embodiments, the top surface 320 of the first stud portion 316 may be substantially flat. In some embodiments, the top surface 320 of the first stud portion 316 may have a second radius B. In some embodiments, first radius A may be larger than second radius B. In one embodiment, the radius of first stud portion 316 may taper down from first radius A to second radius B. This tapered configuration may help stud 40 penetrate further into a ground surface. In other embodiments, first radius A may be equal to second radius B. In still other embodiments, first radius may be smaller than second radius B.
In some embodiments, second stud portion 326 may have a generally rounded shape. The second stud portion 326 may have a third radius C as measured from the centerline 305 of the stud to the outer surface 325 of the second stud portion. The second stud portion 326 may have a flat top surface 330 that is substantially parallel to the top surface 320 of the first stud portion 316. In different embodiments, the relative sizes of first stud portion 316 and second stud portion 326 can vary. In some embodiments, first radius A may be larger than second radius C, and second radius B may be larger than third radius C. Moreover, first distance X may be larger than second distance Y. With this configuration, second stud portion 326 is configured as a smaller stud portion that extends outwardly from first stud portion 316. In other embodiments, however, first distance X may be the same as, or greater than, second distance Y. Likewise, in other embodiments, third radius C could be similar in size to, or larger than, second radius B. In some embodiments, the cross-sectional surface area of the second stud portion 326 may be smaller than the cross-sectional surface area of the first stud portion 316. In other embodiments, the cross-sectional surface area of the second stud portion 326 may be the same as the first stud portion 316.
The second stud portion 326 may allow the back lateral cleat 40 to penetrate further into the ground. Since the second stud portion 326 may have a radius that is smaller than the first stud portion 316, the second stud portion 326 may form an initial hole in the surface of the playing field allowing the first stud portion 316 to penetrate the playing surface more deeply. This creates more friction between the playing surface and the player, thus providing more stability when the player is kicking the ball.
In different embodiments, the height of first support structure 42 may vary. In some cases, first support structure 42 may extend to the top of stud 40. In other cases, first support structure 42 may not extend to the top of stud 40. In the current embodiment, the top corner 424, which is associated with second edge 422 and third edge 423, may be spaced apart from top surface 320 of stud portion 316. In one embodiment, the top corner 424 of the second edge 422 may be located a distance N from the top surface 320 of the first stud portion 316.
The second support structure 43 has a first edge 431, a second edge 432, and a third edge 433. The first edge 431 is attached to the surface 310 of the sole, and runs in a direction that is towards the forefoot region 12 (not shown in
In different embodiments, the height of second support structure 43 may vary. In some cases, second support structure 43 may extend to the top of stud 40. In other cases, second support structure 43 may not extend to the top of stud 40. In the current embodiment, the top corner 434, which is associated with second edge 432 and third edge 433, may be spaced apart from top surface 320 of first stud portion 316. In one embodiment, the top corner 434 of the second edge 432 may be located a distance M from the top surface 320 of the first stud portion 316.
The third support structure 44 has a first edge 441, a second edge 442, and a third edge 443. The first edge 441 is attached to the surface 310 of the sole, and runs in the same direction as the lateral edge 18 of the heel. The second edge 442 is attached to a portion of the first stud portion 316. The third edge 443 slopes from the top corner 444 of the second edge 442 to the surface 310 of the sole. In some cases, the third edge 443 runs in substantially the same direction as the first edge 441. In some embodiments, the third edge 443 may form a straight line between the top corner 444 of the second edge 442 and the surface 310 of the sole. In other embodiments, the third edge 443 may be curved, or may form an arc.
In different embodiments, the height of third support structure 44 may vary. In some cases, third support structure 44 may extend to the top of stud 40. In other cases, third support structure 44 may not extend to the top of stud 40. In the current embodiment, the top corner 444, which is associated with second edge 442 and third edge 443, may be spaced apart from top surface 320 of first stud portion 316. In one embodiment, the top corner 444 of the second edge 442 may be located a distance P from the top surface 320 of the first stud portion 316.
In some embodiments, the size of distance M, distance N and distance P could vary. In some cases, distance P, distance N and distance P could all equal one another. In other cases, they could be substantially different from one another. In still other cases, distance P and distance N could be substantially similar in size, while distance M could be substantially smaller or larger. Similarly, distance P and distance M could be substantially similar in size, while distance N could be substantially smaller or larger. In other cases, distance M and distance N could be substantially similar in size, while distance P could be substantially smaller or larger.
The first support structure 42, second support structure 43, and third support structure 44 may further help the back lateral stud 40 penetrate the playing surface by loosening up the surrounding surface as the back lateral stud 40 enters the ground. In addition, the first support structure 42, second support structure 43, and third support structure 44 may provide improved balance and stability as the player plants that foot in preparation for kicking the ball with the opposite foot.
In some embodiments, one or more elongated studs discussed previously can also include first stud portions and second stud portions. For example, in the current embodiment, the second elongated stud 38 may include a first elongated stud portion 54 extending a distance R from the sole. In some cases, the first elongated stud portion 54 may have a substantially flat top surface 55. In some cases, a second elongated stud portion 52 may extend a distance D from top surface 55.
Similarly, the first elongated stud 36 may include a first elongated stud portion 57 extending a distance S from the sole. The first elongated stud portion 57 may have a substantially flat top surface 56. In addition, a second elongated stud portion 53 may extend a distance E from the top surface 56.
In some embodiments, stud 54 and stud 57 may be elongated and tapered in shape. In some embodiments, the second elongated stud portion 53 of the first elongated stud 36 and the second elongated stud portion 52 of the second elongated stud 38 may have a surface facing the ground 550 that is substantially flat. In other cases, second elongated stud portions 52 and 53 may have a surface that forms any other geometric shape that allows the first elongated stud 36 and/or second elongated stud 38 to penetrate into the ground 550.
Generally, the height of first stud portion 316 of the back lateral stud 40 may vary with respect to the height of first elongated stud portion 54 on the second elongated stud 38. In some embodiments, the distance X (which is associated with the height of first stud portion 316 of the back lateral stud 40) may be greater than distance R (which is associated with the height of first elongated stud portion 54 of the second elongated stud 38). In other embodiments, the distance X may be greater than 50% of the distance R. In still other embodiments, the distance X may be greater than 60% of the distance R. Furthermore, in some embodiments, the distance X+Y may be greater than 60% of the distance R+D. In other words, in some cases, the combined height of first stud portion 316 and second stud portion 326 may be 60% greater than the combined height of first elongated stud portion 54 and second elongated stud portion 52 of the second elongated stud 38. This relationship between height of the back lateral stud 40 and the heights of the elongated studs allows the toe portion of the shoe to slightly lift off of the ground when the foot is planted on the ground while simultaneously providing support for the foot. Thus, having the back lateral stud 40 smaller in height than the elongated studs allows for the planted foot to be more accurately positioned once the foot is planted by allowing the toe region to be lifted up and moved slightly to the left or right. Having the back lateral stud 40 with a height that is 60% or greater than the elongated studs in the heel region limits the degree to which the toe region may be lifted from the ground, thus providing added stability to the planted foot.
Generally, the height of first stud portion 316 of the back lateral stud 40 may vary with respect to the height of first elongated stud portion 57 on the first elongated stud 36. In some embodiments, the distance X (which is associated with the height of the first stud portion 316 of the back lateral stud 40) may be greater than distance S (which is associated with the height of first elongated stud portion 57 of the first elongated stud 36). In other embodiments, the distance X may be greater than 50% of the distance S. In still other embodiments, the distance X may be greater than 60% of the distance S. Furthermore, in some embodiments, the distance X+Y may be greater than 60% of the distance S+E. In other words, in some cases, the combined height of first stud portion 316 and second stud portion 326 may be 60% or greater than the combined height of first elongated stud portion 57 and second elongated stud portion E of the first elongated stud 36.
Although not shown in
For purposes of describing the orientation of one or more studs of sole 100, each stud may be associated with a central axis. The central axis is an axis that runs perpendicular to the lateral and longitudinal directions of each stud. In the current embodiment, the fourth elongated stud 38 may have a central axis 500 that is substantially perpendicular to the ground 550. In addition, back lateral stud 40 may be associated with central axis 510. Furthermore, third lateral stud 56 may be associated with central axis 520.
In some embodiments, the relative angle between back lateral stud 40 and other studs on heel region 14 of sole 100 can vary. As can be seen in
The third elongated stud 36 may have a central axis 520 that is at some angle β relative to the central axis 500 of the fourth elongated stud 38. For example, the central axis 520 of the third elongated stud 36 may form a 10° angle with respect to the central axis 500 of the fourth elongated stud 38. In other embodiments, the central axis of the third elongated stud 36 may be at more than a 10° angle relative to the central axis 500 of the fourth elongated stud 38. In still further embodiments, the central axis of the third elongated stud 36 may be at less than a 10° angle relative to the central axis 500 of the fourth elongated stud 38.
This angular relationship between the studs in the heel region allows the foot to roll slightly in the direction of the forefoot while advancing in a forward direction. This allows for improved traction when the player is running, accelerating or making a directional change.
Similarly, although not shown in
Additional stability may be provided with the addition of a transversely oriented elongated cleat located in the back heel region, as shown in
The cleat members in this embodiment may be formed in any of various shapes, including but not limited to elongated, rectangular and/or round cross-sectional shaped, hexagonal, cylindrical, conical, circular, square, rectangular, trapezoidal, diamond, ovoid, as well as other regular or irregular and geometric or non-geometric shapes. In some embodiments, the back lateral stud 610 will have a conical frustum shape.
Some embodiments may also include a fifth elongated stud 620 associated with the middle of the back edge 617 of the heel. The fifth elongated stud 620 may have a longitudinal axis that is substantially parallel to the back edge 617 of the heel. In other words, the fifth elongated stud 620 may have a longitudinal axis that is substantially perpendicular to the longitudinal axis of the first elongated stud 630, the second elongated stud 640, the third elongated stud 650 and/or the fourth elongated stud 660.
In some embodiments, the relative heights of fifth elongated stud 620 and back lateral stud 620 can vary. In some embodiments, the fifth elongated stud 620 may extend from the sole a distance L. In some embodiments, the back lateral stud 610 may extend from the sole distance K. In some embodiments, distance L may be equal to distance K. In other embodiments, the distance L may be less than the distance K. For example, in some embodiments, the distance L may be less than 60% of distance K. In other embodiments, the distance L may be greater than 60% of distance K. In some embodiments, the cleat configurations described in
The fifth elongated stud 620 located in the back portion of the heel as shown in
Referring to
When the back lateral stud 700 first initiates contact with the ground 705, as shown in
As shown in
While various embodiments of the invention have been described, the description is intended to be exemplary, rather than limiting and it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of the invention. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents. Also, various modifications and changes may be made within the scope of the attached claims.
Number | Name | Date | Kind |
---|---|---|---|
1568064 | Goldman | Jan 1926 | A |
4067123 | Minihane | Jan 1978 | A |
4315374 | Sneeringer | Feb 1982 | A |
4392312 | Crowley et al. | Jul 1983 | A |
5201126 | Tanel | Apr 1993 | A |
5339544 | Caberlotto | Aug 1994 | A |
5461801 | Anderton | Oct 1995 | A |
5887371 | Curley, Jr. | Mar 1999 | A |
6016613 | Campbell et al. | Jan 2000 | A |
6557270 | Nakano et al. | May 2003 | B2 |
6892479 | Auger et al. | May 2005 | B2 |
6973745 | Mills et al. | Dec 2005 | B2 |
6973746 | Auger et al. | Dec 2005 | B2 |
7007410 | Auger et al. | Mar 2006 | B2 |
7010871 | Sussmann | Mar 2006 | B2 |
7086183 | Wood et al. | Aug 2006 | B2 |
7143530 | Hudson et al. | Dec 2006 | B2 |
7181868 | Auger et al. | Feb 2007 | B2 |
7441350 | Auger et al. | Oct 2008 | B2 |
8510974 | Yue et al. | Aug 2013 | B2 |
8782928 | Amos et al. | Jul 2014 | B2 |
8806779 | Auger et al. | Aug 2014 | B2 |
8966787 | Auger et al. | Mar 2015 | B2 |
20040000071 | Auger et al. | Jan 2004 | A1 |
20040000075 | Auger et al. | Jan 2004 | A1 |
20050016029 | Auger et al. | Jan 2005 | A1 |
20050097782 | Mills et al. | May 2005 | A1 |
20060064905 | Hudson et al. | Mar 2006 | A1 |
20060150442 | Auger et al. | Jul 2006 | A1 |
20060242863 | Patmore | Nov 2006 | A1 |
20070240337 | Belluto | Oct 2007 | A1 |
20070266597 | Jones | Nov 2007 | A1 |
20080216352 | Baucom et al. | Sep 2008 | A1 |
20080216362 | Gerber | Sep 2008 | A1 |
20080301973 | Lee Tsai | Dec 2008 | A1 |
20090100718 | Gerber | Apr 2009 | A1 |
20090113765 | Robinson et al. | May 2009 | A1 |
20090211118 | Krikorian et al. | Aug 2009 | A1 |
20090293315 | Auger et al. | Dec 2009 | A1 |
20110088287 | Auger et al. | Apr 2011 | A1 |
20110197475 | Weidl et al. | Aug 2011 | A1 |
20110197478 | Baker | Aug 2011 | A1 |
20110203136 | Auger et al. | Aug 2011 | A1 |
20110232136 | Curley | Sep 2011 | A1 |
20110247237 | Jara et al. | Oct 2011 | A1 |
20120180343 | Auger et al. | Jul 2012 | A1 |
20130047465 | Auger et al. | Feb 2013 | A1 |
20130067765 | Auger et al. | Mar 2013 | A1 |
20130067772 | Auger et al. | Mar 2013 | A1 |
20130067773 | Auger et al. | Mar 2013 | A1 |
20130067774 | Auger et al. | Mar 2013 | A1 |
20130067776 | Auger et al. | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
3703932 | Aug 1988 | DE |
19817579 | Oct 1999 | DE |
1392136 | Mar 2004 | EP |
1385256 | Jan 1965 | FR |
9308505 | Dec 1997 | JP |
0030483 | Jun 2000 | WO |
2013077974 | May 2013 | WO |
Entry |
---|
International Search Report and Written Opinion mailed Mar. 7, 2013 in International Application No. PCT/US2012/062648. |
International Preliminary Report on Patentability mailed Jun. 5, 2014 in PCT/US2012/062648. |
Voluntary Amendments filed Jan. 9, 2015 in Chinese Patent Application No. 201280057390.5. |
Voluntary Amendments filed Feb. 9, 2015 in European Patent Application No. 12806200.7. |
Number | Date | Country | |
---|---|---|---|
20130125423 A1 | May 2013 | US |