The present invention relates to the field of footwear. The invention concerns, more particularly, an article of footwear having an upper and a sole structure for flexibility.
Conventional articles of athletic footwear include two primary elements, an upper and a sole structure. The upper provides a covering for the foot that securely receives and positions the foot with respect to the sole structure. In addition, the upper may have a configuration that protects the foot and provides ventilation, thereby cooling the foot and removing perspiration. The sole structure is secured to a lower surface of the upper and is generally positioned between the foot and the ground.
The present invention pertains to an article of footwear with a sole structure.
In one aspect, an article of footwear includes an upper and a sole structure secured to the upper, and the sole structure includes an outsole and a midsole connected to the outsole and disposed between the outsole and the upper. The midsole further includes a heel region and a toe region. A first midsole impact force attenuating structure or system is arranged within the toe region of the midsole. A second midsole impact force attenuating structure or system is arranged within the heel region of the midsole, such that the second midsole impact force attenuating structure or system includes a molded heel region member extending from a lateral side of the article of footwear to a medial side; the heel region member having a hollow central region defined by a first radius of curvature in a direction toward the toe region and a second radius of curvature in a direction toward the heel region. The first radius of curvature is different from the second radius of curvature. In one aspect, the second radius of curvature is larger than first the radius of curvature.
In another aspect, the heel region member has a generally elliptical construction. In another aspect, the heel region member is formed of a plastic material. In yet another aspect, the heel region member is formed of Nylon. In one aspect, the heel region member is asymmetrical based on stiffness. In yet another aspect, the heel region member includes a medial portion and a lateral portion divided by a separation region. In one aspect, the medial portion and the lateral portion have a different stiffness. In another aspect, the medial portion and the lateral portion include a polymer matrix layer. In one aspect, the medial side and the lateral side of the heel region member include upwardly extending flanges. In another aspect, the heel region member includes a concave portion therein for retaining a heel of a wearer.
The advantages and features of novelty characterizing the present invention are pointed out with particularity in the appended claims. To gain an improved understanding of the advantages and features of novelty, however, reference may be made to the following descriptive matter and accompanying drawings that describe and illustrate various embodiments and concepts related to the invention.
The foregoing Summary of the Invention, as well as the following Detailed Description of the Invention, will be better understood when read in conjunction with the accompanying drawings.
The following discussion and accompanying figures describe articles of footwear having various constructions and structures.
Footwear 100 is depicted in the figures and discussed below as having a configuration that is suitable for athletic activities, particularly running. The concepts disclosed with respect to footwear 100, however, may be applied to footwear styles that are specifically designed for a wide range of other athletic activities, including basketball, baseball, football, soccer, walking, and hiking, for example, and these concepts may also be applied to various non-athletic footwear styles. Accordingly, one skilled in the relevant art will recognize that the concepts disclosed herein may be applied to a wide range of footwear styles and are not limited to the specific embodiments discussed below and depicted in the figures.
Footwear 100 is depicted in
For purposes of reference as shown in
The upper 200 of an article of athletic footwear, for example, may be formed from multiple material layers that include an exterior layer, a middle layer, and an interior layer. The materials forming the exterior layer of the upper 200 may be selected based upon the properties of wear-resistance, flexibility, and air-permeability, for example. With regard to the exterior layer, the toe area and the heel area may be formed of leather, synthetic leather, or a rubber material to impart a relatively high degree of wear-resistance. Leather, synthetic leather, and rubber materials may not exhibit the desired degree of flexibility and air-permeability, at least not for all areas of the upper 200. Accordingly, various other areas of the exterior layer of the upper 200 may be formed from a synthetic textile. The exterior layer of the upper 200 may be formed, therefore, from numerous material elements that each impart different properties to specific areas of the upper 200.
A middle layer of the upper 200 may be formed from a lightweight polymer foam material that provides a soft feel and protects the foot from objects that may contact the upper 200. Similarly, an interior layer of the upper 200 may be formed of a moisture-wicking textile that removes perspiration from the area immediately surrounding the foot. In some articles of athletic footwear 100, the various layers may be joined with an adhesive, and stitching may be utilized to join elements within a single layer or to reinforce specific areas of the upper 200. Various areas of an upper 200 need not include all of these layers, if desired.
Sole structure 300 is secured to a lower portion of upper 200 and provides a durable, wear-resistant component for attenuating ground reaction forces and absorbing energy as footwear 100 impacts the ground. The sole structure 300 generally incorporates multiple layers that are conventionally referred to as an insole, a midsole, and an outsole. The insole (not shown) is a thin, relatively soft member located within the upper 200 and adjacent the plantar (lower) surface of the foot to enhance footwear comfort. The midsole 310, which is traditionally attached to the upper 200 along the entire length of the upper 200, forms the middle layer of the sole structure 300 and serves a variety of purposes that include controlling foot motions and providing impact force attenuation. The outsole 320 forms the ground-contacting element of footwear and is usually fashioned from a durable, wear-resistant material (e.g., rubber, thermoplastic polyurethanes, etc.) that includes texturing to improve traction.
Upper 200 and sole structure 300 have a structure that cooperatively articulate, flex, stretch, or otherwise move to provide an individual with improved forward propulsion. That is, upper 200 and sole structure 300 are configured to complement the natural motion of the foot during running or other activities.
A variety of materials are suitable for upper 200, including the materials that are conventionally utilized in footwear uppers. Accordingly, upper 200 may be formed from combinations of leather, synthetic leather, natural or synthetic textiles, polymer sheets, polymer foams, mesh textiles, knitted textiles, felts, non-woven polymers, or rubber materials, for example. In one arrangement, the exposed portions of upper 200 may be formed from two coextensive layers of material that are stitched or adhesively bonded together. Based upon the above discussion, the various portions of upper 200 include different combinations of materials. In further embodiments, however, different materials may be utilized for the various areas of the upper 200, or upper 200 may include more than two layers of material. In joining upper 200 and sole structure 300, adhesives, stitching, or a combination of adhesives and stitching may be utilized. In this manner, upper 200 is secured to sole structure 300 through a substantially conventional process.
As noted above, sole structure 300 includes a midsole structure 310 and an outsole 320. One primary element of midsole structure 310 is a resilient, polymer foam material, such as polyurethane or ethylvinylacetate, that is provided at least in a forefoot region, but also may extend throughout the length of the footwear 100. The properties of the polymer foam material in the midsole 310 are primarily dependent upon factors that include the dimensional configuration of the midsole 310 and the specific characteristics of the material selected for the polymer foam, including the density of the polymer foam material. By varying these factors throughout the midsole 310, the relative stiffness, degree of ground reaction force attenuation, and energy absorption properties may be altered to meet the specific demands of the activity for which the footwear 100 is designed and intended to be used.
Outsole 320 may include a plurality of outsole traction elements that are formed and/or engaged with the lower surface of the outsole 320. Outsole 320 provides at least a portion of an exterior bottom surface of the footwear 100 to provide wear-resistance and ground-engagement. Suitable materials for outsole 320 include any of the conventional rubber materials that are utilized in footwear outsoles, such as carbon black rubber compound.
The midsole structure 310 further includes a heel insert 330. The flexible structure of midsole 310 is configured to complement the natural motion of the foot during running or other activities. Midsole 310 attenuates ground reaction forces and absorbs energy to protect the foot and decrease the overall stress upon the foot. Suitable materials for midsole 310 are any of the conventional polymer foams that are utilized in footwear midsoles, including ethylvinylacetate and polyurethane foam.
The heel insert 330 may be formed with an elliptical shape or a flatten elliptical shape (e.g., raindrop shaped structure in which a rear curvature R2 is greater than the front most curvature R1) with an internal void/cavity 332 therein to provide for a region for flexing so that the structure 330 attenuates the ground impact forces on foot strikes. The ratio of the R2/R1 may be greater than 1.0. Heel insert 330 is formed to be resiliently flexible primarily along a longitudinal direction to provide a forward springing action. Additionally, the heel insert 330 is resiliently flexible along a transverse direction (medial-lateral direction) to provide side to side springing action. In this configuration, the midsole structure 310 with heel insert 330 enhances the comfort, motion-control qualities, stability, and/or ground or other contact surface reaction force attenuation properties of footwear 100. The heel insert 330 may be of a molded one-piece construction. Heel insert 330 may be made from any material exhibiting sufficient resilience and/or resistance to material. Suitable materials for heel insert 330 may include NYLON, polyether block amide (PEBA), carbon fiber reinforced polymers, other composite materials, or other combinations of materials.
In one construction, heel insert 330 can be formed by injection molding a plastic resin into a desired shape. If desired, the resin may be filled approximately 10% to 25% fiber material to form a plastic resin composite throughout the volume of insert 330. The plastic resin composite may be an enhanced resin having a filled fibrous composition, such as nylon, glass, or graphite fiber. The resin may be polyester. In one arrangement, the fibers can be oriented in a heel-to-toe direction or medial-to-lateral direction. In another arrangement, the fibers may be a chopped type mixed in the resin.
In one construction, footwear 100 advantageously enhances traction control and stability of a foot of a wearer. As best shown in
In general, the motion of the foot during running proceeds as follows: initially, the heel strikes the ground, followed by the ball of the foot. As the heel leaves the ground, the foot rolls forward so that the toes make contact, and finally the entire foot leaves the ground to begin another cycle. During the time that the foot is in contact with the ground, the foot typically rolls from the outside or lateral side to the inside or medial side, a process called pronation. That is, normally, the outside of the heel strikes first and the toes on the inside of the foot leave the ground last. The heel insert 330 may have a different stiffness of the lateral region 334 or medial region 336. The differences in stiffness can be accomplished by a combination of material molded in the heel insert 330. If desired, the stiffness can be provided by varying the thickness of heel insert 330 on the medial region 336 as compared to the lateral region 334. In one construction, the medial region 336 may have a larger thickness than lateral region 334.
The cutout 335 helps enhance flexibility of the heel insert 330 (and thus the overall sole member 300) along a front-to-rear direction of the shoe 100. More specifically, the cutout 335 better allows the lateral side of the heel insert 330 to flex somewhat more independent of the medial side of the heel insert 330 upon ground contact of the heel during a footstrike. This de-coupling of the lateral and medial side flexes improves the natural motion feel and flexibility of the sole 300.
In the example construction shown in
In such a construction, composite matrix layer 400, 402 can be molded into or on heel insert 330. As utilized herein, the term “matrix” is intended to encompass a variety of configurations, including nets, grids, lattices, webs, fiber and perforated materials, for example, that form apertures. If desired, the layer 400, 402 may be formed as polymer matrix layer of unitary (i.e., one-piece) construction from polymer materials that include hard rubber, thermoplastic polyurethane, polypropylene, polyethylene, ethylvinylacetate, and styrene ethylbutylene styrene, resin for example. Although the hardness of the polymer material may vary within the scope of various aspects of footwear 100, a polymer material having a hardness of 98 or more on the Shore A scale or 75 or more on the Shore D scale (e.g., high-density polyethylene) may be used. In manufacturing footwear 100, layer 400, 402, the polymer material may be molded through an injection molding process to impart the unitary construction to heel insert 330. As an alternative construction, layer 400, 402 may be adhesively bonded to the surface 344 of heel insert 330 using composite lay-up techniques.
In one construction of the heel insert 330, raised flanges 338 are provided on the medial side and the lateral side. That is, the side edges 338 of the top wall of heel insert 330 wrap upward toward the ankle of the wearer. Among other benefits, this construction provides stiffness and lateral-medial or medial-lateral stability to the foot of the wearer during forward propulsion. Additionally, the construction helps prevent the heel insert 330 from excessive collapsing during compression when attenuating ground impact forces. This is due to the increase stiffness of the heel insert 330 provided by the flanges 338. These raised flanges 338 also may help better hold the wearer's heel on top of the sole 300
In one construction shown in
As shown in
In one construction of footwear 100 shown in
Additional or alternative ways of controlling local flexibility of a heel insert may be provided without departing from this invention.
The number, size, shape, depth, relative spacings, and/or relative orientations of the grooves 3332 may vary widely, e.g., depending on the desired change in local flexibility at the location of the groove(s) 3332. The groove(s) 3332 may extend completely or partially through the surface of the heel insert 3330 without departing from this invention. Additionally or alternatively, grooves 3332 of this type may be provided at other areas of the heel insert 3330 structure, e.g., at any location where increased local flexibility may be desired, including in the forward lateral area, the forward central area, the forward medial area, the central rear area, the center area, etc. Also, while not shown, groove(s) 3332 of this type may be provided on other surfaces of the heel insert 3330, such as on the outer bottom surface, the inner bottom surface (i.e., within the void), the inner top surface (i.e., within the void), etc.
As another example,
Grooves, recesses and/or through holes of the types described above in conjunction with
As another option or alternative, rather than making a localized area more flexible (e.g., by providing grooves, recesses through holes, and/or thinned areas), localized areas of the heel insert may be made stiffer or less flexible, if desired. This may be accomplished, for example, by providing raised ribs or other structures on a heel insert surface, or by providing a thicker heel insert material thickness, at the desired localized areas of the heel insert. Such structural changes could be provided during production of the insert (e.g., during molding) or at a later time (e.g., by gluing one or more additional structures to a heel insert surface).
Localized flexibility changes (e.g., to create greater or less flexibility at a localized area) also may be accomplished for customization purposes. As some more specific examples, if desired, grooves, recesses, through holes, thinned surfaces, thicker surfaces, and/or additional structure(s) may be incorporated at various areas of a heel insert structure in response to feedback from a specific individual to make an area of the sole “harder” or “softer.” In this manner, an individual user may be able to obtain a sole structure having a “customized” feel.
In operation, the previously described features, individually and/or in any combination, improve stability and traction control. Further, the features of the footwear 100 reduce injury. In one construction, these advantages are also achieved by the differentiation of design in the medial 336 and lateral 334 region of footwear 100 and the synergistic effects of the two regions. While the various features of footwear 100 work together to achieve the advantages previously described, it is recognized that individual features and sub-combinations of these features can be used to obtain some of the aforementioned advantages without the necessity to adopt all of these features shown
The present invention is disclosed above and in the accompanying drawings with reference to a variety of embodiments. The purpose served by the disclosure, however, is to provide an example of the various features and concepts related to the invention, not to limit the scope of the invention. One skilled in the relevant art will recognize that numerous variations and modifications may be made to the embodiments described above without departing from the scope of the present invention, as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1471966 | Light | Oct 1923 | A |
1638350 | Long | Aug 1927 | A |
3738373 | Glancy | Jun 1973 | A |
4342158 | McMahon et al. | Aug 1982 | A |
4638575 | Illustrato | Jan 1987 | A |
4843737 | Vorderer | Jul 1989 | A |
4881329 | Crowley | Nov 1989 | A |
4910884 | Lindh et al. | Mar 1990 | A |
5068981 | Jung | Dec 1991 | A |
D344174 | Kilgore | Feb 1994 | S |
5343639 | Kilgore et al. | Sep 1994 | A |
5353523 | Kilgore et al. | Oct 1994 | A |
5367790 | Gamow et al. | Nov 1994 | A |
5461800 | Luthi et al. | Oct 1995 | A |
5517769 | Zhao | May 1996 | A |
5577334 | Park | Nov 1996 | A |
5643148 | Naville | Jul 1997 | A |
5678327 | Halberstadt | Oct 1997 | A |
5701686 | Herr et al. | Dec 1997 | A |
5727335 | Kousaka et al. | Mar 1998 | A |
5930918 | Healy et al. | Aug 1999 | A |
D422131 | Berend | Apr 2000 | S |
6318001 | Lee | Nov 2001 | B1 |
6436012 | Naville | Aug 2002 | B1 |
6447429 | Chen et al. | Sep 2002 | B1 |
6557271 | Weaver, III | May 2003 | B1 |
6694642 | Turner | Feb 2004 | B2 |
6745499 | Christensen et al. | Jun 2004 | B2 |
6763612 | Stubblefield et al. | Jul 2004 | B2 |
6860034 | Schmid | Mar 2005 | B2 |
6865824 | Levert et al. | Mar 2005 | B2 |
6925732 | Clarke | Aug 2005 | B1 |
7013582 | Lucas et al. | Mar 2006 | B2 |
7100308 | Aveni | Sep 2006 | B2 |
D534346 | Dojan et al. | Jan 2007 | S |
7181866 | Braunschweiler | Feb 2007 | B2 |
7350320 | Chandler et al. | Apr 2008 | B2 |
7458172 | Aveni | Dec 2008 | B2 |
7779558 | Nishiwaki et al. | Aug 2010 | B2 |
7877898 | Aveni et al. | Feb 2011 | B2 |
7950166 | Perenich | May 2011 | B1 |
8006408 | Leedy et al. | Aug 2011 | B2 |
8151485 | Hurd et al. | Apr 2012 | B2 |
20030188455 | Weaver, III | Oct 2003 | A1 |
20040040183 | Kerrigan | Mar 2004 | A1 |
20040211088 | Volkart | Oct 2004 | A1 |
20040250446 | Greene et al. | Dec 2004 | A1 |
20050005472 | Perenich | Jan 2005 | A1 |
20050268488 | Hann | Dec 2005 | A1 |
20070022628 | Juan | Feb 2007 | A1 |
20070119074 | Aveni et al. | May 2007 | A1 |
20070277395 | Aveni et al. | Dec 2007 | A1 |
20080016719 | Aveni et al. | Jan 2008 | A1 |
20080078101 | Smith et al. | Apr 2008 | A1 |
20080256827 | Hardy | Oct 2008 | A1 |
20090100705 | Cook et al. | Apr 2009 | A1 |
20090126224 | Greene et al. | May 2009 | A1 |
20130118034 | Smaldone et al. | May 2013 | A1 |
20130199057 | Hurd et al. | Aug 2013 | A1 |
20130247422 | Holt et al. | Sep 2013 | A1 |
20140020264 | Holt | Jan 2014 | A1 |
20140068966 | Chaffin | Mar 2014 | A1 |
20140223771 | Berend et al. | Aug 2014 | A1 |
20140310982 | Delattre et al. | Oct 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20150040432 A1 | Feb 2015 | US |