The present embodiments relate generally to articles of footwear, and in particular to articles of footwear for sports.
Articles of footwear generally include two primary elements: an upper and a sole structure. The upper may be formed from a variety of materials that are stitched or adhesively bonded together to form a void within the footwear for comfortably and securely receiving a foot. The sole structure is secured to a lower portion of the upper and is generally positioned between the foot and the ground. In many articles of footwear, including athletic footwear styles, the sole structure often incorporates an insole, a midsole, and an outsole.
In one aspect, the present disclosure is directed to an article of footwear, the article of footwear comprising a sole structure and an upper, the upper including a first layer and a second layer. The first layer extends through a forefoot region, a midfoot region, and a heel region of the upper, and the second layer is positioned over a distal surface of the first layer so that the second layer covers at least a portion of an instep region of the article of footwear. The article of footwear has a tensioning system, the tensioning system comprising a tensile element, a plurality of guide elements, and a plurality of strap guides. The plurality of guide elements is positioned adjacent to a periphery of the first layer of the upper, and the second layer has a proximal surface and a distal surface, where the plurality of strap guides is attached to the proximal surface of the second layer. Furthermore, the tensile element is routed through each of the plurality of guide elements and through each of the plurality of strap guides and at least a portion of the tensile element is routed between the distal surface of the first layer and the proximal surface of the second layer.
In another aspect, the present disclosure is directed to an article of footwear, the article of footwear comprising a lateral side, a medial side, a forefoot region, and an instep region, an upper and a fastening system. The upper has a first layer and a second layer, where the first layer forms an interior cavity configured to receive a foot, and where the second layer includes a flap portion and an anchored portion, a peripheral border of the anchored portion attached to the first layer in the forefoot region. The fastening system comprises a plurality of guide elements, a plurality of strap guides, and a tensile element. In addition, the upper includes a closed configuration and an open configuration, where the tensile element is routed through each of the plurality of strap guides and through each of the plurality of guide elements when the upper is in the closed configuration, and the second layer exerts a compressive force along at least a part of the instep region when the upper is in the closed configuration. Furthermore, the plurality of strap guides are disposed between the first layer and the second layer.
In another aspect, the present disclosure is directed to an article of footwear, the article of footwear comprising an upper, the upper including a bootie portion and a cover portion. The bootie portion has an interior cavity configured to receive a foot, and the cover layer is positioned over a distal surface of the bootie portion so that the cover layer extends over at least a portion of an instep region of the article of footwear. The article of footwear also includes a tensioning system, the tensioning system comprising a plurality of strap guides and a tensile element. In addition, the cover layer has a proximal surface and a distal surface, where the proximal side faces toward the distal surface of the bootie portion. Furthermore, the plurality of strap guides is attached to the proximal surface of the second layer. The plurality of strap guides include a first strap guide and a second strap guide, the first strap guide comprising of a first folded strap, the first folded strap being attached to a medial side of the proximal surface of the cover layer, and the second strap guide comprising of a second folded strap, the second folded strap being attached to a lateral side of the proximal surface of the cover layer. The first folded strap includes a first channel configured to receive a portion of the tensile element, and the second folded strap includes a second channel configured to receive a portion of the tensile element.
Other systems, methods, features, and advantages of the embodiments will be, or will become, apparent to one of ordinary skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description and this summary, be within the scope of the embodiments, and be protected by the following claims.
The embodiments can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale; emphasis is instead being placed upon illustrating the principles of the embodiments. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views.
For purposes of clarity, the following detailed description discusses the features of article of footwear 100, also referred to simply as article 100. However, it will be understood that other embodiments may incorporate a corresponding article of footwear (e.g., a right article of footwear when article 100 is a left article of footwear) that may share some, and possibly all, of the features of article 100 described herein and shown in the figures.
The embodiments may be characterized by various directional adjectives and reference portions. These directions and reference portions may facilitate in describing the portions of an article of footwear. Moreover, these directions and reference portions may also be used in describing subcomponents of an article of footwear (e.g., directions and/or portions of a midsole structure, an outer sole structure, a tensioning system, an upper, or any other components).
For consistency and convenience, directional adjectives are employed throughout this detailed description corresponding to the illustrated embodiments. The term “longitudinal” as used throughout this detailed description and in the claims refers to a direction or axis extending a length of a component (e.g., an upper or sole component). In some embodiments, a longitudinal direction may extend from a forefoot portion to a heel portion of the component. Also, the term “lateral” as used throughout this detailed description and in the claims refers to a direction or axis extending along a width of a component. For example, a lateral direction may extend between a medial side and a lateral side of a component. Furthermore, the term “vertical” as used throughout this detailed description and in the claims refers to a direction or axis generally perpendicular to a lateral and longitudinal direction. For example, in embodiments where an article is planted flat on a ground surface, a vertical direction may extend from the ground surface upward. Additionally, the term “inner” or “proximal” refers to a portion of an article disposed closer to an interior of an article, or closer to a foot when the article is worn. Likewise, the term “outer” or “distal” refers to a portion of an article disposed further from the interior of the article or from the foot. Thus, for example, the proximal surface of a component is disposed closer to an interior of the article than the distal surface of the component. This detailed description makes use of these directional adjectives in describing an article and various components of the article, including an upper, a midsole structure, and/or an outer sole structure.
Article 100 may be characterized by a number of different regions or portions. For example, article 100 could include a forefoot portion, a midfoot portion, a heel portion, a vamp portion, and an instep portion. Moreover, components of article 100 could likewise comprise corresponding portions. Referring to
Furthermore, for purposes of reference, article 100 may include a lateral side 165 and a medial side 185. In particular, lateral side 165 and medial side 185 may be opposing sides of article 100. Furthermore, both lateral side 165 and medial side 185 may extend through forefoot region 105, midfoot region 125, heel region 145, vamp region 115, instep region 135, and ankle region 155.
Furthermore, in different embodiments, sole structure 130 may be configured to provide traction for article 100. Thus, in some embodiments, traction elements may be included in sole structure 130. In addition to providing traction, sole structure 130 may attenuate ground reaction forces when compressed between the foot and the ground during walking, running, pushing, or other ambulatory activities. The configuration of sole structure 130 may vary significantly in different embodiments to include a variety of conventional or nonconventional structures. In some embodiments, the configuration of sole structure 130 can be configured according to one or more types of surfaces on which sole structure 130 may be used. Examples of surfaces include, but are not limited to, natural turf, synthetic turf, dirt, hardwood flooring, skims, wood, plates, footboards, boat ramps, as well as other surfaces.
The various portions of sole structure 130 may be formed from a variety of materials. For example, sole structure 130 may include a compressible polymer foam element (e.g., a polyurethane or ethylvinylacetate foam) that attenuates ground reaction forces (i.e., provides cushioning) when compressed between the foot and the ground during walking, running, or other ambulatory activities. In further configurations, sole structure 130 may incorporate fluid-filled chambers, plates, moderators, or other elements that further attenuate forces, enhance stability, or influence the motions of the foot. Furthermore, other portions of sole structure 130, such as an outsole, can be formed from a wear-resistant rubber material that is textured to impart traction. It should be understood that the embodiments herein depict a configuration for sole structure 130 as an example of a sole structure that may be used in connection with upper 102, and a variety of other conventional or nonconventional configurations for sole structure 130 may also be utilized. Accordingly, the structure and features of sole structure 130 or any sole structure utilized with upper 102 may vary considerably.
Sole structure 130 is secured to upper 102 and extends between a foot and the ground when article 100 is worn. In different embodiments, sole structure 130 may include different components. For example, sole structure 130 may include an outsole. Sole structure 130 may further include a midsole and/or an insole. In some embodiments, one or more of these components may be optional. In addition, sole structure 130 may include components or portions that extend toward and/or attach to a portion of upper 102. Such components may provide additional support and compressive strength to article 100. For example, a sidewall 104 or a portion of an outsole may extend along or be disposed adjacent to a portion of lateral side 165 or medial side 185 of upper 102. In some embodiments, sidewall 104 may extend along or be disposed adjacent to various portions of upper 102. In
In different embodiments, upper 102 may be joined to sole structure 130 and define an interior cavity 106 designed to receiver a wearer's foot. In some embodiments, upper 102 includes a mouth 114 that provides access for the foot into interior cavity 106 of upper 102. Mouth 114 may be disposed along or near the ankle portion in some embodiments. Furthermore, in some embodiments, as noted above, tensile element 132 can extend through various apertures, guide elements, or other securing elements and permit the wearer to modify dimensions of upper 102 to accommodate the proportions of the foot. More particularly, a tensile element may permit the wearer to tighten portions of upper 102 around the foot, and tensile element 132 can permit the wearer to loosen upper 102 to facilitate entry and removal of the foot from mouth 114. In alternative embodiments, upper 102 may include other lace-receiving elements, such as straps, loops, eyelets, and D-rings.
Upper 102 may generally incorporate various provisions associated with uppers. Upper 102 may also be characterized by one or more layers disposed adjacent to one another. In some embodiments, each layer of upper 102 can be configured to provide various degrees of cushioning, tension, ventilation, shock absorption, energy return, support, as well as possibly other provisions.
For example, in some embodiments, upper 102 may include one or more layers, such as a first layer such as a base layer, and/or a second layer such as an outer liner or cover layer. Referring to
In addition, upper 102 may include second layer 112 that is disposed adjacent, along or against a portion of the distal surface of first layer 116. Second layer 112 can be disposed further away or distally from interior cavity 106 than first layer 116. Second layer 112 can extend over only some portions of first layer 116 in some embodiments, or second layer 112 can be disposed such that it covers substantially all of the outer or exterior surface of first layer 116. In some embodiments, second layer 112 may comprise at least a portion of the distal (outermost) or exposed surface of upper 102. For example, in
In different embodiments, each of the materials that may comprise the layer(s) of upper 102 can include various properties. The various portions of upper 102 may be formed from one or more of a plurality of material elements (e.g., textiles, polymer sheets, foam layers, leather, synthetic leather, knitted fabrics, etc.) that are stitched together or otherwise laid or disposed adjacent to one another to form upper 102. Other materials that could be used in various embodiments include, but are not limited to, expanded rubber, foam rubber, various kinds of foams, polyurethane, nylon, Gore-Tex, leather, plastic, textiles, as well as possibly other materials. Other parts of upper 102 may be made from any of a plurality of materials or combination of materials, such as leather, leather-like materials, polymer materials, plastic materials, and textile fabrics and materials.
In addition, each of the layers comprising upper 102 may be formed from any generally two-dimensional material. As utilized with respect to the present invention, the term “two-dimensional material,” or variants thereof, is intended to encompass generally flat materials exhibiting a length and a width that are substantially greater than a thickness. Accordingly, suitable materials for upper layers (e.g., first layer 116 and second layer 112) include various textiles, polymer sheets, or combinations of textiles and polymer sheets, for example. Textiles are generally manufactured from fibers, filaments, or yarns that are, for example, either (a) produced directly from webs of fibers by bonding, fusing, or interlocking to construct non-woven fabrics and felts or (b) formed through a mechanical manipulation of yarn to produce a woven or knitted fabric. The textiles may incorporate fibers that are arranged to impart one-directional stretch or multidirectional stretch, and the textiles may include coatings that form a breathable and water-resistant barrier, for example. The polymer sheets may be extruded, rolled, or otherwise formed from a polymer material to exhibit a generally flat aspect. Two-dimensional materials may also encompass laminated or otherwise layered materials that include two or more layers of textiles, polymer sheets, or combinations of textiles and polymer sheets. In addition to textiles and polymer sheets, other two-dimensional materials may be utilized for upper 102. Although two-dimensional materials may have smooth or generally untextured surfaces, some two-dimensional materials will exhibit textures or other surface characteristics, such as dimpling, protrusions, ribs, or various patterns, for example. Despite the presence of surface characteristics, two-dimensional materials remain generally flat and exhibit a length and a width that are substantially greater than a thickness. In some configurations, mesh materials or perforated materials may be utilized for the upper. For example, first layer 116 and/or second layer 112 may comprise a mesh material, which may impart greater breathability or air permeability to article 100.
Referring to
In different embodiments, tensioning system 120 could incorporate various fastening provisions including tensile elements, straps, clasps, buckles, straps, cables, guide elements, zippers, or other kinds of components that may help secure upper 102 around a foot. For example, in some embodiments, tensioning system 120 may include one or more guide elements 108, as noted above. In one embodiment, guide elements 108 may comprise a looped portion formed by an elongated cable, tensile element, strand, or strand-like element that is at least partially fixedly attached to a portion of the upper 102 and/or sole structure 130. Furthermore, tensioning system 120 can include a clasp mechanism 134, shown in
For purposes of this description, “fixedly attached” refers to an attachment between portions of different elements or materials where the portions are intended to remain attached during use of the article. In some embodiments, this may be referred to as permanently attached. Fixedly attached may be contrasted with surfaces that are adjustable or moveable, where components or materials are intended or readily capable of moving relative to one another. The fixed attachment may be formed through sewing, stitching, fusioning, bonding, gluing (by an adhesive or other agents), compressing, or a combination of thereof. In some embodiments, sidewall 104 may include provisions that strengthen or facilitate the attachment of guide elements 108 with article 100. In
As noted above, each guide element 108 can also include a free portion 118. For purposes of this disclosure, “free” refers to the ability of an element or material to be moved or adjusted. Thus, free portion 118 may be adjusted or otherwise moved to the extent permitted by the disposition of fixed portion 119. Free portion 118 may comprise a substantially curved or U-shaped element including an opening. In different embodiments, free portion 118 of guide elements 108 may be used to position or direct a portion of tensile element 132 along a specific orientation, as will be discussed further below.
Thus, in different embodiments, there may be a plurality of guide elements 108 attached to different portions of article 100. In some embodiments, there may be guide elements 108 attached to either medial side 185 or lateral side 165 of article. In other embodiments, as shown in
For purposes of this description, the term “symmetric” is used to characterize a fastening system that has a symmetry about some common axis. In other words, the medial side of tensioning system 120 can be substantially similar to the lateral side of tensioning system 120. In one embodiment, the symmetric configuration represents each of the lateral side and medial side of the fastening system being a mirror image of the other.
As shown in
Additionally, as noted above,
It should be understood that the following figures are for purposes of illustration only, and each of the components described above with respect to
In some embodiments, as noted above with respect to the various guide elements, tensile element 132 may engage with elements or materials disposed in different areas of upper 102. Thus, upper 102 may include additional or different provisions for routing tensile element 132 (beyond guide elements 108 of first layer 116 as shown in
One embodiment of a transition process from the secured to loosened state is depicted in the sequence of
In different embodiments, as clasp mechanism 134 is moved toward the end points of tensile element 132 (e.g., end points 350), the tensile element may comprise a first slack portion 430 and a second slack portion 440, representing the portions of tensile element 132 that are free to be utilized by the remainder of tensioning system 120 and routed through the routing elements (e.g., the guide elements or, as will be discussed below, the strap guides). In other words, first slack portion 430 and second slack portion 440 may be associated with the amount of lace that is ready and available for the remainder of tensioning system 120 to permit a slack or loosening in the article 100 to occur. In different embodiments, the length of first slack portion 430 and second slack portion 440 may be greater or less than that depicted here. Furthermore, the length of first slack portion 430 may be substantially similar to second slack portion 440, or they may differ from one another. For purposes of this disclosure, the length of first slack portion 430 and/or second slack portion 440 represents the distance from clasp mechanism 134 to the interface within second layer 112. In some embodiments, the interface can comprise one or more apertures. In
Referring now to the medial side view of
In
Strap guides 550 can be substantially similar to guide elements 108 in some embodiments. However, in other embodiments—as depicted in
Strap guides 550 in
In different embodiments, tensioning system 120 may include other components. For example, extending in a direction substantially aligned with lateral axis 109, a first reinforcing element 600 is shown in
In different embodiments, second layer 112 may include provisions for providing additional stability, support, or routing mechanism to first reinforcing element 600. For example, in some embodiments, third segment 606 of first reinforcing element 600 can be covered, protected, or otherwise inserted within a portion of second layer 112. In
Furthermore, second segment 604 and fourth segment 608 can comprise generally unattached, exposed, visible, or free portions of first reinforcing element 600. In other words, second segment 604 can be understood to extend from fourth strap guide 558 to a medial side end of first tunnel portion 660, and fourth segment 608 can be understood to extend from fifth strap guide 620 to a lateral side end of first tunnel portion 660. In other embodiments, first tunnel portion 660 may be longer and third segment 606 can have a greater length. In another embodiment, there may be no tunnel portions formed along second layer 112 and the length of first reinforcing element 600 extending between fourth strap guide 558 and fifth strap guide 620 may be entirely exposed or visible.
In different embodiments, components of tensioning system 120 such as first reinforcing element 600 or the guide elements described earlier can include various materials. In some embodiments, the materials comprising first reinforcing element 600 or a guide element can be substantially similar to those used for tensile element. In other embodiments, the materials may differ. For purposes of this disclosure, tensile elements, guide elements, and/or reinforcing elements may be formed from any generally one-dimensional material. As utilized with respect to the present invention, the term “one-dimensional material” or variants thereof is intended to encompass generally elongated materials exhibiting a length that is substantially greater than a width and a thickness. Accordingly, suitable materials for tensile elements, guide elements, and/or reinforcing elements include various filaments, fibers, yarns, threads, cables, or ropes that are formed from rayon, nylon, polyester, polyacrylic, silk, cotton, carbon, glass, aramids (e.g., para-aramid fibers and meta-aramid fibers), ultra-high molecular weight polyethylene, liquid crystal polymer, copper, aluminum, and steel. Whereas filaments have an indefinite length and may be utilized individually as tensile elements, fibers have a relatively short length and generally go through spinning or twisting processes to produce a strand of suitable length. An individual filament utilized in the tensile element, guide elements, and/or reinforcing elements may be formed form a single material (i.e., a monocomponent filament) or from multiple materials (i.e., a bicomponent filament). Similarly, different filaments may be formed from different materials. As an example, yarns utilized as tensile elements, guide elements, and/or reinforcing elements may include filaments that are each formed from a common material, may include filaments that are each formed from two or more different materials, or may include filaments that are each formed from two or more different materials. Similar concepts also apply to threads, cables, or ropes. The thickness of tensile elements, guide elements, and/or reinforcing elements may also vary significantly to range from 0.03 millimeters to more than 15 millimeters, for example. Although one-dimensional materials will often have a cross section where width and thickness are substantially equal (e.g., a round or square cross section), some one-dimensional materials may have a width that is greater than a thickness (e.g., a rectangular, oval, or otherwise elongated cross section). Despite the greater width, a material may be considered one dimensional if a length of the material is substantially greater than a width and a thickness of the material. In addition, some portions of a tensile element, guide elements, and/or reinforcing elements can comprise brio cables in some embodiments. For example, in order to provide the desired reinforcement to strap guides, the material comprising a reinforcement element may partially or entirely use brio cables or other high tensile, lightweight, synthetic cable materials. In some embodiments, the tensile elements, guide elements, strap guides, and/or reinforcement elements described herein can comprise materials, features, or elements disclosed in Dojan, U.S. Pat. No. 9,113,674, issued on Aug. 25, 2015 (previously U.S. patent application Ser. No. 13/327,229, filed Dec. 15, 2011) and entitled “Footwear Having An Upper With Forefoot Tensile Strand Elements,” Dojan et al., U.S. Pat. No. 8,266,827, issued on Sep. 18, 2012 (previously U.S. patent application Ser. No. 12/546,022) and entitled “Article Of Footwear Incorporating Tensile Strands and Securing Strands,” and Meschter, U.S. Pat. No. 7,574,818, issued on Aug. 18, 2009 (previously U.S. patent application Ser. No. 11/442,669, filed on May 25, 2006) and entitled “Article Of Footwear Having An Upper With Thread Structural Elements,” the disclosures of which are incorporated herein by reference in their entirety. As another example, if desired, the materials of tensioning system 120 material may include high-strength threads or other reinforcing and/or shape-defining structures at selected locations in the upper material construction (such as the high-strength thread used in various FLYWIRE™ footwear products available from NIKE, Inc. of Beaverton, Oreg., etc.).
Thus, in different embodiments, tensioning system 120 may include provisions for securing tensile element 132, and/or for routing tensile element 132 in a specific orientation. In some embodiments of tensioning system 120, portions of tensile element 132 can extend from distal side 510 through apertures in second layer 112 (i.e., first aperture 410 and second aperture 420 as shown in
In some embodiments, following its routing across medial side 185, tensile element 132 can continue to be routed across a central portion of upper 102, in a direction substantially aligned with lateral direction 109. In one embodiment, first layer 116 may include an additional routing strap (see
In one embodiment, the fully loosened state can be facilitated by the ability of second layer 112 to be pulled away from or be freed from contact with first layer 116. In some embodiments, second layer 112 can comprise a flap portion 820 and an anchored portion 810, where flap portion 820 comprises a substantially free or unattached portion of second layer 112, and anchored portion 810 is joined or connected to first layer 116. In some embodiments, anchored portion 810 is fixedly attached to first layer 116, and can provide a type of hinge region about which flap portion 820 can be configured to swivel. In some embodiments, only some portions of anchored portion 810 are fixedly attached to first layer 116. For example, in
Thus, in some embodiments, it can be seen that only the inward-facing surface of second layer 112 (proximal side 520) includes fastening elements, while the distal side is relatively smooth. Referring back to
In addition, during walking, running, or other ambulatory activities, a foot within the interior cavity of an article may tend to stretch upper 102. That is, many of the material elements forming upper 102 may stretch when placed in tension by movements of the foot. Although some portions of tensioning system 120 may also stretch, tensile element 132, guide elements 108, and strap guides 550 generally stretch to a lesser degree than the other material elements forming upper 102 (e.g., first layer 116 and/or second layer 112). In some embodiments, tensile element 132 and corresponding guide elements 108, and strap guides 550 may be arranged to provide structural components in upper 102 that (a) resist stretching in specific directions or locations, (b) limit excess movement of the foot relative to sole structure 130 and upper 102, (c) ensure that the foot remains properly positioned relative to sole structure 130 and upper 102, (d) reinforce locations where forces are concentrated, and/or (e) exert a compressive wraparound tension around portions of upper 102 to snugly secure a foot in article 100.
As described above, in some embodiments, article 100 includes upper 102 that can comprise several layers. Furthermore, tensioning system 120 of article 100 may include various tensile or routing components that may contact different layers of upper 102 and/or sole structure 130. Each layer of upper 102 and portions of the tensioning system can be designed to extend around or interact with various regions along article 100. This arrangement can be observed in
As noted previously, first layer 116 can be configured to form interior cavity 106 for insertion of a wearer's foot. Disposed adjacent to and above first layer 116 is second layer 112, described above with respect to
In addition, though not shown here, strap guides can be fixedly attached to proximal side 520 of second layer 112. In some embodiments, tensile element 132 may be routed through the plurality of strap guides and guide elements and have an undulating arrangement, as discussed above. Furthermore, clasp mechanism 134 is shown adjacent to second layer 112, configured to receive and secure portions of tensile element 132.
As noted with respect to strap guides, in some embodiments, some portions of the fastening system may not be visible when article 100 is assembled. For example, it can be seen that in some embodiments, guide elements 108 can include segments that extend beneath upper 102. In other words, in some embodiments, there can be portions of guide elements 108 that are disposed or “sandwiched” between upper 102 and sole structure 130. Referring to
During different activities, article 100 may include provisions for dispersing the amount of force directed to various regions of a foot through the tensioning system. In some embodiments, second layer 112 may be configured to protect or distribute forces around upper 102. Referring now to
As discussed above, second layer 112 may include a plurality of strap guides 550 disposed adjacent to proximal side 520 of second layer 112. In
Second layer 112 can include provisions for facilitating attachment to the first layer and/or the sole structure in some embodiments. It can be seen in
In addition, flap portion 820 can comprise various edges associated with different portions of article 100 in the closed state. For example, in
In addition, each of medial ankle edge 1034 and lateral ankle edge 1036 are oriented such that when assembled with article 100, medial ankle edge 1034 and lateral ankle edge 1036 will extend in a direction substantially diagonal with respect to longitudinal axis 111 and lateral axis 109. Furthermore, medial ankle edge 1034 and lateral ankle edge 1036 will extend in a generally upward direction, adjacent to the ankle region of the article. Similarly, central ankle edge 1038 is oriented such that when assembled with article 100 central ankle edge 1038 extends in a direction substantially aligned with lateral axis 109 and adjacent to the ankle region of the article.
Furthermore, in some cases, second layer 112 may have a width that is generally constant throughout second layer 112. In other embodiments, as shown in
In different embodiments, the degree of compression that portions of second layer 112 may withstand from a given force can vary according to factors including, but not limited to, desired cushioning properties, upper materials, the geometry of second layer 112 as well as possibly other factors. Second layer 112 may also include provisions for drainage, breathability, quick drying, and/or ventilation in some embodiments. Thus, in different embodiments, second layer 112 may be configured to help mitigate the effect of various forces applied to the instep portion of a foot. In
Furthermore, it should be understood that depending upon the specific configuration of article 100 and the intended use of article 100, first layer 116 and/or second layer 112 may be non-stretch materials, materials with one directional stretch, or materials with two-directional stretch, for example. In general, forming the layers of upper 102 from materials with two-directional stretch provides upper 102 with a greater ability to conform to the contours of the foot, thereby enhancing the comfort of article 100. In configurations where one or more of the layers have two-directional stretch, the combination of tensile element 132 with the layers can effectively vary the stretch characteristics of upper 102 in specific locations. Accordingly, in some embodiments, the overall stretch and tension characteristics of particular areas of upper 102 may be controlled by tensioning system 120.
In
In other embodiments, alternative mechanisms or elements may be included in a fastening system. As one example,
Furthermore, second fastening system 1220 can include a heel reinforcement 1250 that can be a substantially two-dimensional material that is sized and dimensioned to provide a wraparound compressive force along heel region 145. Heel reinforcement 1250 can extend around heel region 145 along both the medial and lateral sides of second article 1200 in some embodiments. In addition, heel reinforcement 1250 can include an anchoring portion 1234 in some embodiments. Anchoring portion 1234 can provide a securing region in which a portion of tensile element 132 can be routed or fixedly attached. In other words, in some embodiments, tensile element 132 may be routed through anchoring portion 1234 and be free to move through the region. However, in other embodiments, tensile element 132 can be fixedly attached beneath anchoring portion 1234, and provide a point of stability and reinforcement to second fastening system 1220. In addition, when a user tightens upper 102, heel reinforcement 1250 can be pulled against the foot and provide a more snug fit around the foot of a wearer.
This description of features, systems, and components is not intended to be exhaustive, and in other embodiments, the article may include other features, systems, and/or components. Moreover, in other embodiments, some of these features, systems, and/or components could be optional. As an example, some embodiments may not include reinforcing elements or a sidewall of the sole structure.
While various embodiments have been described, the description is intended to be exemplary, rather than limiting, and it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of the embodiments. Although many possible combinations of features are shown in the accompanying figures and discussed in this detailed description, many other combinations of the disclosed features are possible. Any feature of any embodiment may be used in combination with or substituted for any other feature or element in any other embodiment unless specifically restricted. Therefore, it will be understood that any of the features shown and/or discussed in the present disclosure may be implemented together in any suitable combination. Accordingly, the embodiments are not to be restricted except in light of the attached claims and their equivalents. Also, various modifications and changes may be made within the scope of the attached claims.