The present invention relates to an article of footwear with one or more cooling features.
Athletes generate heat as a result of physical activity—skin and/or body temperature rise during sustained physical exertion. In footwear, this heat becomes trapped within the foot cavity. Failure to properly move heat away from the feet and out of the foot cavity may lead to “overheating,” creating not only discomfort, but also increasing the potential risk for adverse health consequences such as swelling, excessive sweating, and the development of blisters.
Accordingly, it would be desirable to provide an article of footwear effective to cool and/or temper the increase in the temperature of the foot cavity within the article of footwear.
The present invention is directed toward an article of footwear configured to moderate and/or modulate the temperature of the foot cavity and/or the foot (e.g., the skin temperature of the foot). In an embodiment, the interior surface of the upper includes a thermal effect layer configured to interact with heat and/or moisture within the foot cavity. In an embodiment, the thermal effect layer includes a plurality of system-reactive components that are selectively activated as heat and/or moisture within the foot cavity reaches predetermined levels.
In addition, the article of footwear may be configured to promote air exchange between the foot cavity and the ambient environment. In an embodiment, the sole structure includes one or more apertures or vents disposed at selected locations along the sole structure. By way of example, the apertures may be disposed in each of the forefoot, midfoot, and hindfoot regions of the article of footwear. In operation, the article of apparel is effective to delay/diminish the rise in skin temperature (compared to an article of footwear lacking the membrane and/or plurality of openings) and/or improve the overall moisture management capacity of the substrate, either of which may improve wearer comfort.
Like reference numerals have been used to identify like elements throughout this disclosure.
In the following detailed description, reference is made to the accompanying figures which form a part hereof wherein like numerals designate like parts throughout, and in which is shown, by way of illustration, embodiments that may be practiced. It is to be understood that other embodiments may be utilized, and structural or logical changes may be made without departing from the scope of the present disclosure. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of embodiments is defined by the appended claims and their equivalents.
Aspects of the disclosure are disclosed in the accompanying description. Alternate embodiments of the present disclosure and their equivalents may be devised without parting from the spirit or scope of the present disclosure. It should be noted that any discussion herein regarding “one embodiment,” “an embodiment,” “an exemplary embodiment,” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, and that such particular feature, structure, or characteristic may not necessarily be included in every embodiment. In addition, references to the foregoing do not necessarily comprise a reference to the same embodiment. Finally, irrespective of whether it is explicitly described, one of ordinary skill in the art would readily appreciate that each of the particular features, structures, or characteristics of the given embodiments may be utilized in connection or combination with those of any other embodiment discussed herein.
Various operations may be described as multiple discrete actions or operations in turn, in a manner that is most helpful in understanding the claimed subject matter. However, the order of description should not be construed as to imply that these operations are necessarily order dependent. In particular, these operations may not be performed in the order of presentation. Operations described may be performed in a different order than the described embodiment. Various additional operations may be performed and/or described operations may be omitted in additional embodiments.
For the purposes of the present disclosure, the phrase “A and/or B” means (A), (B), or (A and B). For the purposes of the present disclosure, the phrase “A, B, and/or C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C).
The terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments of the present disclosure, are synonymous.
An article of footwear or shoe 10 includes a medial side 100 oriented along the medial or big toe side of the user's foot, a lateral side 102 oriented along the lateral or little toe side of the user's foot, a toe (i.e., front) end 104 that corresponds with the toes of the user's foot, and a heel (i.e., rear) end 106 that corresponds with the heel of the user's foot. While the example embodiment depicted in the
The article of footwear 10 may include a forefoot region 110 that generally aligns with the ball and toes of a user's foot (i.e., when a user is wearing the article of footwear 10), a midfoot region 112 that generally aligns with the arch and instep areas of the user's foot, and a hindfoot region 114 that generally aligns with the heel and ankle areas of the user's foot. The embodiment of the article of footwear 10 illustrated includes an upper 120, a sole structure 125, and a fastening element 150. The article of footwear 10 illustrated in
The sole structure 125 includes a first midsole 130 mounted on top of a second midsole 140, and an outsole 145 disposed on the bottom of the second midsole 140.
The upper 120 forms an envelope or pocket that, in cooperation with the sole structure 125 defines a foot cavity operable to house (cover and protect) the foot of the wearer of the article of footwear 10. The upper 120 may include a first portion 200 and a second portion 210. The first portion 200 of the upper 120 may span from the toe end 104 to the heel end 106, or, in other words, may be disposed in the forefoot 110, midfoot 112, and hindfoot 114 regions of the article of footwear 10. However, the first portion 200 of the upper 120 may not be disposed in the heel end 106 proximate to the first and second midsoles 130, 140. The second portion 210 may only be disposed proximate to the heel end 106, and within the hindfoot region 114 of the article of footwear 10, and proximate to the first and second midsoles 130, 140. Thus, as illustrated in
The first portion 200 and the second portion 210 of the upper 120 may be constructed from various materials that are configured to conform and contour to a foot that is placed within the article of footwear 10. In some embodiments, various materials may be used to construct the upper 120, including, but not limited to, leather, synthetic leather, rubber, textile fabrics (e.g., breathable fabrics, mesh fabrics, synthetic fabrics), etc. One material used for the upper 120 may be configured to have a high degree of stretchability and compressibility, while another material used on the upper 120 may have a lower degree of stretchability and compressibility. The materials used on the upper 120 may be generally lightweight and flexible, and may be configured to provide comfort to the user and provide other desirable features. The materials used on the upper 120 may be configured to have desirable aesthetics and functional features that incorporate durability, flexibility, air permeability and/or other types of desirable properties to the upper 120.
As illustrated in
The second portion material may be a low porosity material operable to stabilize the heel during use. In an embodiment, the second portion is a laminate including an outer textile layer, an intermediate reinforcing layer (e.g., a nonporous film of polyurethane), and an interior textile layer. By way of example, the second portion material is generally nonporous and nonbreathable.
As further illustrated, a collar or opening 122 may be disposed in the hindfoot region 114 of the first portion 200 of the upper 120. As further detailed below, the opening 122 provides access to the interior 1000 of the upper 120 and enables a foot of a wearer of the article of footwear 10 to be placed within the interior 1000 of the upper 120.
Eyelets 230 extend from the first portion 200 of the upper 120 forward of the opening 122 in the midfoot region 112 of the upper 120. The eyelets 230 may be in the form of loops that extend from the first portion 200 of the upper 120. The eyelets 230 may include a medial set of eyelets 235(1) and a lateral set of eyelets 235(2). The medial set of eyelets 235(1) may be disposed along the midfoot region 112 of the upper 120 proximate to the medial side 100 of the article of footwear 10, and the lateral set of eyelets 235(2) may be disposed along the midfoot region 112 of the upper 120 proximate to the lateral side 102 of the article of footwear 10. The medial set of eyelets 235(1) may be aligned in the lengthwise direction of the article of footwear 10 on the medial side 100 of the upper 120. Similarly, the lateral set of eyelets 235(2) may be aligned in the lengthwise direction of the article of footwear 10, but on the lateral side 102 of the upper 120. As illustrated, both the medial set of eyelets 235(1) and the lateral set of eyelets 235(2) include four (4) individual eyelets. Furthermore, each of the medial set of eyelets 235(1) is aligned with one of the lateral set of eyelets 235(2) along the widthwise direction of the article of footwear 10. A fastening element or fastener 150 (e.g., a lace, cord, string, etc.) may be threaded through each of the eyelets 230 on the upper 120.
As further illustrated in
As illustrated, the second midsole 140 is thinnest (i.e., the distance between the top surface 250 and the bottom surface 255) in the midfoot region 112 on both the medial side 100 and the lateral side 102 of the article of footwear 10. More specifically, the second midsole 140 is thinnest proximate to where the arch of a foot disposed within the upper 120 would be located. As further illustrated, the first midsole 130 extends upward along the upper 120 in the midfoot region 112 of the article of footwear 10 on both the medial side 100 and the lateral side 102. Thus, the first midsole 130 is configured to provide arch support to a foot disposed within the upper 120, but may be configured to still flex and/or bend when imparted with enough pressure/force.
The first midsole 130 may be formed of a compression material such as a foamed elastomer, e.g., an ethylene-vinyl acetate (EVA) foam. In the embodiment illustrated, the foam possesses a durometer value (on a type C scale) of approximately 45 C (with a variance of ±3 C). In other embodiments of the article of footwear 10, the first midsole 130 may have durometer value that is greater or lesser than 45 C.
The second midsole 140 may also be formed from a compression material such as a foamed elastomer, e.g., an ethylene-vinyl acetate (EVA) foam. In the embodiment illustrated, however, the foam possesses a durometer value (on a type C scale) of approximately 55 C with a variance of ±3 C. In other embodiments of the article of footwear 10, the second midsole 140 may have durometer value that is greater or lesser than 55 C. Accordingly, the compression material of the second midsole 140 possesses a higher durometer value than the compression material of the first midsole 130.
As best illustrated in
The outsole 145 may be constructed from a material that is durable and contains a durometer value greater than the first and second midsoles 130, 140. The outsole 145 may be formed of an elastomer such as rubber. In the embodiment illustrated, the rubber material of the outsole 145 may possess durometer value (on a type A scale) of approximately 55 A. In other embodiments of the article of footwear 10, the outsole 145 may have durometer value that is greater or lesser than 55 A.
As further illustrated in
The forward apertures or openings 530, disposed within the forefoot portion of the shoe, may include a plurality of openings arranged in an array spanning the transverse and longitudinal dimensions of the bottom 500. Specifically, the plurality of openings 530 includes five rows 700(1)-700(5) of openings. The first row 700(1) of openings is disposed proximate to the toe end 104, with the second row 700(2) of openings, the third row 700(3) of openings, the fourth row 700(4) of openings, and the fifth row 700(5) of openings disposed in succession along the lengthwise direction of the article of footwear 10 (i.e., from the toe end 104 towards the heel end 106). As illustrated in
As further illustrated, the first row 700(1) may include three openings 710(1)-710(3), the second row 700(2) may include three openings 720(1)-720(3), and the third row 700(3) may include three openings 730(1)-730(3). In addition, the fourth row 700(4) may include three openings 740(1)-740(3), and the fifth row 700(5) may also include three openings 750(1)-750(3). Openings 710(1), 720(1), 730(1), 740(1), and 750(1) may be centrally aligned in the forefoot region 110 of the bottom surface 255 of the second midsole 140 in the lengthwise direction. Meanwhile, openings 710(3), 720(3), 730(3), 740(3), and 750(3) may be substantially aligned in the lengthwise direction along the lateral side 102 of the bottom surface 255 of the second midsole 140 in the forefoot region 110. It then follows that openings 710(2), 720(2), 730(2), 740(2), and 750(2) may be substantially aligned in the lengthwise direction between openings 710(1), 720(1), 730(1), 740(1), and 750(1) and openings 710(3), 720(3), 730(3), 740(3), and 750(3) on the bottom surface 255 of the second midsole 140 in the forefoot region 110. With this configuration, the openings 710(1)-710(3), 720(1)-720(3), 730(1)-730(3), 740(1)-740(3), 750(1)-750(3), and even the segments 515(1)-515(5) of the forefoot portion 510 of the outsole 145, are arranged in a grid or an array on the bottom surface 255 of the second midsole 140.
As illustrated, the openings 710(1)-710(3), 720(1)-720(3), 730(1)-730(3), 740(1)-740(3), 750(1)-750(3), may have a substantially rhombus or parallelogram shape. Alternatively, the openings may have any other suitable shapes (e.g., quadrilateral, rounded, multi-sided symmetrical or asymmetrical, etc.), where the shapes may be the same or different. Furthermore, the openings 710(1)-710(3), 720(1)-720(3), 730(1)-730(3), 740(1)-740(3), 750(1)-750(3), may increase in size both along the lengthwise direction (i.e., from the toe end 104 towards the heel end 106) and along the widthwise direction (i.e., from the medial side 100 towards the lateral side 102). Thus, opening 750(3) may be the largest of the openings 710(1)-710(3), 720(1)-720(3), 730(1)-730(3), 740(1)-740(3), 750(1)-750(3), while opening 710(1) may be the smallest of the openings 710(1)-710(3), 720(1)-720(3), 730(1)-730(3), 740(1)-740(3), 750(1)-750(3). In other embodiments, the number of openings 710(1)-710(3), 720(1)-720(3), 730(1)-730(3), 740(1)-740(3), 750(1)-750(3) and the number of rows 700(1)-700(5) may be greater or fewer than that illustrated in
As best illustrated in
The intermediate aperture or opening 540 is disposed rearward of the forward openings 530, being located within the midfoot region 112 of the bottom 500 of the article of footwear 10. As shown, the intermediate aperture includes an elongated opening 540 having a first end 800 and a second end 810 (e.g., rounded first and second ends). The elongated opening 540 is positioned such that the elongated opening 540 spans along the bottom surface 255 of the second midsole 140 in the lengthwise direction of the article of footwear 10. Thus, the first end 800 of the elongated opening 540 is disposed proximate the forefoot region 110 of the bottom 500 of the article of footwear 10, and the second end 810 of the elongated opening 540 is disposed proximate the hindfoot region 114 of the bottom 500 of the article of footwear 10.
The central aperture 540 may include a reinforcing element or frame 560 (also called a support member). In an embodiment, the reinforcing element 560 is a generally annular ring including a flange extending radially outward from ring outer surface. As illustrated in
The first midsole 130 includes a plurality of widthwise extending bars 630(1)-630(5) that extend across the elongated opening 540. The widthwise extending bars 630(1)-630(5), along with the first end 800 and second end 810, define a series of six slots 640(1)-640(6) aligned, and in fluid communication, with the portion of the elongated opening 540 spanning through the second midsole 140. Because the first slot 640(1) may be defined by the first end 800 of the elongated opening 540 and the first extending bar 630(1), and because the sixth slot 640(6) may be defined by the second end 810 and the fifth extending bar 630(5), the first and sixth slots 640(1), 640(6) may be larger than the other slots 640(2)-640(5). In addition, the first and sixth slots 640(1), 640(6) may be partially rounded, while the remaining slots 640(2)-640(5) may be substantially rectangular. Other embodiments of the article of footwear may contain greater or fewer than the number of extending bars 630(1)-630(5) and the number of slots 640(1)-640(6) illustrated in
As explained above, the first midsole 130 may be exposed on the medial and lateral sides 100, 102 of the article of footwear 10 proximate to the middle portion 112. As illustrated in
As further illustrated in
The rearward aperture 550 is centrally located within the hindfoot region 114 of the bottom 500 of the article of footwear 10 such that the opening is generally aligned with the heel of the foot. In the illustrated embodiment, the rearward aperture 550 is a generally circular with a partition 650 (formed by first midsole 130) that extends across the diameter of the circular opening 550 to define a first aperture 660(1) and a second aperture 660(2) in fluid communication with the circular opening 550. Because of the shape of the partition 650, the apertures 660(1), 660(2) may be T-shaped. In other embodiments, however, the partition 650 and the apertures 660(1), 660(2) may be any other shape. While only one partition 650 is illustrated in
Turning to
With this configuration, the foot cavity (i.e., the upper interior 1000) is in fluid communication with the ambient environment. Specifically, air may travel through an aperture 530, 540, 550, through the perforated strobel, and into the foot cavity via the apertures of the perforated insole (discussed in greater detail, below).
A thermal effect or regulation membrane or layer may be disposed on the interior surface of the upper (the liner) and/or the foot-facing surface of the insole 1010. The thermal effect membrane is a layer (e.g., a discontinuous layer) configured to interact with heat and/or moisture present with in the foot cavity, and/or to moderate or modulate the temperature and/or humidity within the foot cavity. The thermal effect membrane contains one or more system reactive components. By system reactive, it is intended to mean a compound that reacts to environmental conditions within a system. That is, the system reactive materials are selectively engaged in response to conditions of a wearer wearing the article of footwear 10. In particular, the compound absorbs, directs, and/or mitigates fluid (heat or water) depending on existing system conditions. For example, a component may initiate an endothermic reaction (e.g., when exposed to water). By way of further example, a component may be capable of selectively absorbing and releasing thermal energy (heat). By way of still further example, a component may be capable or conducting and/or directing heat from one location to another location within a system.
In an embodiment, the system reactive components include a cooling agent, a latent heat agent, and/or a heat dissipation agent. The cooling agent is an endothermic cooling agent (i.e., it creates a system that absorbs heat). Specifically, the cooling agent generates an endothermic reaction in an aqueous solution, absorbing energy from its surroundings. Accordingly, the cooling agent possesses a negative heat of solution when dissolved in water. By way of example, the endothermic cooling agent possesses a heat of enthalpy in the range of −10 cal/g to −50 cal/g. In particular, the endothermic cooling agent possesses a heat of enthalpy in the range −20 cal/g to −40 cal/g. With this configuration, when the cooling agent is contacted by water (i.e., the sweat of the wearer), the cooling agent is capable of cooling (i.e., lowering the temperature of) the water.
The cooling agent may be a polyol. By way of example, the cooling agent includes one or more of erythritol, lactitol, maltitol, mannitol, sorbitol, and xylitol. In an embodiment, the cooling agent is selected from one or more of sorbitol, xylitol and erythritol. Sorbitol is a hexavalent sugar alcohol and is derived from the catalytic reduction of glucose. Xylitol is produced by catalytic hydrogenation of the pentahydric alcohol xylose. Erythritol is produced from glucose by fermentation with yeast. Crystalline xylitol is preferred. The cooling agent may be present in an amount of about 15 wt % to about 35 wt % (e.g., about 25 wt %).
The latent heat agent is capable of absorbing and releasing thermal energy from a system while maintaining a generally constant temperature. In an embodiment, the latent heat agent is a phase change material (PCM). Phase change materials possess the ability to change state (solid, liquid, or vapor) within a specified temperature range. PCMs absorb heat energy from the environment when exposed to a temperature beyond a threshold value, and release heat to the environment once the temperature falls below the threshold value. For example, when the PCM is a solid-liquid PCM, the material begins as a solid. As the temperature rises, the PCM absorbs heat, storing this energy and becoming liquefied. Conversely, when temperature falls, the PCM releases the stored heat energy and crystallizes or solidifies. The overall temperature of the PCM during the storage and release of heat remains generally constant.
The phase change material should possess good thermal conductivity (enabling it to store or release heat in a short amount of time), a high storage density (enabling it to store a sufficient amount of heat), and the ability to oscillate between solid-liquid phases for a predetermined amount of time. Additionally, the phase change material should melt and solidify at a narrow temperature range to ensure rapid thermal response.
Linear chain hydrocarbons are suitable for use as the phase change materials. Linear chain hydrocarbons having a melting point and crystallization point falling within approximately 10° C. to 40° C. (e.g., 15° C. to 35° C.) and a latent heat of approximately 175 to 250 J/g (e.g., 185 to 240 J/g) may be utilized. In particular, a paraffin linear chain hydrocarbon having 15-20 carbon atoms may be utilized. The melting and crystallization temperatures of paraffin linear chain hydrocarbons having 15-20 carbon atoms fall in the range from 10° C. to 37° C. and 12° C.-30° C., respectively. The phase transition temperature of linear chain hydrocarbons, moreover, is dependent on the number of carbon atoms in the chain. By selecting a chain with a specified number of carbon atoms, a material can be selected such that its phase transition temperature liquefies and solidifies within a specified temperature window. For example, the phase change material may be selected to change phase at a temperature near (e.g., 1° C.-5° C. above or below) the average skin temperature of a user (i.e., a human wearer of the footwear, e.g., 33° C.-34° C.). With this configuration, the phase change material begins to regulate temperature either upon placement of the footwear on the wearer or shortly after the wearer begins physical activity.
In an embodiment, the paraffin is encapsulated in a polymer shell. Encapsulation prevents leakage of the phase change material in its liquid phase, as well as protects the material during processing (e.g., application to the substrate) and during consumer use. The resulting microcapsules may possess a diameter of about 1 to about 500 μm. In an embodiment, the paraffin PCM is present in an amount of about 25 wt % to about 45 wt % (e.g., about 35 wt %).
The heat dissipation agent is effective to conduct heat and/or direct heat from one location to another location within the system (e.g., within the membranes and/or the substrate). In an embodiment, the heat dissipation agent possesses a high heat capacity, which determines how much the temperature of the agent will rise relative to the amount of heat applied. By way of example, the heat dissipation agent is a silicate mineral such as jade, e.g., nephrite, jadeite, or combinations thereof. The heat dissipation material may be present in an amount (dry formulation) of about 30 wt % to about 50 wt % (e.g., about 40 wt %).
The system reactive components are present with respect to each other in a ratio of approximately 1:1 to 1:2. By way of example, the ratio of temperature reactive components—cooling agent, latent heat agent, and heat dissipation agent—may be approximately 1:2:2, respectively. As indicated above, in system reactive component mixture, the cooling agent is present in an amount of from 15 wt % to 35 wt %; the latent heat agent is present in an amount of from 25 wt % to 45 wt %. Similarly, the heat dissipation agent is present in an amount of from 25 wt % to 45 wt %.
In addition to the temperature reactive components, the thermal effect membrane further includes a binder effective to disperse the temperature reactive components and/or to adhere the temperature reactive components to the substrate (e.g., to the yarns/fibers forming these structures). The binder may be an elastomeric material possessing good elongation and tensile strength properties. Elastomeric materials typically have chains with high flexibility and low intermolecular interactions and either physical or chemical crosslinks to prevent flow of chains past one another when a material is stressed. In an embodiment, polyurethane (e.g., thermoplastic polyurethane such as polyester-based polyurethane) is utilized as the binder. In other embodiments, block copolymers with hard and soft segments may be utilized. For example, styrenic block copolymers such as a styrene-ethylene/butylene-styrene (SEBS) block copolymer may be utilized.
The thermal effect membrane may be applied to the substrate (the upper lining or the insole face) in any manner that maintains the integrity of the components and preserves properties of the substrate. In an embodiment, the thermal effect membrane is applied as a composition transferred to the substrate via printing process. By way of example, the composition is transferred via a rotogravure apparatus. In an embodiment, the comfort regulation composition includes about 20 wt % system reactive components (the cooling agent, the latent heat agent, and the phase change material), 30 wt % binder, and about 50 wt % solvent (aqueous or non-aqueous (e.g., methyl ethyl ketone)). In other embodiments, the thermal effect composition may further include pigments or other additives such as surfactants.
The thermal effect membrane may be applied in a repeating pattern 1015 of units. Referring to
Referring to
By way of further explanation, it is believed that composition and processing result in a porous or semi-porous membrane including pores or pockets formed therein. That is, the high ratio of system reactive component particles to binder—as well as the compression of the membranes into the substrates—may create fissure, pores, or cavities within the membranes. These pores/cavities may be effective to transporting water within the system. Specifically, the membranes may transport water away from the skin of the wearer and into the pores/cavities, where one or more of the system reactive components are located. Thus, when fluid is drawn toward the cooling agent, the agent may absorb water to generate the endothermic reaction. Alternatively, the water may become trapped in a cavity within the membranes, or pass completely through the membranes to the substrate. Accordingly, in addition to tempering the temperature within the system, the membranes further improve the overall moisture management capacity of the substrates compared to an untreated substrate.
The resulting thermal effect layer is effective to improve the thermal comfort of a wearer. In particular, the thermal effect layer is effective to either delay the increase of temperature within the foot cavity and/or maintain the cavity temperature at a lower value compared to a foot cavity lacking the thermal effect layer.
By equipping an article of footwear with an upper 120 having a thermal effect layer and/or equipping a sole structure containing apertures 530, 540, 550 that promote airflow into the interior 1000 of the upper 120, the article of footwear 10 provides improved temperature and/or moisture management properties compared to footwear lacking the one or both of the sole apertures or thermal effect layer. In operation, the sole apertures 530, 540, 550 enable an exchange of airflow at various stages within a user's gait cycle. A typical gait cycle for running or walking begins with a “heel strike” and ends with a “toe-off.” That is, during the first phase of the gait cycle, the heel of the foot contacts the ground (heel strike). At the second phase, the foot rotates forward until the arch of the foot contacts the ground (midfoot strike). At the third phase, foot rotation continues until the forefoot contacts the ground (forefoot strike). In the final phase, after forefoot contact, rotation again continues until the toes are lifted off of the ground (toe-off). Thus, as the article of footwear moves through the gait cycle, air pressure generated by contact with the ground forces an exchange air along each of the hindfoot, midfoot, and forefoot areas of the shoe.
Specifically, at heel strike, the downward movement of the heel towards the ground forces air through the rearward aperture 550. This, in turn, causes an air exchange, with the heated air within the cavity being displaced by the air entering via the aperture. Similarly, at midfoot strike, air is again forced into the foot cavity via intermediate aperture 540, displacing heated air out of the cavity, replacing with air at ambient conditions. Finally, at forefoot strike, ambient air is forced into the cavity via the forward apertures 530, displacing heated air from the foot cavity. As the article of footwear 10 is swung upward and forward, air is forced into the interior 1000 of the upper 120 through the porous material of the first portion 200 of the upper 120. Air from the cavity may exit via the sole apertures 530, 540, 550 or the open web structure of the upper.
In addition, the thermal effect layer applied to the interior surface of the upper may be selectively engaged, depending on conditions present within the upper (e.g., within the shoe cavity). Initially, the latent heat agent (the phase change material) absorbs heat generated by the foot, delaying an increase of temperature within the foot cavity. Additionally, the heat dissipation agent rapidly absorbs heat from the foot cavity, moving it through the thermal effect layer toward the outer shell of the upper (away from the foot and/or into the ambient environment). Finally, as moisture within the foot cavity increases (e.g., sweating occurs), the cooling agent is engaged, generating an endothermic reaction.
As previously explained, airflow into the interior 1000 of the upper 120 is also increased by the mesh-like first portion 200 of the upper 120. This increased airflow, by the mesh-like material of the first portion of the upper 120, the footbed 120, and the multiple openings 530, 540, 550, increases the effectiveness of the thermal effect membranes to delay the increase of skin temperature and/or maintain the skin temperature at a lower value. The airflow into the interior 1000 of the upper 120 through the multiple openings 530, 540, 550 may activate the thermal effect membranes to regulate the temperature and moisture capacity of the substrate. The airflow through the multiple openings 530, 540, 550 and into the interior 1000 of the upper 120 may also recharge the thermal effect membranes to further allow the membranes to continue to regulate the temperature and manage the moisture capacity of the substrate.
In addition, the airflow entering the shoe cavity acts to recharge the thermal effect membrane, e.g., permitting the phase change material to release heat while evaporating condensation from the cavity, moving the water vapor out of the shoe (e.g., to recharge the xylitol).
It is to be understood that terms such as “left,” “right,” “top,” “bottom,” “front,” “rear,” “side,” “height,” “length,” “width,” “upper,” “lower,” “interior,” “exterior,” “inner,” “outer” and the like as may be used herein, merely describe points or portions of reference and do not limit the present invention to any particular orientation or configuration. Further, the term “exemplary” is used herein to describe an example or illustration. Any embodiment described herein as exemplary is not to be construed as a preferred or advantageous embodiment, but rather as one example or illustration of a possible embodiment of the invention.
Although the disclosed inventions are illustrated and described herein as embodied in one or more specific examples, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the scope of the inventions and within the scope and range of equivalents of the claims. In addition, various features from one of the embodiments may be incorporated into another of the embodiments. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the disclosure as set forth in the following claims.
This application claims priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application Ser. No. 62/407,789, entitled “Article of Footwear with Cooling Features,” filed Oct. 13, 2016, the disclosure of which is incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2292318 | Daly | Aug 1942 | A |
3050875 | Robbins | Aug 1962 | A |
3225463 | Burnham | Dec 1965 | A |
3418731 | Anciaux | Dec 1968 | A |
3624930 | Johnson et al. | Dec 1971 | A |
4078321 | Famolare, Jr. | Mar 1978 | A |
4364186 | Fukuoka | Dec 1982 | A |
4438573 | McBarron | Mar 1984 | A |
4617745 | Batra | Oct 1986 | A |
4910882 | Göller | Mar 1990 | A |
5619809 | Sessa | Apr 1997 | A |
6041519 | Cheng | Mar 2000 | A |
6247248 | Clark | Jun 2001 | B1 |
6305100 | Komarnycky et al. | Oct 2001 | B1 |
6401364 | Burt | Jun 2002 | B1 |
6553690 | Di Girolamo | Apr 2003 | B2 |
6817112 | Berger et al. | Nov 2004 | B2 |
6892478 | Erickson | May 2005 | B1 |
7210248 | Van Noy et al. | May 2007 | B2 |
7328524 | Lebo | Feb 2008 | B2 |
7487602 | Berger et al. | Feb 2009 | B2 |
7673399 | Garcia-Perez Aradros | Mar 2010 | B2 |
7712229 | Yang | May 2010 | B2 |
7716852 | Berger et al. | May 2010 | B2 |
7818896 | Hsieh et al. | Oct 2010 | B2 |
7913421 | Malenotti | Mar 2011 | B2 |
8191284 | Cho | Jun 2012 | B2 |
8209882 | Leimer et al. | Jul 2012 | B2 |
8327559 | Berger et al. | Dec 2012 | B2 |
8919011 | Byrne | Dec 2014 | B2 |
9119440 | Lagneau et al. | Sep 2015 | B2 |
9192208 | Peikert et al. | Nov 2015 | B2 |
9232830 | Davis et al. | Jan 2016 | B2 |
20040035025 | Choi | Feb 2004 | A1 |
20060277787 | Vattes | Dec 2006 | A1 |
20060283043 | Lamstein | Dec 2006 | A1 |
20100024255 | Oumnia | Feb 2010 | A1 |
20120015155 | Blackford | Jan 2012 | A1 |
20120266494 | Ko | Oct 2012 | A1 |
20130239444 | Polegato Moretti | Sep 2013 | A1 |
20140352178 | Bruce et al. | Dec 2014 | A1 |
20150106992 | Blakely | Apr 2015 | A1 |
20150208758 | Williams, Sr. | Jul 2015 | A1 |
20150257475 | Langvin | Sep 2015 | A1 |
20160010274 | Jarre | Jan 2016 | A1 |
20160120262 | Cortez | May 2016 | A1 |
20160213090 | Nakano | Jul 2016 | A1 |
20170145596 | Hays | May 2017 | A1 |
20180127617 | Kabagambe | May 2018 | A1 |
Number | Date | Country |
---|---|---|
2446763 | May 2012 | EP |
1955607 | Sep 2012 | EP |
2438825 | May 2014 | EP |
9628054 | Sep 1996 | WO |
Number | Date | Country | |
---|---|---|---|
20180103714 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
62407789 | Oct 2016 | US |