Conventional articles of footwear generally include two primary elements: an upper and a sole structure. The upper is secured to the sole structure and forms a cavity for comfortably and securely receiving a foot. The sole structure is secured to a lower area of the upper, thereby being positioned between the upper and the ground.
In some embodiments, the sole structure includes a midsole and an outsole. The midsole often includes a polymeric foam material that attenuates ground reaction forces to lessen stresses upon the foot and leg during walking, running, and other ambulatory activities. Additionally, the midsole may include fluid-filled chambers, plates, moderators, or other elements that further attenuate forces, enhance stability, or influence the motions of the foot. The outsole is secured to a lower surface of the midsole and provides a ground-engaging portion of the sole structure formed from a durable and wear-resistant material, such as rubber.
The upper can generally extend over the instep and toe areas of the foot, along the medial and lateral sides of the foot and around the heel area of the foot. In some articles of footwear, the upper may extend upward and around the ankle to provide support or protection for the ankle. Access to the cavity within the upper is generally provided by an ankle opening in a heel region of the footwear.
Additionally, the article of footwear can include a lacing system, cables, straps, buckles, or other securement device. The securement device can adjust the fit of the upper, thereby permitting entry and removal of the foot from the upper. The lacing system also permits the wearer to modify certain dimensions of the upper, particularly girth, to accommodate feet with varying dimensions.
The present disclosure can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the present disclosure. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views.
The following discussion and accompanying figures disclose an upper of an article of footwear having predetermined areas that are textured. Also disclosed is an upper with a first area that is substantially smooth and a second area that is textured. Furthermore, methods of manufacturing uppers and articles of footwear having these features are disclosed.
In some embodiments, the textured area(s) of the upper can be deformable, for example, under compression. More specifically, the textured area(s) can flex, flatten out, stretch, or otherwise deform when the footwear impacts a ball or other object. Furthermore, the textured area(s) of the upper can be resilient. Thus, after impacting the ball or other object, the textured area(s) can recover from the deformed position to the neutral, textured position.
For example, an article of footwear is disclosed that includes a sole structure and an upper that is attached to the sole structure. The upper defines a cavity that is configured to receive a foot of a wearer. The upper is at least partially defined by a textile. The textile includes a first area that is substantially smooth. The first area defines a reference boundary that conforms to the cavity. The textile includes a second area. The second area includes a plurality of projection structures. The projection structures comprise portions of the textile that project away from the reference boundary and outward from the cavity. Each of the projection structures have a height measured from the reference boundary. At least one projection structure differs in height from at least one other projection structure. The second area further includes a plurality of recess structures that recess away from the reference boundary and inward toward the cavity. The plurality of projection structures and the plurality of recess structures are in an alternating arrangement across the textile.
Furthermore, an article of footwear is disclosed that includes a sole structure and an upper that is attached to the sole structure. The upper defines a cavity that is configured to receive a foot of a wearer. The upper is at least partially defined by a knitted component that is formed of unitary knit construction. The upper includes a first area that is substantially smooth. The first area defines a reference boundary that substantially conforms to the cavity. The upper includes a second area that includes a plurality of projection structures that project away from the reference boundary and away from the cavity. The plurality of projection structures are at least partially defined by the knitted component. At least one of the plurality of projection structures includes a convex exterior surface and a concave interior surface. The convex exterior surface faces generally away from the cavity, and the convex exterior surface faces opposite the concave interior surface. The concave interior surface is open to the cavity.
In addition, a knitted component is disclosed that is formed of unitary knit construction and that is configured to at least partially form an upper. The upper is configured to define a cavity, which is configured to receive a foot. The upper is also configured to attach to a sole structure to form an article of footwear. The knitted component includes a first area that is substantially smooth. The first area defines a reference boundary, and the reference boundary is configured to substantially conform to the cavity. The knitted component further includes a second area. The second area includes a plurality of projection structures that project away from the reference boundary at a respective height. The plurality of projection structures are arranged in a gradient pattern such that the height gradually increases across the gradient pattern.
These and other details of the present disclosure will be explored in the various exemplary embodiments illustrated in the Figures. It will be appreciated that the articles of footwear and methods of manufacture of the present disclosure can vary from these embodiments. Other systems, methods, features and advantages of the present disclosure will be, or will become, apparent to one of ordinary skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description and this summary, be within the scope of the present disclosure, and be protected by the following claims.
Footwear Configurations
Referring initially to
For reference purposes, footwear 100 may be divided into three general regions: a forefoot region 111, a midfoot region 112, and a heel region 114. Forefoot region 111 can generally include portions of footwear 100 corresponding with forward portions of the wearer's foot, including the toes and joints connecting the metatarsals with the phalanges. Midfoot region 112 can generally include portions of footwear 100 corresponding with middle portions of the wearer's foot, including an arch area. Heel region 114 can generally include portions of footwear 100 corresponding with rear portions of the wearer's foot, including the heel and calcaneus bone.
Footwear 100 can also include a medial side 115 and a lateral side 117. Medial side 115 and lateral side 117 can extend through forefoot region 111, midfoot region 112, and heel region 114 in some embodiments. Medial side 115 and lateral side 117 can correspond with opposite sides of footwear 100. More particularly, medial side 115 can correspond with an inside area of the wearer's foot and can face toward the wearer's other foot. Lateral side 117 can correspond with an outside area of the wearer's foot and can face away from the wearer's other foot.
Forefoot region 111, midfoot region 112, heel region 114, lateral side 117, and medial side 115 are not intended to demarcate precise areas of footwear 100. Rather, forefoot region 111, midfoot region 112, heel region 114, lateral side 117, and medial side 115 are intended to represent general areas of footwear 100 to aid in the following discussion. These terms can also be used in reference to individual components of footwear 100.
Footwear 100 can also extend along various directions. For example, as shown in
Generally, footwear 100 can include a sole structure 110 and an upper 120. Upper 120 can receive the wearer's foot and secure footwear 100 to the wearer's foot whereas sole structure 110 can extend underneath upper 120 and provide cushioning, traction, and/or support for the wearer's foot.
As shown in
Also, in some embodiments, sole structure 110 can have one or more projections, such as cleats 104. In other embodiments, sole structure 110 can include ribs or other bodies that project from ground engaging surface 109.
As shown in
Upper 120 can also include a throat 124 that extends in the longitudinal direction 105 between forefoot region 111 and collar 128, and in the transverse direction 106 between medial side 115 and lateral side 117. In some embodiments, throat 124 can include a tongue. In some embodiments, tongue can be attached to forefoot region 111 of upper 120 and can be detached from medial side 115 and/or lateral side 117. In other embodiments, such as the embodiments of
Additionally, in some embodiments, footwear 100 can include a securement element 127, such as a shoelace, cable, wire, strap, buckle, or other suitable implements for securing upper 120 to the wearer's foot. In other embodiments, such as the embodiment of
As shown in the embodiments of
In some embodiments, upper 120 can extend both over the wearer's foot and underneath the wearer's foot. Portions of upper 120 extending underneath the wearer's foot and can be layered and attached to sole structure 110. Additionally, it will be appreciated that any underfoot part of the upper 120 can be referred to as a “strobel,” a “strobel sock,” or a “strobel part.”
In further configurations, upper 120 may include additional elements. For example, upper 120 can include a toe guard in forefoot region 101 that is formed of a wear-resistant material. Upper 120 can additionally include logos, trademarks, symbols, and placards with care instructions and material information. Those having ordinary skill in the art will appreciate that upper 120 can include still further elements without departing from the scope of the present disclosure.
Also, footwear 100 can additionally include a sockliner that extends underneath the wearer's foot. For example, the sockliner can be a removable insert that is provided within the cavity 122 and that provides a padded surface underneath the wearer's foot. In some embodiments, a strobel of upper 120 can be disposed between the sockliner and sole structure 110.
Furthermore, in some embodiments, upper 120 can include a plurality of different regions, areas, or zones that differ in one or more characteristics. For example, upper 120 can include a plurality of regions that differ in surface textures.
For example, upper 120 can include one or more substantially smooth areas 140 and one or more textured areas 150. It will be appreciated that the embodiment of textured area 150 is shown schematically in
Smooth areas 140 can generally conform to the cavity 122 within upper 120 and generally conform to the wearer's foot. Also, smooth area 140 can be flat and planar, or smooth area 140 can exhibit some degree of curvature. However, any curvature of smooth area 140 can substantially conform to the outer boundary of the cavity 122 within upper 120. Also, smooth area 140 of upper 120 can conform and nest against the wearer's foot. With this arrangement, smooth area 140 provides an approximately even and/or regular surface across portions of upper 120. Moreover, in some embodiments, smooth area 140 can define a reference boundary 142, which is indicated, for example, in
In contrast to smooth area 140, textured areas 150 can include projections and/or recesses that produce surface height variations across upper 120. For example, in some embodiments, the textured areas 150 can include bumps, waves, corrugations, ripples, scales, undulations or other surface features. In some embodiments represented in
The projection structures 151 and recess structures 152 can have any suitable arrangement within textured area 150. For example, in some embodiments, the projection structures 151 and recess structures 152 can be disposed in an alternating arrangement. Thus, a typical recess structure 152 can be disposed between at least two projection structures 151. Similarly, a typical projection structure 151 can be disposed between at least two recess structures 152. This alternating arrangement can be repeated across the textured area 150.
Furthermore, in some embodiments, different projection structures 151 can differ in one or more dimensions. For example, the different projection structures 151 can differ in height, width, radius, or other dimensions. Similarly, in some embodiments, different recess structures 152 can differ in one or more dimensions. For example, different recess structures 152 can differ in depth, width, radius, or other dimensions.
Smooth areas 140 and textured areas 150 can be included on predetermined portions of upper 120. For example, in some embodiments, smooth areas 140 can be located where more support, stiffness, and/or stretch resistance is needed. In some embodiments shown in
In some embodiments, the locations of smooth areas 140 and/or textured areas 150 can be determined based on the sport or activity for which the article of footwear will be used. Thus, in some embodiments, textured areas 150 can be included in portions of upper 120 used for kicking, passing, trapping, or otherwise controlling a ball. Still further, in some embodiments, textured areas 150 can also be included on the collar 128, for example, to cover at least one malleolus of the wearer. In some embodiments, textured areas 150 can increase the outer surface area of upper 120 for grip of a ball or other object. Also, textured areas 150 can provide the wearer with better control and tactile sensation of the ball. Furthermore, textured areas 150 can distribute pressure relatively evenly across upper 120. In addition, textured areas 150 can be configured for directing drainage of rainwater or other liquids off of upper 120.
Moreover, in some embodiments, the textured area 150 can be resilient and deformable. For example, in some embodiments, textured area 150 can deform and flatten out when textured area 150 impacts a ball or other object. Then, textured area 150 can resiliently recover back to the more textured state. Accordingly, this resilient deformation can dampen and dissipate the impact energy. Thus, the wearer may be able to more reliably trap a soccer ball, the wearer may be better able to direct the ball when kicking and passing, and/or the textured area 150 can provide increased tactile feel of the ball when controlling the ball. Also, textured area 150 can provide padding and/or cushioning for the wearer.
Configurations of Smooth Area and Textured Area of Upper
Embodiments of substantially smooth area 140 and textured area 150 will now be discussed in detail.
A portion of smooth area 140 is shown in
In contrast, textured area 150 can include the plurality of projection structures 151. In some embodiments, the textured area 150 can have substantially the same thickness 143 as the smooth area 140. As representative examples, the plurality of projections structures 151 illustrated in
More specifically, as shown in
Furthermore, as shown in
Textured area 150 of upper 120 can also include the plurality of recess structures 152. As representative examples, the plurality of recess structures 152 illustrated in
More specifically, as shown in
Furthermore, as shown in
As shown in
As shown in
The features of the projection structures can vary in a number of ways. For example,
As shown, in some embodiments, projection structures 251 can include at least one flat surface. In some embodiments, projection structures 251 can include four flat surfaces that meet at an apex 253. Accordingly, in some embodiments, projection structures 251 can be hollow and pyramidal. Likewise, in some embodiments, recess structures 252 can include at least one flat surface. In some embodiments, recess structures 252 can include four flat surfaces that meet at a nadir 274. Accordingly, in some embodiments, recess structures 252 can be hollow and inversely pyramidal. Furthermore, transitions 269 between adjacent pairs of projection structures 251 and recess structures 252 can be coextensive with the reference boundary 242. Also, in some embodiments, the transitions 269 can be linear.
Referring now to
As shown, in some embodiments, textured surface 350 can include rounded, hollow, convex projection structures 351, similar to projection structures 151 of
Referring back to
Moreover, in some embodiments, the plurality of projection structures 151 within textured area 150 can vary in one or more dimensions. For example, the heights of the projection structures 151 can vary across textured area 150. Specifically, as shown in the exemplary embodiment of
Likewise, in some embodiments, one or more dimensions of the plurality of recess structures 152 can vary across textured area 150. For example, as shown in
In some embodiments, the heights of the projection structures 151 can vary such that the projection structures 151 are arranged in a gradient pattern. For example, the heights of the projection structures 151 can vary gradually from projection structure 151 to adjacent projection structure 151 along the gradient pattern. In some embodiments, those projection structures 151 that are more centrally located within textured area 150 can be the tallest, and the projection structures 151 can be gradually shorter the closer those projection structures 151 are to the smooth area 140. Accordingly, as shown in
Furthermore, in some embodiments, the depths of the recess structures 152 can vary such that the recess structures 152 are arranged in a gradient pattern. For example, the depths of the recess structures 152 can vary gradually along the gradient pattern. In some embodiments, those recess structures 152 that are more centrally located within textured area 151 can be the deepest, and the recess structures 152 can be gradually shallower the closer those recess structures 152 are to the smooth area 140. Accordingly, as shown in
Similarly, in some embodiments represented in
The gradient arrangement within textured area 150 can provide certain benefits. For example, the gradient arrangement can allow textured area 150 to distribute forces and/or deform in a predetermined manner when impacting an object. More specifically, in some embodiments, taller projection structures 151 can deform readily when impacting a ball, and forces can be distributed through textured area 150 such that the gradually shorter projection structures 151 can resist deformation. The gradient pattern can also enhance the force dampening properties of textured area 150. Furthermore, in some embodiments, the gradient pattern of projection structures 151 can provide the wearer with enhanced grip for controlling a ball or other object. Moreover, the gradient pattern can allow upper 120 to channel water or other fluids away from upper 120 in a predetermined manner. Still further, the gradient pattern can make textured area 150 more aesthetically appealing.
As shown, upper 420 can include a plurality of textured areas 450 and one or more smooth areas 440. Textured areas 450 are indicated schematically with stippling, and the stippling is absent from smooth areas 440. Also, inset within
In some embodiments, upper 420 can include a lateral textured area 443, a medial textured area 445, and a malleolus textured area 447. Lateral textured area 443, medial textured area 445, and malleolus textured area 447 can be spaced apart from each other with substantially smooth areas 440 spanning between.
Lateral textured area 443 can be disposed in the forefoot region 411, on the lateral side 417 of upper 420 so as to correspond generally with the outer toes and metatarsals of the wearer's foot. Medial textured area 445 can be disposed in the midfoot region 412, on the medial side 415 so as to correspond generally with the arch of the wearer's foot. Malleolus textured area 441 can be disposed generally in the heel region 414, proximate the collar 428, on the lateral side 417 so as to correspond to the lateral malleolus of the wearer's ankle. Although not shown in
Projection structures 451 and recess structures 452 can be arranged in a gradient as discussed above. For example, projection structures 451 can gradually reduce in height across textured area 450. Projection structures 451 can be shorter and shorter in a direction moving toward adjacent smooth area 440 to define a relatively smooth transition between textured areas 450 and smooth areas 440. Also, in some embodiments, recess structures 452 can gradually reduce in depth across textured area 450 to define a relatively smooth transition between textured areas 450 and smooth areas 440.
This gradient arrangement is illustrated schematically in
Likewise, the taller projection structures 451 within medial textured area 445 can be disposed in a high texture area 437, which is illustrated with dense stippling, and which can be centrally located within medial textured area 445. The shorter projection structures 451 can be disposed in a reduced texture area 439, which is illustrated with less dense stippling, and which can at least partially surround high texture area 437. In some embodiments, reduced texture area 439 can define a transition between high texture area 437 and adjacent smooth area 440.
Upper 120 can also include indicia that visually indicate the gradient pattern of the textured area 450. For example, in some embodiments, the upper 420 can vary in color across upper 420 for this purpose. This is represented schematically in
Referring now to
Upper 520 can include one or more substantially smooth areas 540 and one or more textured areas 550. For example, smooth areas 540 of upper can be included generally in heel region 514 and in throat 524. Also, textured areas 550 can be included generally on medial side 515 and lateral side 517 of midfoot region 512 and in forefoot region 511.
Also, in some embodiments, textured area 550 can include projection structures 551 as shown. Projection structures 551 can be configured as rounded bumps, similar to the embodiments of
In some embodiments, projection structures 551 can be arranged in a gradient as discussed above. More specifically, in some embodiments, the heights of the projection structures 551 can vary across textured area 550. In some embodiments, the projection structures 551 in the forefoot region 511 can be the tallest. Also, projection structures 551 can gradually reduce in height in a direction moving rearward toward smooth areas 540 at heel region 514 and/or upward toward throat 524. In some embodiments, projection structures 551 can gradually reduce in height such that textured area 550 substantially blends into smooth area 540 at the transition 594 between textured area 550 and smooth area 540.
Moreover, in some embodiments, the projection structures 551 can be arranged tallest to shortest in the vertical direction 507 such that relatively short projection structures 551 are disposed proximate a sole attachment area 591, where upper 520 attaches to a sole structure. Accordingly, the upper 520 can be smoother at sole attachment area 591, thus facilitating attachment of the sole structure.
Furthermore, upper 520 can include a plurality of eyelets 532, which can receive a shoelace or other similar securement device. As shown in
Still further, in some embodiments, upper 520 can include one or more tensile elements 581. In some embodiments, tensile elements 581 can be elongate, flexible, and strong. Also, tensile elements 581 can extend across and can be attached to areas of upper 520 for providing support. More specifically, in some embodiments, tension within tensile elements 581 can allow the upper 520 to resist deformation, stretching, or otherwise provide support for the wearer's foot when running, jumping, kicking, or otherwise moving.
It will be appreciated that upper 520 can include any number of tensile elements 581. Also, tensile elements 581 can be made of a variety of materials and can have a variety of shapes and dimensions. Also, tensile elements 581 can extend across any suitable portion of upper 520. In
Moreover, in some embodiments, upper 520 can include a seam 593 as shown, for example, in
Embodiments of Materials and Construction of Upper
The upper of the present disclosure can be constructed from any suitable materials. Also, the upper can be constructed from one or more parts. In some embodiments, the upper can be formed from multiple material elements (e.g., polymer foam, polymer sheets, leather, synthetic leather) that are joined together through stitching, adhesives, bonding, or fasteners, for example.
In other embodiments, the majority of the upper can be formed from a unitary, monolithic, single-body. As such, the upper can be constructed in an efficient manner and can include a relatively low number of parts. Additionally, the upper can flex with, conform against, and/or nest against the wearer's foot because of the single-body construction.
Furthermore, in some embodiments, the upper can be made from one or more sheet-like layers. As shown in the embodiment of
Additionally, in some embodiments, the upper of the present disclosure can be at least partially formed from a textile element or fabric. Specifically, the upper can be at least partially formed via a knitting process in some embodiments. In other embodiments, the upper can be at least partially formed via a weaving process. As such, the upper can be lightweight, breathable, and soft to the touch. However, the textile can be constructed such that the upper is durable and strong. Moreover, the knitting or weaving processes can provide manufacturing efficiencies and can result in a relatively low amount of waste. Also, the textile can provide elasticity to the upper. For example, the textile can have some degree of elasticity due to the knitted or woven construction. Furthermore, in some embodiments, the textile can be knitted or woven from elastic and stretchable yarns, which further enhance the stretchiness of the upper.
The construction and materials of upper will be discussed according to exemplary embodiments with reference to
As will be discussed, knitted component 1000 can provide the upper 520 with weight savings as compared with other conventional uppers. Additionally, in some embodiments, knitted component 1000 can be configured with textured area 550 and smooth area 540. Still further, knitted component 1000 can provide advantages in the manufacture of the article of footwear. Other advantages due to the knitted component 1000 will be explored in detail below.
In some embodiments, knitted component 1000 can be made at least partially through a flat knitting or circular knitting process. An exemplary flat-knitted component 1000 is shown in plan view in
Knitted component 1000 can be formed of unitary knit construction. As defined herein and as used in the claims, the term “unitary knit construction” means that knitted component 1000 is formed as a one-piece element through a knitting process. That is, the knitting process substantially forms the various features and structures of knitted component 1000 without the need for significant additional manufacturing steps or processes. An example of unitary knit construction of upper 520 is illustrated in
Although portions of knitted component 1000 may be joined to each other following the knitting process, knitted component 1000 remains formed of unitary knit construction because it is formed as a one-piece knit element. Moreover, knitted component 1000 remains formed of unitary knit construction when other elements (e.g., an inlaid strand, a closure element, logos, trademarks, placards with care instructions and material information, and other structural elements) are added following the knitting process.
Thus, upper 520 can be constructed with a relatively low number of material elements. This can decrease waste while also increasing the manufacturing efficiency and recyclability of upper 520. Additionally, knitted component 1000 of upper 520 can incorporate a smaller number of seams or other discontinuities. This can further increase manufacturing efficiency of the article of footwear. Moreover, inner surface 523 and outer surface 525 of upper 520 can be substantially smooth and uniform due to knitted component 1000 to enhance the overall comfort and fit of the article of footwear footwear.
In some embodiments, knitted component 1000 can be primarily defined by a knit element 1002. As shown in
Knitted component 1000 can also generally include at least one tensile element 1003. In some embodiments, tensile element 1003 can be a yarn, cable, fiber, filament, or other elongate strand. Tensile element 1003 can extend across and can be attached to knit element 1002. In some embodiments, tensile element 1003 can be inlaid within a course and/or a wale of knit element 1002. As such, the tensile elements 1003 can be formed of unitary knit construction with knit element 1002. In other embodiments, at least one or more segments of tensile element 1003 can be external to knit element 1002.
Tensile elements 1003 can provide support to knitted component 1000. More specifically, in some embodiments, tension within tensile elements 1003 can allow knitted component 1000 to resist deformation, stretching, or otherwise provide support for knit element 1002. Tensile elements 1003 of
Knitted component 1000, knit element 1002, and/or tensile element 1003 can incorporate the teachings of one or more of commonly-owned U.S. Pat. No. 8,490,299 to Dua et al., filed on Dec. 18, 2008, and granted on Jul. 23, 2013, and U.S. patent application Ser. No. 13/048,514 to Huffa et al., entitled “Article Of Footwear Incorporating A Knitted Component,” filed on Mar. 15, 2011 and published as U.S. Patent Application Publication Number 2012/0233882 on Sep. 20, 2012, both of which are hereby incorporated by reference in their entirety.
Knit element 1002 can be formed from one or more yarns 1006 of any suitable type. For example, at least one yarn 1006 of knit element 1002 can be made from cotton, elastane, rayon, wool, nylon, polyester, or other material. Furthermore, in some embodiments, yarn 1006 can include thermoplastic polyurethane (TPU). Also, in some embodiments, at least one yarn 1006 can be elastic and resilient. As such, yarn 1006 can be elongated from a first length, and yarn 1006 can be biased to recover to its first length. Thus, such an elastic yarn 1006 can allow knit element 1002 to stretch elastically and resiliently under the influence of a force. When that force is reduced, knit element 1002 can recover back its neutral position.
Furthermore, in some embodiments, at least one yarn 1006 can be at least partially formed from a thermoset polymer material that can melt when heated and that can return to a solid state when cooled. As such, yarn 1006 can be a fusible yarn and can be used to join two objects or elements together. In additional embodiments, knit element 1002 can include a combination of fusible and non-fusible yarns. In some embodiments, for example, knitted component 1000 and upper 520 can be constructed according to the teachings of U.S. Patent Publication No. 2012/0233882, which published on Sep. 20, 2012, the disclosure of which is hereby incorporated by reference in its entirety.
Additionally, in some embodiments, a single yarn 1006 can form each of the courses and wales of knit element 1002. In other embodiments, knit element 1002 can include a plurality of yarns 1006. For example, different yarns 1006 can form different courses and/or different wales. In additional embodiments, a plurality of yarns can be plated together and can cooperate to define a common loop, a common course and/or a common wale of knit element 1002. Moreover, in some embodiments, knit element 1002 can be constructed with a relatively high stitch density. Also, in some embodiments, knit element 1002 can be constructed using a relatively high-gauge knit, such as a full-gauge knit. Accordingly, knit element 1002 can be constructed to hold its textured shape.
Tensile element 1003 can be attached to and engaged with knit element 1002 in any suitable fashion. For example, in some embodiments, at least a portion of tensile element 1003 can be inlaid within one or more courses 1008 and/or wales 1009 of knit element 1002 such that tensile element 1003 can be incorporated during the knitting processes on the knitting machine. More specifically, as shown in the embodiment of
Features of knitted component 1000 illustrated in
In
Peripheral edge 1010 can be sub-divided into a plurality of segments. For example, peripheral edge 1010 can include a substantially U-shaped outer segment 1012. Edge 1010 can also include a substantially U-shaped inner segment 1014. Moreover, edge 1010 can include a third end segment 1016 and a fourth end segment 1018. Third end segment 1016 and/or fourth end segment 1018 can be substantially straight. Also, third end segment 1016 can extend between the outer segment 1012 and inner segment 1014 proximate medial side 1115, and second end segment 1018 can extend between outer segment and inner segment 1012, 1014 proximate lateral side 1117.
In some embodiments, outer segment of peripheral edge can include one or more scallops 1013. Scallops 1013 can be separated by generally triangular-shaped cutouts along peripheral edge 1010. Also, scallops 1013 can be disposed primarily in forefoot region 1111. Furthermore, when knitted component 1000 is assembled into a three-dimensional shape, scallops 1013 can allow adjacent portions of knitted component 1000 to overlay each other and form a highly curved area of upper 520 without bunching.
When assembled into the three-dimensional upper, front surface 1008 of knitted component 1000 can face inner surface 523 of upper 520, and the opposing back surface can face outer surface 525 of upper 520. In some embodiments, front surface 1008 can define inner surface 523 of upper 520, and/or the opposing back surface can define outer surface 525 of upper 520. In other embodiments, a skin or other object can be layered and attached to one or both surfaces of knitted component 1000, and the skin or other object can define the inner surface 523 and/or outer surface 525 of upper 520.
Furthermore, in some embodiments, knitted component 1000 can include one or more openings. In some embodiments, the openings can be through-holes that extend through the front surface 1008 and the opposing back surface. For example, the knitted component 1000 can include eyelet openings 1020 that form the eyelets 532 discussed above. Also, the knitted component 1000 can include one or more indexing openings 1020. In some embodiments, the indexing openings 1020 can be arranged along peripheral edge 1010. For example, indexing openings 1020 can be included along outer segment 1012 of peripheral edge 1010. Also, at least some indexing openings 1020 can be included proximate scallops 1013. Indexing openings 1020 can also be included proximate first end 1016 and second end 1018 of knitted component 1000. Indexing openings 1020 can be used for pinning or otherwise anchoring knitted component 1000 to a support structure during manufacturing.
Knitted component 1000 can also define a plurality of zones that differ in one or more characteristics. For example, in the embodiment of
In some embodiments, second zone 1024 can have greater stretching elasticity than first zone 1022. For example, second zone 1024 can stretch out elastically at least 20% more than first zone 1022 when subjected to a common stretching force. In additional embodiments, second zone 1024 can stretch out elastically at least 40% more than first zone 1022 when subjected to a common stretching force.
These stretching and elasticity characteristics can be observed and measured in various ways. For example, when the knitted component 1000 is unstretched and in a neutral position, the widths of first zone 1022 and second zone 1024 can be measured in a direction extending generally between the medial side 1115 and the lateral side 1117. Then, a stretching force or load can be applied to stretch and elongate the knitted component 1000. The increase in widths of first zone 1022 and second zone 1024 can then be calculated. In additional embodiments, independent specimens of first zone 1022 and second zone 1024 can be stretch tested individually and compared. Additionally, in some cases, these stretching and elasticity characteristics can be measured using the procedure set forth in ASTM D2594. In other cases, these stretching and elasticity characteristics can be measured using other industry-accepted standard testing procedures.
In the embodiment of
The difference in elasticity can be a result of knitting second zone 1024 from yarns that are more elastic than the yarns knitted in the first zone 1022. Also, fusible yarns can be knitted and fused within first zone 1022, whereas second zone 1024 can be devoid of fusible yarns.
Skin Layer Configuration
In some embodiments, one or more objects can be added or attached to the knitted component 1000. The knitted component 1000 and the additional object(s) can cooperate to define upper 520. The object can be of any suitable type, such as a skin layer, a liner, a toe guarding member, a heel counter, a decal, a tag, fasteners, lace-receiving elements, or other types. The object can be attached in various ways as well.
In some embodiments, the object can be attached proximate to the front surface 1008 of knitted component 1000. In added embodiments, the object can be attached proximate to the opposing back surface of knitted component 1000. In still other embodiments, the object can be attached proximate the peripheral edge of knitted component 1000.
In some embodiments, the attached object can strengthen or provide reinforcement to predetermined areas of upper 520. Also, the object can repel moisture in some embodiments. Furthermore, the object can insulate the upper 520 in some embodiments.
For example, as shown in
First skin layer 1600 can lay adjacent to front surface 1008 of knitted component 1000 and can be secured to knitted component 1000 to form a portion of inner surface 523 of upper 520. Also, as shown in
As noted above, first skin layer 1600 and/or second skin layer 1700 may be formed from a polymer (e.g., polyurethane) sheet, elements of leather or synthetic leather, microfiber, a woven or non-woven textile, or a metal foil. When formed as a polymer sheet or polymer layer, first skin layer 1600 and/or second skin layer 1700 may initially be a polymer film, polymer mesh, polymer powder, or polymer resin, for example. With any of these structures, a variety of polymer materials may be utilized for skin layers 1600, 1700 including polyurethane, polyester, polyester polyurethane, polyether polyurethane, and nylon. An example of a non-woven textile with thermoplastic polymer filaments that may be bonded to knitted component 1000 is disclosed in U.S. Patent Application Publication 2010/0199406 to Dua, et al., which is incorporated herein by reference. Moreover, additional considerations relating to first skin layer 1600 and second skin layer 1700 may be found in U.S. Patent Application Publication 2012/0246973 to Dua, which is incorporated herein by reference.
Although skin layers 1600, 1700 may be formed from a thermoset polymer material, some configurations of skin layers 1600, 1700 can be formed from thermoplastic polymer materials (e.g., thermoplastic polyurethane). In general, a thermoplastic polymer material softens or melts when heated and returns to a solid state when cooled. More particularly, the thermoplastic polymer material transitions from a solid state to a softened or liquid state when subjected to sufficient heat, and then the thermoplastic polymer material transitions from the softened or liquid state to the solid state when sufficiently cooled. As such, the thermoplastic polymer material may be melted, molded, cooled, re-melted, re-molded, and cooled again through multiple cycles. Thermoplastic polymer materials may also be welded or thermal bonded to textile elements, such as knitted component 1000.
In some configurations of upper 520, a single element of first skin layer 1600 can be secured throughout knitted component 1000 and can cover a majority of knitted component 1000. Likewise, in some configurations of upper 520, a single element of second skin layer 1700 can be secured throughout knitted component 1000 and can cover a majority of knitted component 1000. In further configurations, however, different elements of the skin layer(s) may be formed from different materials and positioned in separate areas of knitted component 1000. That is, a portion of first skin layer 1600 formed from one material may be bonded to one area of knitted component 1000, and another portion of first skin layer 1600 formed from another material may be bonded to a different area of knitted component 1000. Similarly, a portion of second skin layer 1700 formed from one material may be bonded to one area of knitted component 1000, and another portion of second skin layer 1700 formed from another material may be bonded to a different area of knitted component 1000.
By varying the materials forming skin layer(s) 1600, 1700, different properties may be applied to different areas of upper 520. In other configurations, skin layer(s) 1600, 1700 may only cover specific areas of knitted component 1000, thereby leaving other areas of knitted component 1000 exposed. Skin layer(s) 1600, 1700 may, therefore, be absent from some areas of knitted component 1600, 1700.
As shown in the embodiment of
Also, as shown in the embodiment of
In some embodiments, first skin layer 1600 and second skin layer 1700 can be disposed in and can partially form substantially smooth area 540 of upper 520 as shown in
Furthermore, in some embodiments, first skin layer 1600 and second skin layer 1700 can be disposed generally in textured area 550 of upper 520. In some embodiments, first skin layer 1600 and/or second skin layer 1700 can be layered over and attached to knitted component 1000 across textured area 550 as shown in
In some embodiments, first skin layer 1600 and/or second skin layer 1700 can increase the stiffness of the upper 520 for retaining the texture of textured area 550. Stated differently, first skin layer 1600 and/or second skin layer 1700 can resist bending and deformation from the wavy or bumpy configuration of textured area 550. However, first skin layer 1600 and second skin layer 1700 can be resilient and bendable to allow some resilient deformation of textured area 550.
Moreover, in some embodiments, one or more portions of first skin layer 1600 and/or second skin layer 1700 can be attached to knitted component, and other portions can be detached from knitted component 1000. For example, as shown in
In some embodiments, the detached portions 1610 of first skin layer 1600 can be located proximate to tensile elements 1003 of knitted component 1000. For example, in some embodiments represented in
Also, as shown in
Referring now to
In some embodiments, footwear 5100 can include a sole structure 5110 and an upper 5120. The upper 5120 can include a smooth area 5140 proximate the heel region 5114, and the upper 5120 can include a textured area 5150 generally in the forefoot region 5111 and midfoot region 5112. In some embodiments, the textured area 5150 can extend from the medial side 5115, across the forefoot region 5111, and onto the lateral side 5117.
Additionally, the upper 5120 can include multiple components that are overlapped and layered over each other. One component can provide textured structures, and the other component can be layered over at least some of the textured structures. Also, in some embodiments, the other component can include apertures that expose at least some of the textured structures.
Specifically, as shown in
As shown in
In some embodiments, the exposed projection structures 5099 and the covered projection structures 5098 can have different characteristics. For example, the exposed projection structures 5099 can have a higher coefficient of friction than the covered projection structures 5098. Also, in some embodiments, the exposed projection structures 5099 can exhibit a higher degree of flexibility and resilience than the covered projection structures 5098. Moreover, in some embodiments, the larger projection structures 5151 can be exposed projection structures 5099, and the smaller projection structures 5151 can be covered projection structures 5098.
Thus, the exposed projection structures 5099 and the covered projection structures 5098 can each be disposed in predetermined areas of the upper 5120. For example, in the case of a soccer shoe (i.e., soccer boot), the exposed projection structures 5099 can be disposed in areas of the upper 5120 that provide a high degree of ball control, ball feel, etc. In contrast, the covered projection structures 5098 can be disposed in areas of the upper 5120 that provide a lower degree of ball control, ball feel, etc.
Resilient Deformation of Upper
In some embodiments, textured area 550 of upper 520 can resiliently deform to provide the wearer with certain benefits. For example, in some embodiments, textured area 550 can deform and flatten out when textured area 550 impacts a ball or other object. Then, textured area 550 can resiliently recover back to the more textured state. Accordingly, this resilient deformation can dampen and dissipate the impact energy. Thus, the wearer may be able to more reliably trap a soccer ball, the wearer may be better able to direct the ball when kicking and passing, and/or the textured area 550 can provide increased tactile feel of the ball when controlling the ball.
This resilient deformation is illustrated in
As shown in
This deformation can dampen the energy of impact in some embodiments. Also, this deformation can cause upper 520 to shift slightly against the wearer's foot, thereby providing tactile “feel” of the ball 599 to the wearer.
When the load is reduced, the textured area 550 can resiliently recover from the deformed configuration of
Moreover, in some embodiments, the gradient arrangement of the textured area 550 can provide certain benefits to the wearer. For example, the gradient can allow the upper 520 to deform in a desirable manner. More specifically, the tallest projection structures 551 can be highly deformable, and surrounding gradient of projection structures 551 can distribute forces through the textured area 550 to inhibit bunching or wrinkling of upper 520 during deformation.
Furthermore, in some embodiments, the gradient of projection structures 551 can, for example, be arranged for directing or otherwise controlling the ball 599. For example, an imaginary tangent line 1804 is included in
Method of Manufacturing Upper and Article of Footwear
A variety of processes may be utilized to form the upper and the article of footwear of the present disclosure. For example, in some embodiments, the upper can be formed at least partially via a knitting process as discussed above. Also, in some embodiments, a skin layer or other object can be incorporated within the upper as discussed above. Moreover, in some embodiments, heat and/or pressure can be applied for forming features of the upper. For example, heat and/or pressure can be applied to form the textured area of the upper.
Additionally, in some embodiments, heat can be applied to thermally bond the skin layer(s) to the knitted component of the upper. The term “thermal bond” or variants thereof is defined as the bond, link, or structure that joins two elements through a process that involves a softening or melting of a polymeric material within at least one of the elements such that the materials of the elements are secured to each other when cooled. As examples, thermal bonding may involve: (a) the melting or softening of skin layers 1600, 1700 such that those materials intermingle with materials of knitted component 1000 and are secured together when cooled; and (b) the melting or softening of skin layers 1600, 1700 such that the those materials extend into or infiltrates the structure of knitted component 1000 (e.g., extends around or bonds with filaments or fibers in knitted component 1000 to secure the elements together when cooled). Additionally, thermal bonding does not generally involve the use of stitching or adhesives, but involves directly bonding elements to each other with heat. In some situations, however, stitching or adhesives may be utilized to supplement the thermal bond or the joining of elements through thermal bonding.
In additional embodiments, heat and/or pressure can be applied using a molding apparatus, a press, an embossing apparatus, a thermoforming apparatus, or other machine. In some embodiments, the upper can be manufactured according to the U.S. patent application Ser. No. 14/851,980, entitled Method of Manufacturing Article of Footwear with Graduated Projections, which was co-filed with the present application on Sep. 11, 2015, the disclosure of which is incorporated by reference in its entirety.
While various embodiments of the present disclosure have been described, the description is intended to be exemplary, rather than limiting and it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of the present disclosure. Accordingly, the present disclosure is not to be restricted except in light of the attached claims and their equivalents. Also, various modifications and changes may be made within the scope of the attached claims. Moreover, as used in the claims “any of” when referencing the previous claims is intended to mean (i) any one claim, or (ii) any combination of two or more claims referenced.
This application is a continuation of U.S. patent application Ser. No. 14/851,920, filed Sep. 11, 2015, the disclosure of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 14851920 | Sep 2015 | US |
Child | 15881932 | US |