This invention relates generally to footwear, and, in particular, to footwear having support columns that include fluid-filled bladders.
Conventional articles of athletic footwear include two primary elements, an upper and a sole structure. The upper provides a covering for the foot that comfortably receives and securely positions the foot with respect to the sole structure. In addition, the upper may have a configuration that protects the foot and provides ventilation, thereby cooling the foot and removing perspiration. The sole structure is secured to a lower portion of the upper and is generally positioned between the foot and the ground. In addition to attenuating ground reaction forces, the sole structure may provide traction, control foot motions (e.g., by resisting over pronation), and impart stability, for example. Accordingly, the upper and the sole structure operate cooperatively to provide a comfortable structure that is suited for a wide variety of activities, such as walking and running.
The sole structure generally incorporates multiple layers that are conventionally referred to as an insole, a midsole, and an outsole. The insole is a thin, compressible member located within the upper and adjacent to a plantar (i.e., lower) surface of the foot to enhance footwear comfort. The midsole, which is conventionally secured to the upper along the length of the upper, forms a middle layer of the sole structure and is primarily responsible for attenuating ground reaction forces. The outsole forms the ground-contacting element of footwear and is usually fashioned from a durable, wear-resistant material that includes texturing to improve traction.
The conventional midsole is primarily formed from a resilient, polymer foam material, such as polyurethane or ethylvinylacetate, that extends throughout the length of the footwear. The properties of the polymer foam material in the midsole are primarily dependent upon factors that include the dimensional configuration of the midsole and the specific characteristics of the material selected for the polymer foam, including the density of the polymer foam material. By varying these factors throughout the midsole, the relative stiffness and degree of ground reaction force attenuation may be altered to meet the specific demands of the activity for which the footwear is intended to be used. In addition to polymer foam materials, conventional midsoles may include, for example, one or more fluid-filled bladders and moderators.
It would be desirable to provide an article of footwear with support columns that reduces or overcomes some or all of the difficulties inherent in prior known devices. Particular objects and advantages will be apparent to those skilled in the art, that is, those who are knowledgeable or experienced in this field of technology, in view of the following disclosure of the invention and detailed description of certain embodiments.
The principles of the invention may be used to advantage to provide footwear having improved support columns that include fluid-filled bladders. In accordance with a first aspect, an article of footwear includes an upper and a sole assembly secured to the upper. The sole assembly has a top plate and a bottom plate positioned below the top plate. A plurality of support columns extends between the top plate and the bottom plate, with each support column formed of a plurality of fluid-filled bladders. Each bladder has a first surface, an opposed second surface, and a tensile member joined to the first and second surfaces.
In accordance with another aspect, an article of footwear includes an upper and a sole assembly secured to the upper. The sole assembly includes a midsole, a plate positioned below the midsole, and a plurality of support columns extending between the upper plate and the midsole. Each support column is formed of a plurality of fluid-filled bladders, with each bladder having a first surface, an opposed second surface, a sidewall joining the first surface to the second surface. The sidewall is formed of a plurality of first panels having a first thickness and a plurality of panels having a second thickness that is different from the first thickness, the first and second panels alternating about a periphery of the bladder, and a tensile member joined to the first and second surfaces. The tensile member includes a first wall bonded to the first surface, a second wall bonded to the second surface, and a plurality of connecting members extending between the first wall and the second wall.
In accordance with a further aspect, an article of footwear includes an upper and a sole assembly secured to the upper. The sole assembly includes a midsole, a plate positioned below the midsole, and a plurality of support columns extending between the upper plate and the midsole. Each support column includes a plurality of bladders filled with pressurized fluid, each bladder having a first surface, and an opposed second surface. A sidewall joins the first surface to the second surface, the sidewall being formed of a plurality of first panels having a first thickness and a plurality of panels having a second thickness that is different from the first thickness, the thickness of each panel varying from a maximum thickness at its central portion to reduced thickness portions where the sidewall joins the first and second surfaces, the first and second panels alternating about a periphery of the bladder. A tensile member is formed of a textile material and is joined to the first and second surfaces. The tensile member includes a first wall bonded to the first surface, a second wall bonded to the second surface, and a plurality of connecting members extending between the first wall and the second wall. An outsole is secured to at least one of the support assemblies.
Substantial advantage is achieved by providing footwear having support columns that include fluid-filled bladders. In particular, certain embodiments provide improved impact attenuation for the user.
These and additional features and advantages disclosed here will be further understood from the following detailed disclosure of certain embodiments.
The figures referred to above are not drawn necessarily to scale, should be understood to provide a representation of particular embodiments of the invention, and are merely conceptual in nature and illustrative of the principles involved. Some features of the article of footwear with support columns depicted in the drawings have been enlarged or distorted relative to others to facilitate explanation and understanding. The same reference numbers are used in the drawings for similar or identical components and features shown in various alternative embodiments. Articles of footwear with support columns as disclosed herein would have configurations and components determined, in part, by the intended application and environment in which they are used.
The following discussion and accompanying figures disclose various embodiments of a sole structure for an article of footwear. The sole structure may be applied to a wide range of athletic footwear styles, including tennis shoes, football shoes, cross-training shoes, walking shoes, soccer shoes, and hiking boots, for example. The sole structure may also be applied to footwear styles that are generally considered to be non-athletic, including dress shoes, loafers, sandals, and work boots. An individual skilled in the relevant art will appreciate, therefore, that the concepts disclosed herein apply to a wide variety of footwear styles, in addition to the specific style discussed in the following material and depicted in the accompanying figures.
An article of footwear 10 is depicted in
Portions 16-20 and sides 22-24 are not intended to demarcate precise areas of footwear 10. Rather, portions 16-20 and sides 22-24 are intended to represent general areas of footwear 10 to aid in the following discussion. In addition to footwear 10, portions 16-20 and sides 22-24 may also be applied to upper 12, sole assembly 14, and individual elements thereof.
The figures illustrate only the article of footwear intended for use on the left foot of a wearer. One skilled in the art will recognize that a right article of footwear, such article being the mirror image of the left, is intended to fall within the scope of the present invention.
Unless otherwise stated, or otherwise clear from the context below, directional terms used herein, such as rearwardly, forwardly, inwardly, downwardly, upwardly, etc., refer to directions relative to footwear 10 itself. Footwear 10 is shown in
Upper 12 forms an interior void that comfortably receives a foot and secures the position of the foot relative to sole assembly 14. The configuration of upper 12, as depicted, is suitable for use during athletic activities that involve running. Accordingly, upper 12 may have a lightweight, breathable construction that includes multiple layers of leather, textile, polymer, and foam elements adhesively bonded and stitched together. For example, upper 12 may have an exterior that includes leather elements and textile elements for resisting abrasion and providing breathability, respectively. The interior of upper 12 may have foam elements for enhancing the comfort of footwear 10, and the interior surface may include a moisture-wicking textile for removing excess moisture from the area immediately surrounding the foot.
Sole assembly 14 may be secured to upper 12 by an adhesive, or any other suitable fastening means. Sole assembly 14, which is generally disposed between the foot of the wearer and the ground, provides attenuation of ground reaction forces (i.e., imparting cushioning), traction, and may control foot motions, such as pronation. As with conventional articles of footwear, sole assembly 14 includes an insole (not shown) located within upper 12, a midsole 26, and an outsole 28. Midsole 26 is attached to upper 12 and functions as the primary shock-attenuating and energy-absorbing component of footwear 10. Outsole 28 is attached to the lower surface of midsole 26 by adhesive or other suitable means. Suitable materials for outsole 28 include traditional rubber materials. Other suitable materials for outsole 28 will become readily apparent to those skilled in the art, given the benefit of this disclosure. In certain embodiments, sole assembly 14 may not include an outsole layer separate from midsole 26 but, rather, the outsole may comprise a bottom surface of midsole 26 that provides the external traction surface of sole assembly 14.
Sole assembly 14 includes a top plate 29 positioned beneath midsole 26 and a bottom plate 30 positioned beneath top plate 29. In the illustrated embodiment, top plate 29 extends beneath heel portion 20 of midsole 26, and bottom plate 30 extends rearwardly from a midfoot portion 18 of midsole 26 to a rear end of heel portion 20. Top plate 29 and bottom plate 30 can be formed of any desired material. Suitable materials include plastics, elastomers, carbon-filled materials, a polyether block copolyamide (sold as Pebax® by ATOFINA Chemicals of Philadelphia, Pa.), a blend of a polyether block copolyamide with another material (such as glass-filled nylon, carbon-filled materials, polyamides, or poly-paraphenylene terephthalamides), thermoplastic polyurethane (TPU), or other materials. Other suitable materials for top plate 29 and bottom plate 30 will become readily apparent to those skilled in the art, given the benefit of this disclosure.
A plurality of support columns 32 is positioned between top plate 29 and bottom plate 30. Each support column 32 is formed of a plurality of fluid-filled bladders 34. In the illustrated embodiments, each support column 32 includes two bladders 34. It is to be appreciated that one or more support column 32 may include more than two bladders 34.
Each bladder 34 is a sealed member that encloses a pressurized fluid, as depicted in
Support columns 32 provide a low profile and resilient support structure for footwear 10. Support columns can be used in place of many support structures in order to provide a lower profile, yet resilient support structure. For example, support columns 32 can be used in place of support structures found in footwear such as spring members, elastomeric support columns, impact-attenuating elements/members, support elements, and other elements that provide support in footwear. Exemplary structures for which support columns 32 can be substituted are found in U.S. Pat. Nos. 7,314,125; 6,898,870; and 6,964,120; and U.S. patent application Ser. Nos. 11/966,513; 11/459,180; 11/459,093; 11/422,138; 11/419,015; 11/287,474; 10/949,813; 10/926,080; and 09/754,022; each of which is incorporated herein in its entirety for all purposes.
It is to be appreciated that each bladder 34 may have one or more properties that are different from one or more properties of some or all of the other bladders 34. For example, the geometry of the bladders 34 may differ with respect to some or all of the other bladders 34. In certain embodiments, the height, or circumference, or diameter (or all three parameters) of any particular bladder 34 may be different than one or more other bladders 34. The pressure within bladders 34 can vary as well, and can be altered dependent on usage or needs; for example, certain types of footwear with high impact uses such as basketball and running footwear may have a higher pressure within its bladders 34 than footwear with lower impact uses such as walking or golf footwear. In other embodiments, the pressure within one or more bladders 34 can be adjusted to have a value different than that of one or more other bladders 34. Thus, in certain embodiments, the bladders 34 that form a particular support column 32 could be identical with one another, yet have one or properties that are different from other bladders 34 in other support columns 32. In other embodiments the bladders 34 in a particular support column 32 may be different, thereby allowing, for example, an upper bladder 34 to be softer than a harder lower bladder 34 in the support column, which can enhance performance and comfort in particular situations. In this manner, the performance and comfort of sole assembly 14 and, therefore, footwear 10 can be optimized for an individual or for a particular activity, for example.
A variety of thermoplastic polymer materials may be utilized for bladder 34, including polyurethane, polyester, polyester polyurethane, and polyether polyurethane. Another suitable material for bladder 34 is a film formed from alternating layers of thermoplastic polyurethane and ethylene-vinyl alcohol copolymer, as disclosed in U.S. Pat. Nos. 5,713,141 and 5,952,065 to Mitchell et al, hereby incorporated by reference. A variation upon this material wherein the center layer is formed of ethylene-vinyl alcohol copolymer; the two layers adjacent to the center layer are formed of thermoplastic polyurethane; and the outer layers are formed of a regrind material of thermoplastic polyurethane and ethylene-vinyl alcohol copolymer may also be utilized. Bladder 34 may also be formed from a flexible microlayer membrane that includes alternating layers of a gas barrier material and an elastomeric material, as disclosed in U.S. Pat. Nos. 6,082,025 and 6,127,026 to Bonk et al., both hereby incorporated by reference. In addition, numerous thermoplastic urethanes may be utilized, such as PELLETHANE, a product of the Dow Chemical Company; ELASTOLLAN, a product of the BASF Corporation; and ESTANE, a product of the B.F. Goodrich Company, all of which are either ester or ether based. Still other thermoplastic urethanes based on polyesters, polyethers, polycaprolactone, and polycarbonate macrogels may be employed, and various nitrogen blocking materials may also be utilized. Additional suitable materials are disclosed in U.S. Pat. Nos. 4,183,156 and 4,219,945 to Rudy, hereby incorporated by reference. Further suitable materials include thermoplastic films containing a crystalline material, as disclosed in U.S. Pat. Nos. 4,936,029 and 5,042,176 to Rudy, hereby incorporated by reference, and polyurethane including a polyester polyol, as disclosed in U.S. Pat. Nos. 6,013,340; 6,203,868; and 6,321,465 to Bonk et al., also hereby incorporated by reference.
The fluid within bladder 34 may be any of the gasses disclosed in U.S. Pat. No. 4,340,626 to Rudy, hereby incorporated by reference, such as hexafluoroethane and sulfur hexafluoride, for example. The fluid may also include gasses such as pressurized octafluorapropane, nitrogen, or air. In addition to gasses, various gels or liquids may be sealed within bladder 34. Accordingly, a variety of fluids are suitable for bladder 34. With regard to pressure, a suitable fluid pressure is 20 pounds per square inch, but may range from one to thirty-five pounds per square inch. Accordingly, the fluid pressure within bladder 34 may be relatively high, or the fluid pressure may be slightly elevated from ambient in some embodiments of the invention. As noted above, the pressure in one bladder 34 may be different than the pressure in one or more other bladders 34 in the same or different support columns 32. The pressure in particular bladders 34 can be fine tuned for desired performance and/or comfort needs.
Tensile member 38 may be formed as a textile structure that includes a first wall 46, a second wall 48, and a plurality of connecting members 50 anchored to each of first wall 46 and second wall 48. First wall 46 is spaced away from second wall 48, and connecting members 50 extend between first wall 46 and second wall 48 to retain a substantially constant spacing between walls 46 and 48. First wall 46 is bonded to first barrier layer 40, and second wall 48 is bonded to second barrier layer 42. In this configuration, the pressurized fluid within the chamber formed by barrier 36 places an outward force upon barrier layers 40 and 42 and tends to move barrier layers 40 and 42 apart. The outward force supplied by the pressurized fluid, however, extends connecting members 50 and places connecting members 50 in tension, which restrains further outward movement of barrier layers 40 and 42. Accordingly, tensile member 38 is bonded to the interior surfaces of bladder 34 and limits the degree to which barrier layers 40 and 42 may move apart upon pressurization of bladder 34
In other embodiments, tensile member 38 may be formed of a foam element 39 that is positioned between and bonded to first barrier layer 40 and second barrier layer 42, as illustrated in
Exemplary tensile members made of foam elements are described in U.S. Pat. No. 7,131,218; U.S. Patent Publication No. 2005/0167029; and U.S. Patent Publication No. 2007/0063368, each of which is incorporated herein by reference in their entirety for all purposes.
A variety of techniques may be utilized to bond tensile member 38 to each of first barrier layer 40 and second barrier layer 42. For example, a layer of thermally activated fusing agent may be applied to first wall 46 and second wall 48. The fusing agent may be a sheet of thermoplastic material, such as thermoplastic polyurethane, that is heated and pressed into contact with first wall 46 and second wall 48 prior to placing tensile member 38 between barrier layers 40 and 42. The various elements of bladder 34 are then heated and compressed such that the fusing agent bonds with barrier layers 40 and 42, thereby bonding tensile member 38 to barrier 38. Alternately, a plurality of fusing filaments may be integrated into first wall 46 and second wall 48. The fusing filaments are formed of a material that will fuse, bond, or otherwise become secured to barrier layers 40 and 42 when the various components of bladder 34 are heated and compressed together. Suitable materials for the fusing filaments include, therefore, thermoplastic polyurethane or any of the materials that are discussed above as being suitable for barrier layers 40 and 42. The fusing filaments may be woven or otherwise mechanically manipulated into walls 46 and 48 during the manufacturing process for tensile element 38, or the fusing filaments may be subsequently incorporated into walls 46 and 48.
In certain embodiments, as seen in
By providing alternating bands of thicker and thinner wall thicknesses, bladder 34 is provided with both extra strength from the thicker first panels 52, and flexibility from the thinner second panels 54. Consequently, bladder 34 can stretch and flex like a cage, however, it still retains the necessary strength to provide a robust support structure for footwear 10. Bladder 34 advantageously is produced with a fewer number of parts, thereby increasing manufacturing efficiencies. Additionally, bladder 34 provides abrasion resistance to protect from potential failure.
In certain embodiments, as illustrated in
In certain embodiments, bladder 34 may have an asymmetric construction, as illustrated in
Thus, while there have been shown, described, and pointed out fundamental novel features of various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the devices illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit and scope of the invention. For example, it is expressly intended that all combinations of those elements and/or steps which perform substantially the same function, in substantially the same way, to achieve the same results are within the scope of the invention. Substitutions of elements from one described embodiment to another are also fully intended and contemplated. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
4183156 | Rudy | Jan 1980 | A |
4219945 | Rudy | Sep 1980 | A |
4340626 | Rudy | Jul 1982 | A |
4486964 | Rudy | Dec 1984 | A |
4506460 | Rudy | Mar 1985 | A |
4779359 | Famolare, Jr. | Oct 1988 | A |
4906502 | Rudy | Mar 1990 | A |
4936029 | Rudy | Jun 1990 | A |
4999931 | Vermeulen | Mar 1991 | A |
5042176 | Rudy | Aug 1991 | A |
5083361 | Rudy | Jan 1992 | A |
5220737 | Edington | Jun 1993 | A |
5543194 | Rudy | Aug 1996 | A |
5686167 | Rudy | Nov 1997 | A |
5713141 | Mitchell et al. | Feb 1998 | A |
5741568 | Rudy | Apr 1998 | A |
5753061 | Rudy | May 1998 | A |
5916664 | Rudy | Jun 1999 | A |
5952065 | Mitchell et al. | Sep 1999 | A |
5993585 | Goodwin et al. | Nov 1999 | A |
6013340 | Bonk et al. | Jan 2000 | A |
6029962 | Shorten et al. | Feb 2000 | A |
6082025 | Bonk et al. | Jul 2000 | A |
6119371 | Goodwin et al. | Sep 2000 | A |
6127010 | Rudy | Oct 2000 | A |
6127026 | Bonk et al. | Oct 2000 | A |
6158149 | Rudy | Dec 2000 | A |
6203868 | Bonk et al. | Mar 2001 | B1 |
6321465 | Bonk et al. | Nov 2001 | B1 |
6457263 | Rudy | Oct 2002 | B1 |
6487796 | Avar et al. | Dec 2002 | B1 |
6665958 | Goodwin | Dec 2003 | B2 |
6837951 | Rapaport | Jan 2005 | B2 |
6898870 | Rohde | May 2005 | B1 |
6944973 | Goodwin | Sep 2005 | B2 |
6964120 | Cartier et al. | Nov 2005 | B2 |
6968636 | Aveni et al. | Nov 2005 | B2 |
7070845 | Thomas et al. | Jul 2006 | B2 |
7076891 | Goodwin | Jul 2006 | B2 |
7086179 | Dojan et al. | Aug 2006 | B2 |
7086180 | Dojan et al. | Aug 2006 | B2 |
7100310 | Foxen et al. | Sep 2006 | B2 |
7131218 | Schindler | Nov 2006 | B2 |
7141131 | Foxen et al. | Nov 2006 | B2 |
7314125 | Smaldone et al. | Jan 2008 | B2 |
7360324 | Aveni | Apr 2008 | B2 |
7458172 | Aveni | Dec 2008 | B2 |
7484317 | Kita et al. | Feb 2009 | B2 |
7685742 | Aveni et al. | Mar 2010 | B2 |
7730635 | Aveni et al. | Jun 2010 | B2 |
7757410 | Aveni et al. | Jul 2010 | B2 |
7802378 | Harmon Weiss et al. | Sep 2010 | B2 |
20030051373 | Goodwin | Mar 2003 | A1 |
20050167029 | Rapaport et al. | Aug 2005 | A1 |
20060112592 | Leedy et al. | Jun 2006 | A1 |
20060130365 | Sokolowski et al. | Jun 2006 | A1 |
20070063368 | Schindler | Mar 2007 | A1 |
20070074423 | Goodwin et al. | Apr 2007 | A1 |
20070119074 | Aveni et al. | May 2007 | A1 |
20070193065 | Nishiwaki et al. | Aug 2007 | A1 |
20070266592 | Smith et al. | Nov 2007 | A1 |
20080016719 | Aveni et al. | Jan 2008 | A1 |
20080016720 | Aveni et al. | Jan 2008 | A1 |
20080034615 | Nishiwaki | Feb 2008 | A1 |
20080098619 | Smaldone et al. | May 2008 | A1 |
20090100705 | Cook et al. | Apr 2009 | A1 |
20090165333 | Litchfield et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
2206475 | Jan 1989 | GB |
2009067424 | May 2009 | WO |
Entry |
---|
International Preliminary Report on Patentability issued May 19, 2011 in corresponding PCT Application No. PCT/US2009/063190. |
International Preliminary Report on Patentability issued May 19, 2011 in corresponding PCT Application No. PCT/US2009/063195. |
International Search Report and Written Opinion issued Mar. 4, 2010 in corresponding PCT Application No. PCT/US2009/063190. |
International Search Report and Written Opinion issued Mar. 4, 2010 in corresponding PCT Application No. PCT/US2009/063195. |
Office Action issued Aug. 5, 2011 in related U.S. Appl. No. 12/265,878. |
Office Action issued Dec. 23, 2011 in Chinese Patent Application No. 200980143905.1, and English translation thereof. |
Number | Date | Country | |
---|---|---|---|
20100107444 A1 | May 2010 | US |