The present invention relates generally to turbomachinery, and more particularly relates to an article of manufacture configured for use with turbomachines.
During initial assembly of turbomachine components, or subsequent repair and replacement of turbomachine components, a large number of components must be installed in specific locations of the turbomachine. For example, a stage one rotor blade must be installed in the correct position on a stage one rotor wheel. A typical turbomachine may have many stages with many corresponding components, so a high probability exists that a component for a specific stage may get installed in an incorrect stage (e.g., a stage five rotor blade might get installed in a stage six rotor wheel). The negative implications of this event lead to machine malfunction or inefficiency and increase outage or construction time due to the need to remove and correctly install the specific components. Accordingly, a need still exists for an improved system for installing turbomachine components that reduces the probability for errors during installation.
According to one aspect of the present invention, an article of manufacture is provided having a first component configured for use with a turbomachine. The first component is configured for attachment to a second component. The first component is configured to substantially reduce the possibility of attachment with an undesired third component by modification of at least one characteristic of the first component, so that the modification of the at least one characteristic is matched by a. complementary characteristic of the second component.
According to another aspect of the present invention, an article of manufacture is provided having a first component configured for use with a compressor. The first component is configured for attachment to a second component. The first component is configured to substantially reduce the possibility of attachment with an undesired third component by modification of at least one characteristic of the first component, so that the modification of the at least one characteristic is matched by a complementary characteristic of the second component.
These and other features and improvements of the present invention should become apparent to one of ordinary skill in the art upon review of the following detailed description when taken in conjunction with the several drawings and the appended claims.
One or more specific aspects/embodiments of the present invention will be described below. in an effort to provide a concise description of these aspects/embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with machine-related, system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
When introducing elements of various embodiments of the present invention, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Any examples of operating parameters and/or environmental conditions are not exclusive of other parameters/conditions of the disclosed embodiments. Additionally, it should be understood that references to “one embodiment”, “one aspect” or “an embodiment” or “an aspect” of the present invention are not intended to be interpreted as excluding the existence of additional embodiments or aspects that also incorporate the recited features. A turbomachine is defined as a machine that transfers energy between a rotor and a fluid or vice-versa, including but not limited to gas turbines, steam turbines and compressors.
Referring now to the drawings,
The compressor rotor blades 22 impart kinetic energy to the airflow and therefore bring about a desired pressure rise. Directly following the rotor blades 22 is a stage of stator vanes 23. However, in some designs the stator vanes may precede the rotor blades. Both the rotor blades and stator vanes turn the airflow, slow the airflow velocity (in the respective airfoil frame of reference), and yield a rise in the static pressure of the airflow. Typically, multiple rows of rotor/stator stages are arranged in axial flow compressors to achieve a desired discharge to inlet pressure ratio. Each rotor blade and stator vane includes an airfoil, and these airfoils can be secured to rotor wheels or a stator case by an appropriate attachment configuration, often known as a “root,” “base” or “dovetail”. In addition, compressors may also include inlet guide vanes (IGVs) 21, variable stator vanes (VSVs) 25 and exit or exhaust guide vanes (EGVs) 27. All of these blades and vanes have airfoils that act on the medium (e.g., air) passing through the compressor flow path 1.
Exemplary stages of the compressor 2 are illustrated in
The rotor blades 22 and stator vanes 23 herein of the compressor 2 are merely exemplary of the stages of the compressor 2 within the scope of the invention. In addition, each inlet guide vane 21, rotor blade 22, stator vane 23, variable stator vane 25 and exit guide vane 27 may be considered an article of manufacture. Further, the article of manufacture may comprise a rotor blade and/or a rotor wheel configured for use with a compressor.
A rotor blade 22, illustrated in
The mounting base 260 includes platform 340, neck 342 and tang 344, which all have variable characteristics. The tang 344 is located at the bottom of the rotor blade 22, and has a tang height 320. The tang height may be the vertical (or radial) distance from the bottom of the blade to the widest portion of the tang. The neck 342 has a neck width 330 that may be measured from each axial edge of the neck (or from the left edge to the right edge as shown in
According to an aspect of the present invention, the rotor blade may be referred to as a “first component” and the rotor wheel may be referred to as a “second component”. However, according to another aspect of the present invention, the rotor blade made be referred to as a “second component” and the rotor wheel may be referred to as a “first component”. In addition, a third component may refer to a rotor blade or rotor wheel in a different stage of the compressor. For example, the first and second component may belong to a 5th stage of the compressor, while the third component may belong to a 6th stage of the compressor. Generally, the “third component” refers to a rotor blade or rotor wheel (or portions thereof) that is not designed to be used with the first or second component. Both the the rotor blade and rotor wheel may be configured for use with a turbomachine, such as a compressor.
The previous description was directed to blade characteristics, but it is to be understood that the slots in the rotor wheel could also have characteristics that are modified to selectively accept only the target blade. As non-limiting examples only, and referring to
The present invention provides for the modification of various blade and slot characteristics so that only the desired stage blade can be installed in the desired stage wheel slot. Further, the blade and slot characteristics can be modified so that the blade can be installed in only one orientation (to prevent backwards installation).
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.