Article separation apparatus and method for unit operations

Information

  • Patent Application
  • 20070187296
  • Publication Number
    20070187296
  • Date Filed
    February 15, 2006
    18 years ago
  • Date Published
    August 16, 2007
    16 years ago
Abstract
An apparatus and method are disclosed for separating articles from a group of articles. The apparatus includes a container for containing one or more articles coupled to a suitable fluidizer for suspending articles within the container and transporting articles to an induction tube. A portal in the induction tube introduces articles singly into the induction tube. A vacuum pulls articles through the induction tube separating the articles from the group of articles in the container. The apparatus and method can be combined with one or more unit operations or modules, e.g., for inspecting articles, assessing quality of articles, or ascertaining material properties and/or parameters of articles, including layers thereof.
Description
FIELD OF THE INVENTION

The invention relates generally to an article separation apparatus and method for unit operations. The invention finds application in areas including, but not limited to, e.g., material handling, manufacturing, in-process control, quality assessment, inspection, and the like.


BACKGROUND OF THE INVENTION

Quality control (QC) systems and methods for inspecting small articles frequently employ destructive testing not suited to in-process and/or on-demand fabrication measurements and assessments. Destructive testing, for example, can be economically infeasible for assessing quality of batches involving substantial quantities of small (micron range) articles, e.g., nuclear fuel particles. Nor can such systems be expected to meet the demand anticipated in future high throughput production processing.


Accordingly, new material inspection systems and methods are needed to reduce the number of independent measurements needed to qualify articles in a batch and further address quality control and assessment issues and thereby meet production throughput requirements.


SUMMARY OF THE INVENTION

In one aspect, the invention is an apparatus for separating articles in a group of articles, comprising: a containing means for containing one or more articles defining a group of articles, the containing means comprising an inlet for introducing the one or more articles into the containing means and one or more outlets; a levitating means for levitating the one or more articles in the group of articles within the containing means whereby articles are introduced singly to the outlets; one or more conduits operatively coupled to the outlets for transporting the single articles away from the group of particles via differential pressure; and thereby separating the single articles from the group of articles in the containing means.


In another aspect, the invention is a method for separating articles in a group of articles, comprising the steps: providing a containing means for containing one or more articles defining a group of articles, the containing means comprising an inlet for introducing the one or more articles into the containing means and one or more outlets; a levitating means for levitating the one or more articles in the group of articles within the containing means whereby articles are introduced singly to the outlets; one or more conduits operatively coupled to the outlets for transporting the single articles away from the group of particles via differential pressure; and thereby separating the single articles from the group of articles in the containing means.


In one embodiment, conduits are selected from induction tube, vacuum tube, pick-up tube, or the like, or combinations thereof.


In another embodiment, a containing means is selected from hoppers, feeders, funnels, enclosures, containers, magnetic bottles, chambers, conduits, piping, or the like, or combinations thereof.


In another embodiment, conduits include a portal for introducing articles thereto, the conduits being positioned within a volume of the containing means traversed by the one or more articles levitated by the levitating means, whereby agitation of the articles proximate the portal within the volume minimizes clumping or aggregation of the articles thereat facilitating introduction of single articles thereto.


In another embodiment, a portal is located on an introduction surface of the conduit(s), the surface having a shape selected from flat or round.


In another embodiment, positioning of the conduits and/or portal includes an angle of rotation selected with respect to a virtual axis projected along the length of the conduits and/or the portal from about 0 degrees to about 90 degrees clockwise or counterclockwise relative to a direction of levitation produced by the levitating means.


In another embodiment, positioning of a portal involves a movement of the conduits within a volume of the containing means selected from horizontal, lateral, vertical, oblique, transverse, or the like, or combinations thereof.


In another embodiment, one or more unit operations or modules are coupled to the conduits for performing one or more operations on the one or more articles transported within the conduits.


In another embodiment, the one or more unit operations or modules are selected from inspection, coating, quality assessment, or combinations thereof.


In another embodiment, one or more operations or modules includes an inspection operation or module comprising a sensor selected from the group of inductive, capacitive, optical, acoustic, magnetic, infra-red, X-ray, tomographic, radiographic, coating, or combinations thereof.


In another embodiment, a sensor is an inductive sensor having an inductive coil.


In another embodiment, a coil of an inductive sensor is disposed within a portal of a conduit(s) coincident with or protruding from an introduction surface of the conduit(s) thereby minimizing dead volume for articles introduced to the conduit(s).


In another embodiment, a coil of a sensor is positioned at a displacement angle with respect to a virtual axis projected through the center of the coil selected in the range from about 0 degrees to about 90 degrees for operation of the same.


In another embodiment, a vertical plane of an inductive coil is positioned at an angle relative to the vertical plane of a levitating direction selected in the range from about 0 degrees to about 90 degrees for introducing articles to a conduit(s).


In another embodiment, one or more operations or modules include an inductive sensor for measuring a conductive property of articles.


In another embodiment, one or more operations or modules includes a coating operation or module.


In another embodiment, at least one operation or module is operable for measuring a physical property of an article(s) or a layer thereof.


In another embodiment, an inspection operation(s) or module(s) includes an inductive sensor for measuring a conductive property of articles.


In another embodiment, an inspection operation(s) or module(s) includes a capacitive sensor for measuring a non-conductive property of articles.


In another embodiment, an inspection operation(s) or module(s) is operable for measuring a physical property of articles or a layer thereof.


In another embodiment, a physical property measured for an article(s) is selected from size, presence of a material, absence of a material, thickness, shape, conductance, non-conductance, dielectric constant, variances in same, or combinations thereof.


In another embodiment, a physical property measured for a layer(s) of an article(s) is selected from thickness, anisotropy, uniformity, presence of a material, absence of a material, non-conductance, conductance, dielectric constant, variances in same, or combinations thereof.


In another embodiment, a physical property measured for an article(s) is a conductive property.


In another embodiment, a physical property measured for an article(s) is a non-conductive property.


In another embodiment, a physical property measured for an article(s) and/or a layer thereof is a defect selected from layer variations, concentricity variations, uniformity variations, spatial uniformity variations, cracks, flats, or combinations thereof.


In another embodiment, articles are of a size selected in the range from about 0.1 mm to about 5 mm, or from about 0.1 mm to about 3 mm, or from about 0.3 mm to about 1 mm.


In an embodiment, the apparatus and/or method is used in a pharmaceutical production system or process.


In an embodiment, the apparatus and/or method is used in a nuclear fuel production system or process.




BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the invention will be readily obtained by reference to the following description of the accompanying drawing in which like numerals in different figures represent the same structures or elements.



FIG. 1 illustrates an apparatus of a benchscale design for separating articles, according to an embodiment of the invention.



FIG. 2
a presents a top-down whole view of a containing means, according to an embodiment of the invention.



FIG. 2
b presents a vertical cross-sectional view of a containing means, according to an embodiment of the invention.



FIG. 2
c presents a cross-sectional view of a conduit that couples to containing means for transporting articles from containing means, according to an embodiment of the invention.



FIG. 3 presents a cross-sectional view of a system including an inspection module that couples with the apparatus and/or method of the invention for inspection of TRISO fuel particles, including layers thereof, according to an embodiment of the invention.



FIG. 4 is a cross-sectional view showing layers of a typical TRISO fuel particle tested in conjunction with the invention.



FIG. 5 is a graph of fractional inductive impedance data collected for TRISO fuel particles using an inductive sensor plotted as a function of particle volume (buffer+inner pyrolytic (IPyC)+outer pyrolytic (OPyC)).



FIG. 6 is a graph of fractional inductive impedance data collected for TRISO fuel particles using an inductive sensor plotted as a function of carbon mass.



FIGS. 7
a-7b compare fractional impedance values measured for TRISO particles having a normal buffer layer thickness and particles having a thin or improper buffer layer thickness, respectively.



FIG. 8 is a graph of capacitive impedance data measured for three sets of randomly selected TRISO particles.



FIG. 9 is a graph showing data for fractional change in capacitance for TRISO fuel particles plotted as a function of total carbon volume (buffer+IPyC+OPyC). Data for reference aluminum spheres of approximately equal volume are also shown.



FIG. 10 is a graph of fractional impedance data from simultaneous measurement of TRISO fuel particles using an inductive sensor and a capacitive sensor plotted as a function of sample number.



FIG. 11 is a graph of fractional inductive impedance values for sensor plotted as a function of fractional capacitive impedance values for sensor.




TERMS

The term impedance (Z) as used herein has its customary and ordinary meaning as will be understood by those of skill in the art. Impedance (measured in Ohms) measures combined resistance (R) and reactance (X) to current flow due to presence of, e.g., inductive and/or capacitive elements. Inductive reactance is equal to [2*π*frequency (f)*inductance (L)]. Capacitive reactance is equal to [1/(2*Tr*frequency (f)*capacitance (C)].


The term fractional impedance as used herein refers to the difference in measured impedance values divided by a reference impedance, i.e., (ΔZ/Z or Z1−Z0/Z0).


The term “inductive” as used herein refers to devices and/or systems inducing electromagnetic fields in conductive materials, e.g., for detecting flaws, determining thickness, inspecting, measuring conductivity, or the like therefrom.


The term “TRISO” is an abbreviation for “tristructural isotropic” used to describe a fully coated fuel particle tested in conjunction with the invention. TRISO particles tested include three isotropic (uniform property) layers: 1) an inner pyrolytic carbon layer, 2) a silicon carbide (SiC) layer, and 3) an outer pyrolytic carbon layer covering a buffer-coated fuel kernel of, e.g., UO2, uranium oxycarbide, or (surrogate kernel) zirconium oxide (ZrO2). The term “isotropic” means a layer is independent of the axis of testing. The term “pyrolytic carbon” (or pyrocarbon) (PyC) as used herein refers to one or more layers of a TRISO or surrogate TRISO fuel particle. Pyrolytic carbon belongs to the family of turbostratic carbons having a structure wherein the layers are disordered giving the pyrolytic carbon improved durability compared to graphite. Pyrolytic Carbon layers include, e.g., inner PyC (IPyC) and outer PyC (OPyC) layers.


The term “coating” as used herein refers to a covering comprising one or more layers of the same or different materials.


DETAILED DESCRIPTION OF THE INVENTION

The invention relates generally to an article separation apparatus and method for unit operations. The term “article” as used herein is an article of manufacture of a substantially small size. Articles include, but are not limited to, e.g., microspheres, nanospheres, macrospheres, pebbles, particles, tablets, or the like of any shape, including, but not limited to, e.g., spherical, ovoid, rectangular. The invention finds application in areas including, but not limited to, e.g., material handling, manufacturing, in-process measurement and control, quality assessment and control, inspection, and in conjunction with various unit operations or modules. For example, the invention provides article handling capabilities suited for inspection and/or quality-control (QC) assessment of manufactured items, e.g., in the pharmaceutical and nuclear industries. In one exemplary QC assessment described herein (Example 1), for example, detection of articles and/or particles with unacceptable coating and/or layer thicknesses are made that may provide for (i) in-line measurements, (ii) on-process measurements and/or (iii) advanced off-line non-destructive examination (NDE) measurements for addressing quality issues. The invention may further improve QC testing of other processes involved in manufacturing. No limitations are intended. The invention is expected to find applications in the nano/micro-material nuclear, pharmaceutical, chemical, and biotechnology (e.g., in the bioseed and/or biobead) industries wherein accurate, rapid, high volume and/or high-speed measurements for assorted articles are required. Additionally, the invention is applicable for in-process measurements whereby material properties and/or physical parameters of articles and article layers can be assessed, including, e.g., uniformity, thickness, and the like. No limitations are intended. The term “layer” as used herein refers to a single thickness of a homogeneous material or substance providing a specific function and/or property to an article. Layers may comprise one or more materials in combination thus exhibiting layer patterns. For an article constructed of three (3) layers, for example, layer patterns might include, e.g., A-A-A, A-B-A, A-A-B, A-B-C, B-A-B, B-A-C, or combinations thereof, where A, B, and C represent different materials of which layers of the article are composed. Materials associated with articles and layers thereof include, but are not limited to, e.g., conductive, non-conductive, dielectric, ceramic, polymer, inorganic, organic, powdered, glass, or combinations thereof, as will be understood by those of skill in the art. No limitations are intended. Conductive materials include, e.g., metals (e.g., copper, tin), semiconductive materials, pyrolytic carbons, or combinations thereof. Dielectric materials include, but are not limited to, e.g., metal oxides, ceramics, glasses, plastics, silicon carbide, or combinations thereof. Organic materials include, but are not limited to, e.g., seeds, beans, peas, or the like, or combinations thereof. No limitations are intended.


One or more unit operations or modules may be coupled or used in conjunction with the invention thereby providing, e.g., inspection of an article, coating of an article, or another end result associated with manufacturing. Unit operations or modules include, but are not limited to, e.g., inspection, coating, quality assessment, or like operations, or combinations thereof. For example, some operations or modules provide measurement of selected physical properties (e.g., conductive or non-conductive properties) of articles including layers thereof. Other operations or modules bring about an end result or condition, e.g., coating of an article in a manufacturing process. As will be understood by those of skill in the art, operations and/or modules may further include techniques, devices, sensors, and/or associated systems for measuring and/or collecting data. No limitations are intended.


In one illustrative example, techniques and devices suitable for use in conjunction with unit operations or modules include, but are not limited to, e.g., electromagnetic, inductive, capacitive, acoustic, ultrasonic, optical, infra-red, magnetic, tomographic, topographic, radiographic, X-ray, imaging, or combinations thereof. Acoustic techniques and devices include, but are not limited to, e.g., acoustic sensors, acoustic microscopy, transmission ultrasound, pressurized gas-coupled ultrasound, backscatter ultrasound, scattering and diffuse field ultrasound, Resonant Ultrasound Spectroscopy (RUS), ultrasonic resonance, or the like, or combinations thereof. Optical techniques and devices include, but are not limited to, e.g., optical sensors, photonic, fiber optic, interferometry, laser Doppler, visible light, invisible light, time-of-flight, or combinations thereof. Infra-red techniques and devices include, but are not limited to, e.g., infra-red sensors, near infra-red, far infra-red, temperature, reflective object, or combinations thereof. Magnetic resonance and imaging sensors include, but are not limited to, e.g., handheld, field-portable, microscale, density and/or flow imaging, RF, magnetic susceptibility, planar RF, functional, nanoliter volume, cellular mass spectrometry, multiplexed, wavelet transform, spectral estimation, real-time dynamic, neural network, neuronal ensembles, micropatterned, magnetic field, speed, proximity, thickness gauge, flaw, screener, classifier, separator, magnetic thin film, or the like, or combinations thereof. No limitations are intended. Thickness gauges, for example, are used to make precise dimensional measurements on a wide variety of coatings and materials including, but not limited to, e.g., steel, plastic, glass, rubber, ceramics, paint, electroplated layers, enamels, or combinations thereof. X-ray techniques and devices include, but are not limited to, e.g., linear, hybrid, monolithic, CCDs, transistor arrays, drift detectors, wireless, digital, or the like. Electromagnetic techniques and devices include, but are not limited to, e.g., passive, active, or the like. Tomographic techniques and devices include, but are not limited to, e.g., electrical resistance, electrical texture, electrical capacitance, electrical impedance, x-ray, gamma-ray, microwave, process, reflection, transmission, or the like, or combinations thereof. Listed techniques and devices can be utilized in a wide variety of ways as will be understood by those of skill in the art, including, but not limited to, e.g., process monitoring and control, automotive examination, chemical analysis, medical imaging, material property measurements, and the like, or combinations thereof. No limitations are intended by the disclosure. All unit operations, modules, technique and/or device configurations as will be implemented by those of skill in the art are within the scope of the instant disclosure and are encompassed hereby.


An apparatus for separating articles from a group of articles will now be described in reference to FIG. 1.



FIG. 1 illustrates an apparatus 100 of a benchscale design for separating single articles 5 (e.g., particles, tablets, or other manufactured articles) from a group of articles, according to an embodiment of the invention. Apparatus 100 includes a containing means 10 for containing one or more articles (e.g., in a group of articles) therein. Containing means 10 include, but are not limited to, e.g., hoppers, feeders, funnels, enclosures, containers, magnetic bottles, chambers, conduits, piping, or the like. Containing means 10 is configured with an inlet 12 for introducing articles 5 to containing means 10 and an outlet 14. In other embodiments, containing means 10 includes one or more outlets 14 providing multiple exit paths from containing means 10. In the instant embodiment, containing means 10 further includes a levitating means 16 for suspending and transporting articles 5 within containing means 10. The term “levitating” as used herein refers to any mechanism or process whereby articles are suspended and transported, including, but not limited to, e.g., bubbling, lifting, flowing, rotating, streaming, conveying, moving, or combinations thereof. Levitating means 16 include, but are not limited to, e.g., separators, aerators, fluidizers, channels and/or channeling devices, conduits, charging devices (e.g., anti-static chargers), projecting devices, pneumatic devices, propellers, and like systems, devices, and/or components. For example, articles may be suspended within a containing means using a fluidizer in conjunction with use of a fluid (e.g., a non-conducting fluid). No limitations are intended. In the instant embodiment, levitating means 16 is a channel delivering a stream of compressed gas (e.g., air) controlled via regulator 18 from, e.g., a compressed gas source 17 generating a plume 6 of suspended articles 5 having a suitable (e.g., vertical) direction of flow or levitation within containing means 10. Plume 6 further functions to remove dust or other contaminants present in the plume 6 of suspended articles 5 from containing means 10, e.g., in conjunction with a filter or screen (not shown). Conduit 20 (e.g., induction tube, vacuum tube, pickup tube, or the like) provides an exit path for transporting of articles 5 away from containing means 10 coupling to containing means 10 through outlet 14. In the instant embodiment, conduit 20 is an induction (vacuum) tube 20 that extends horizontally [(e.g., about 1.5 inches (3.81 cm)] into containing means 10. Conduit 20 connects to a pump 25 (e.g., a vacuum pump) or other means establishing a differential pressure or vacuum therein for pulling articles 5 through conduit 20 separating articles 5 introduced thereto from a group of articles within containing means 10. Conduit 20 further includes an introduction surface 22 with a portal 24 (opening) therein through which articles enter into conduit 20. Shape of introduction surface 22 is not limited. In the instant embodiment, for example, introduction surface 22 is flat, but is not limited thereto. In another embodiment, introduction surface 22 is round. Surface 22 is further fashioned at an angle of about 45 degrees relative to a virtual axis projected along the length of conduit 20, but is not limited. Portal 24 of introduction surface 22 is positioned in containing means 10 within the plume 6 of suspended articles 5 providing optimum transfer of articles 5 introduced thereto. Portal 24 is preferably of a size permitting only a single article 5 to enter conduit 20, but again is not limited. Portal 24 is further rotated clockwise or counterclockwise about a virtual axis projected along the length of conduit 20 to an angle in the range from about 0 degrees to about 90 degrees relative to the direction of levitation provided by levitating means 16 optimizing introduction of articles 5 through portal 24. At the selected angle, agitation of articles 5 proximate portal 24 in the plume 6 of suspended articles 5 minimizes clumping or aggregation of articles 5 introduced at portal 24. Positioning and orientation of conduit 20 and/or portal 24 within containing means 10 is not limited. For example, positioning is effected by moving conduit 20 horizontally, laterally, vertically, obliquely, transversely, or the like, or combinations thereof. Selection of a suitable location for outlet 14 further optimizes positioning of conduit 20 and/or portal 24.


A collection means 21 (e.g., collection tube, collection vessel, or the like) is optionally attached to conduit(s) 20 for collecting articles transported through conduit(s) 20. Containing means 10 and conduit(s) 20 are preferably composed of insulating materials including, but not limited to, e.g., non-conductive polymers, acrylics, glasses, rubbers, and the like. No limitations are intended. In one embodiment, containing means 10 and conduit 20 are machined of acrylic for viewing articles therein, but material is not limited thereto. Articles 5 can be collected from conduits 20 introduced to containing means 10 as will be understood by those of skill in the art. No limitations are intended.



FIG. 2
a illustrates a top-down perspective view of containing means 10, showing positions for inlet 12, outlet 14, and levitating means 16, according to one embodiment of the invention. Containing means 10 is shown with articles 5 therein.



FIG. 2
b presents a vertical cross-sectional view of containing means 10, according to one embodiment of the invention. Exemplary dimensions are shown in the figure, including those for outlet 14 and levitating means 16 therein.



FIG. 2
c presents a cross-sectional view of conduit 20 for transporting articles, according to one embodiment of the invention. In the figure, conduit 20 includes introduction surface 22 (flat) with portal 24 located therein for introducing articles (described previously with reference to FIG. 1) to conduit 20.


As indicated herein, apparatus 100 may be coupled with/to one or more unit operations or modules described further with reference to FIG. 3.



FIG. 3 presents a cross-sectional view of a system 250 for inspecting particles 202, e.g., TRISO fuel particles, including layers thereof, according to an embodiment of the invention. System 250 includes a module 200 (e.g., an inspection module) coupled with/to conduit 20 for inspection of particles 202. Inspection module 200 includes first sensor means 204 and second sensor means 206 for measuring physical properties of particles 202, respectively, including layers thereof, e.g., conductive and non-conductive properties. In the instant embodiment, first sensor means 204 is an inductive sensor 204 fabricated in-house for measuring impedance of particles 202 having various layer thicknesses and layer electrical conductivities in a changing magnetic field. Sensor 204 includes an induction coil fabricated in-house consisting of 82 turns of 48-gauge (0.127 mm) copper wire, the coil having an interior diameter of approximately 0.98 mm and an outer diameter of approximately 1.2 mm. Dimensions are not limited thereto. In the instant embodiment, (inductive) surface of the coil of sensor 204 is positioned coincident with, or protruding from, the introduction surface and portal (described previously with reference to FIG. 1) thereby minimizing dead volume for articles introduced through sensor 204, but is not limited thereto. For example, coils of sensor 204 can be further positioned at displacement angles in the range from about 0 degrees to about 90 degrees with respect to a virtual axis projected through the center of the coils of sensor 204. Alternatively, the vertical plane of the coils of sensor 204 may be positioned at any angle in the range from about 0 degrees to about 90 degrees relative to the vertical plane of the portal (described previously with reference to FIG. 1). No limitations are intended.


Second sensor means 206 is a capacitance sensor 206 of a parallel (dual) plate design, each plate fabricated in-house from 20-gauge copper wire, with a non-conductive (e.g., polymer) coating applied to insulate the surface from particles 202 traversing between the sensing surfaces. Spacing between the parallel plates of second sensor means 206 depends on size of particles 202 being tested. In the instant embodiment, plate separation is selected in the range from about 0.350 mm to about 0.98 mm, but is not limited thereto. First 204 and second 206 sensor means of the instant embodiment are positioned such that particles 202 traverse coils of inductive sensor 204 at the center thereof and between the plates of capacitance (capacitive) sensor 206 positioned parallel to the flow of particles 202, but is not limited thereto. As will be understood by those of skill in the art, positioning of first 204 and second 206 sensor means within conduit 20 is not limited.


Distance between the sensing surface of sensor 204 or capacitance sensor 206 and particles 202 introduced to conduit 20 for inspection is minimized providing maximum “fill factor” for reliable impedance measurements. Fill factor is a key characteristic in evaluating sensor performance for assessing quality of an article, and is maximized by minimizing the distance between the inspecting surface of a sensor and an article being inspected for the greatest possible signal gain and/or resolution. Factors affecting the “fill factor” parameter include wire diameter, spacing, and distance to particles 202 being measured. First sensor means 204 and second sensor means 206 of inspection module 200 are co-located within conduit 20 whereby articles 202 entering conduit 20 are individually inspected. The physical geometry permits only one particle through sensor 204 or past sensor 206 at a given time providing for measurement of individual material properties by individual sensors. Currently, 300 particles 202 per minute can be measured, but is not limited thereto. Once inspected, particles 202 can be collected from conduit 20 as will be understood by those of skill in the art. No limitations are intended.


System 250 can be configured with one or more conduits 20 as described herein in reference to FIG. 1 further coupled with/to one or more modules of any type. All unit operation configurations as will be contemplated by those of skill in the art are encompassed herewith. No limitations are intended.


Control of apparatus 100, module 200 including components thereof, and data acquisition therefrom involves electronics, systems, and/or devices as will be implemented by those of skill in the art. In one embodiment, for example, measurement data from first sensor means 204 and second sensor means 206 are read using one or more measuring devices (e.g., an impedance measuring device) 208. Module 200 and measuring devices 208 can be further interfaced to a computer 210 (e.g., a PC) or programmable device controller(s) or like devices and/or systems for control and/or operation of the same as well as collection, storage, and/or manipulation of measurement data. In another illustrative example, positioning of, e.g., the inductive coil of sensor 204 may be remotely effected and controlled using a motor (e.g., servos or like devices) coupled to computer 210. In addition, timing of sensor measurements may include optical sensing and triggering or manipulation (e.g., increasing) of the sampling frequency to allow collection of measurements for articles 202 centered in the selected sensors, e.g., sensors 204 or 206.


As will be further understood by those of skill in the art, the invention may used in conjunction with additional components, vessels, and/or devices. For example, systems and/or devices for pumping, transferring, delivering, mixing, pressurizing, heating, and/or storing fluids, gases, and/or reagents, may be used. In addition the invention may be used in conjunction with other devices for automated collection and handling of articles. Further, the invention can be coupled to many and varied systems and processes employed in the manufacture of articles, e.g., material deposition whereby layers or coatings are applied. Thus, all processes and/or systems for handling and/or preparing articles are within the scope of the invention. No limitations are intended.


The invention can detect various defects. Defects include, but are not limited to, e.g., non-uniform layers, irregular shaped particles, thin layers, missing layers, thickness variations, size variations, and other microstructure variations among defective particles, including, e.g., radial cracking, disbanding between layers, density discrepancies. No limitations are intended. For example, defects most important to detect and characterize for fuel particles include, but are not limited to, e.g., missing buffer coating, heavy metal contamination, defective SiC, spatial defects penetrating the SiC layer, grain size and structure, free silicon or free carbon, structural flaws, impurities, thickness, anisotropy.


The description is further not intended to be limiting to types of particles, sizes, and/or parameters that can be inspected and/or measured. For example, inspection of particles in the micro- or nano-range can be done with appropriate air flows and equipment or device scaling. Further, physical parameters and/or properties can be measured for larger articles, including, but not limited to, e.g., tablets, pellets, and/or pharmaceuticals including various layers thereof.



FIG. 4 is a cross-sectional view showing layers of a typical TRISO fuel particle 202 tested in conjunction with the invention. Layers include a kernel 402 composed of, e.g., depleted uranium dioxide (DUO2), natural uranium oxycarbide (NUCO), uranium dioxide (UO2), or zirconium dioxide (ZrO2); a buffer layer of porous carbon 404; an inner layer of pyrolytic carbon (IPyC) 406; a layer of Silicon Carbide (SiC) 408; and an outer layer of pyrolytic carbon (OPyC) 410. TRISO and surrogate TRISO particles have diameters typically in the range from about 0.3 mm to about 1.0 mm, but are not limited thereto. Surrogate TRISO particles include a kernel 402 of ZrO2 or other metal oxide.


Physical Properties and Quality Assessment

Table 1 lists material properties and layer thickness data for TRISO particles 202 with a surrogate kernel (e.g., ZrO2) 402 described herein.

TABLE 1Representative Material Properties of Surrogate TRISO Particles.Thickness/DensityLame constantLame constantDiameterρ(gm/cc)λ (GPa)μ(GPa)(μm)ZrO2 kernel5.7128.1976.35500Porous carbon0.9723.3465buffer layerIPyC layer1.8755.510.535SiC layer3.197719935OPyC Layer1.8255.510.540


For TRISO particles 202 tested, particle flaws and/or properties known to degrade fuel performance can be compiled. Properties and data for particles deemed to result in optimal fuel performance can also be compiled. Standard statistical analyses may then be used to compile and refine properties (e.g., for kernel diameter, coating layer thickness and spatial uniformity) suited for use in assessing quality or performance of individual articles in batches of, e.g., 30 to 40 articles or more. Results constitute a defect library of characterized particles that can be used to calibrate any nondestructive measurement method for automatic detection of particles having properties outside a specified range. No limitations are intended.


A difficulty in obtaining relevant information from modeling is the large number of unknown electrical properties of various layers of an article, e.g., electrical conductivity. These difficulties can be overcome by investigating particles having a single layer of a material of interest, e.g., a kernel 402 covered with, e.g., buffer 404, PyC (406 and/or 410) or SiC 408. In this approach, instead of working with the fully coated TRISO, only kernel 402 with a single layer is investigated. This approach makes it possible to solve equations having the same number of unknown parameters as the number of measurable parameters. Further, this approach reduces the number of parameters being investigated simultaneously, for each measurement technique, at any one time. Once the NDE measurement sensitivity to the properties of a single-layer is understood then the combined effects from each layer in the full TRISO are easier to deconvolute. A second approach is to use reasonable approximations for any unknown parameters and then use several different characterized particle measurements to adjust the quality assessment model to fit the measurements. The next step is to establish signatures for each flaw type of interest expected to affect particle fuel performance.


The following examples detail the testing of these various modalities and are intended to promote a further understanding of the present invention. Example 1 describes results obtained from inductive response methods to particle defects, as measured by deviations from a specified benchmark or “ideal” particle. Example 2 details results obtained using system 250 configured with inspection module 200 that includes a capacitive sensor 206 for measuring physical properties of a TRISO fuel particle 202. Example 3 details results obtained using system 250 configured with inspection module 200 including an inductive sensor 204 and a capacitive sensor 206 for measuring physical properties of surrogate TRISO fuel particles 202, as described herein.


EXAMPLE 1
Inspection Results from Testing of TRISO Fuel Particles (Inductive Impedance Data)

Example 1 describes results obtained from inspection of TRISO fuel particles using an inductive sensor.


Experimental. Fully coated (normal) TRISO fuel particles 202 [both (NUCO kernel) and surrogate (ZrO2 kernel)] were inspected using system 250 as described herein configured with inspection module 200 that included an inductive sensor 204. Normalized fractional inductive impedance data are presented in FIG. 5 and FIG. 6 as a function of pyrolytic carbon volume (cc) and carbon mass (g), respectively. Impedance values were also measured for normal TRISO particles 202 with a buffer layer of a typical thickness (101.2 μm) and for TRISO particles 202 having a thin or improper buffer layer thickness (18.5 μm). FIG. 7a and FIG. 7b compare fractional impedance values measured for the normal and defective particles 202, respectively.


Results. In FIG. 5 and FIG. 6, fractional inductive impedance change is plotted against total pyrolytic carbon volume [e.g., volume of porous carbon buffer layer (buffer)+volume of inner pyrolytic carbon layer (IPyC)+volume of outer pyrolytic carbon layer (OPyC)] and carbon mass, respectively. The correlation coefficient for fractional inductive impedance change vs. pyrocarbon volume is 0.908 and the correlation coefficient for fractional inductive impedance change vs. pyrocarbon mass is 0.964. Data show a high degree of correlation to both pyrocarbon volume as well as mass. Data are further distinguished by particle type (e.g., NUCO vs. Surrogate).



FIGS. 7
a and 7b compare fractional impedance values for normal TRISO particles 202 with a normal buffer thickness (101.2 μm) and TRISO particles 202 having a thin or improper buffer layer thickness (18.5 μm), respectively. In FIG. 7a, fractional impedance values for normal particles 202 tested were in the range from about 0.2 to about 0.4. In FIG. 7b, particles 202 with the defective buffer exhibited impedance values in the range from about 0.08 to about 0.16, with a majority of particles 202 having impedance values more particularly in the range from about 0.08 to about 0.12. Differences in impedance values for the two classes of particles 202 are clearly sufficient to distinguish between normal and defective particles 202 for quality-control or assessment purposes.


EXAMPLE 2
Inspection Results from Testing of TRISO Fuel Particles (Capacitive Impedance Data)

Example 2 details results obtained using system 250 configured with inspection module 200 that includes a capacitive sensor 206 for measuring physical properties of a TRISO fuel particle 202.


Experimental. TRISO fuel particles 202 from three different coating runs were inspected using system 250 configured with inspection module 200 that included a capacitive sensor 206. Set 1 consisted of fully coated TRISO particles 202. Set 2 consisted of particles 202 with a missing SiC layer. Set 3 consisted of particles 202 with a thin SiC layer. By measuring voltage and current flow across the plates it was possible to determine change in capacitance and capacitive impedance due to presence of TRISO particles 202 passed between plates of sensor 206. FIG. 8 plots fractional capacitive impedance results for particles 202 from the three different coating runs. FIG. 9 plots fractional capacitive change for TRISO fuel particles 202 and for aluminum spheres plotted as a function of volume.


Results. FIG. 8 is a plot showing of capacitive impedance for TRISO particles 202 measured from the three coater runs. In the figure, data from each coater run are clearly distinguished. For example, fully coated TRISO particles 202 (set 1) have higher impedance values compared to those with no SiC layer (set 2) and thin SiC layer (set 3). While variations in kernel size can cause significant capacitive impedance variations for a given coating run, results obtained herein indicate it is possible to detect differences in layer thickness, as evidenced for the SiC layer thickness. Such differences can be exploited to distinguish between various particles 202 inspected. In particular, results show potential for detecting and differentiating normal, thin layer, and/or missing layer TRISO fuel particles 202 at speeds necessary for 100 percent inspection of particles in various batches or production runs.



FIG. 9 is a graph showing fractional change in capacitance for TRISO fuel particles 202 plotted as a function of total carbon volume (buffer+IPyC+OPyC); data for reference aluminum spheres of approximately equal volume are also shown. Fractional change in capacitance, (Cf), is given by equation 1:

Cf=(C−C0)/C0  [1]


where C and C0 are, respectively, the capacitance with and without particle 202 present. The curve in FIG. 9 represents a fill-factor function describing the increase in capacitance as the air gap between plates (electrodes) of capacitive sensor 206 are filled by a conductive material of increasing volume. If the outer layer of a particle 202 is even slightly conductive (even the assumed conductivity of SiC, 100 S/m, is sufficient), charges distribute themselves on its surface to form an equipotential surface. Additional charges are required on the electrode surfaces to support the increased voltage gradient in the spaces between particle 202 and electrodes. This increases capacitance, as given by equation [2]:

C=Q/V  [2]


where Q is the charge and V is the fixed voltage between the electrodes. For particles 202 passing between parallel plates of capacitive sensor 206, capacitance (C) is given by equation [3]:

C=κ*ε0*A/d  [3]


where κ is the dielectric constant of a material between the plate (e.g., air, articles, or etc.), ε0 is the permittivity of free space, A is the surface area of each electrode, and d is the distance between the electrodes.


Results show measured fractional capacitance change values correlate well with the total volume of particles 202. In FIG. 9, this is demonstrated by the fact that values measured for aluminum spheres lie on the same curve as values measured for fully coated and improperly coated TRISO particles 202 having nearly identical volumes. Capacitive sensor 206 is suitable for detecting differences in, or inspecting, articles 5 with different volumes.


EXAMPLE 3
Inspection Results from Testing of TRISO Fuel Particles (Combined Inductive & Capacitive Impedance Data)

Example 3 details results obtained using system 250 configured with an inspection module 200 including an inductive sensor 204 and a capacitive sensor 206 for measuring physical properties of surrogate TRISO fuel particles 202, as described herein.


Experimental. Fully coated TRISO fuel particles 202 were inspected using both inductive sensor 204 and capacitive sensor 206 and impedance data collected. Data are plotted in FIGS. 10 and 11.


Results. FIG. 10 is a plot of fractional impedance values for sensor 204 and 206 as a function of sample number. Also plotted are the differences between sensor fractional impedance values (ΔZ for inductive and capacitive values). Particles with a full coating but with a thin buffer were also examined using the dual sensor measurement method. FIG. 10 plots measurement results showing the fractional impedance and the fractional impedance difference between the capacitive and inductive sensors. Results show the inductive impedance is less than the capacitive impedance. Reduction in inductive impedance is attributed to less conductive material being present and interacting with the coil of sensor 204.



FIG. 11 is a plot of fractional inductive impedance values collected using sensor 204 plotted as a function of fractional capacitive impedance values for sensor 206. Results show a high degree of correlation (R2=0.959) between the measured values, indicating that both sensors 204 and 206 are sensitive to effects caused by the same physical property. The kernel diameter is the most widely varying parameter for particles 202 tested. Kernel diameter can have a significant effect on volume of all layers applied in a coating run at a required thickness. Thickness variation in any single layer coating can also affect volume of all successive layers, but typically, individual layers do not vary in thickness as much as the kernel diameter.


While the preferred embodiments of the present invention have been shown and described, it will be apparent to those skilled in the art that many changes and modifications may be made without departing from the invention in its true scope and broader aspects. The appended claims are therefore intended to cover all such changes and modifications as fall within the spirit and scope of the invention.

Claims
  • 1. An apparatus for separating single articles from a group of articles, comprising: a containing means for containing one or more articles defining a group of articles, said containing means comprising an inlet for introducing said articles into said containing means and one or more outlets; a levitating means for levitating said one or more articles in said group of articles in a direction within said containing means whereby articles in said group of articles are introduced to said one or more outlets; one or more conduits operatively coupled to said one or more outlets for transporting single articles away from said group of articles via differential pressure; and whereby single articles are separated from said group of articles.
  • 2. An apparatus of claim 1, wherein said conduits are selected from the group consisting of induction tube, vacuum tube, pick-up tube, or the like, or combinations thereof.
  • 3. An apparatus of claim 1, wherein said containing means is selected from the group consisting of hoppers, feeders, funnels, enclosures, containers, magnetic bottles, chambers, conduits, piping, or the like, or combinations thereof.
  • 4. An apparatus of claim 1, wherein said levitating means is a fluidizer used in conjunction with a non-conducting fluid for levitating said articles within said containing means.
  • 5. An apparatus of claim 1, wherein said conduits comprise a portal for introducing articles thereto, said conduits being positioned within a volume of said containing means traversed by said one or more articles levitated by said levitating means, whereby agitation of said articles proximate said portal within said volume minimizes clumping or aggregation of said articles thereat facilitating introduction of single articles thereto.
  • 6. An apparatus of claim 5, wherein said portal is located on an introduction surface of said conduits, said surface having a shape selected from flat or round.
  • 7. An apparatus of claim 5, wherein positioning of said conduits and/or said portal includes an angle of rotation selected with respect to a virtual axis projected along the length of said conduits and/or said portal in the range from about 0 degrees to about 90 degrees clockwise or counterclockwise relative to a direction of levitation by said levitating means.
  • 8. An apparatus of claim 5, wherein positioning of said portal comprises a movement of said conduits within said volume of said containing means selected from horizontal, lateral, vertical, oblique, transverse, or the like, or combinations thereof.
  • 9. An apparatus of claim 1, further comprising one or more unit operations or modules operatively coupled to said conduits for performing one or more operations on said one or more articles transported within said conduits.
  • 10. An apparatus of claim 9, wherein said one or more unit operations or modules are selected from the group consisting of inspection, coating, quality assessment, or combinations thereof.
  • 11. An apparatus of claim 10, wherein said one or more operations or modules includes an inspection operation or module comprising a sensor selected from the group consisting of inductive, capacitive, optical, acoustic, magnetic, infra-red, X-ray, tomographic, radiographic, coating, or combinations thereof.
  • 12. An apparatus of claim 11, wherein said sensor is an inductive sensor having an inductive coil.
  • 13. An apparatus of claim 12, wherein said coil of said sensor is disposed within a portal of said conduits coincident with or protruding from an introduction surface of said conduits thereby minimizing dead volume for articles introduced to said conduits.
  • 14. An apparatus of claim 12, wherein said coil of said sensor is positioned at a displacement angle with respect to a virtual axis projected through the center of said coil selected in the range from about 0 degrees to about 90 degrees for operation of same.
  • 15. An apparatus of claim 12, wherein the vertical plane of said coil is positioned at an angle relative to the vertical plane of a levitating direction selected in the range from about 0 degrees to about 90 degrees for introducing articles to said conduits.
  • 16. An apparatus of claim 10, wherein said operations or modules include an inductive sensor for measuring a conductive property of said articles.
  • 17. An apparatus of claim 10, wherein said inspection operations or modules comprise a capacitive sensor for measuring a non-conductive property of said articles.
  • 18. An apparatus of claim 10, wherein said inspection modules are operable for measuring a physical property of said articles or a layer thereof.
  • 19. An apparatus of claim 18, wherein said physical property measured for said articles is selected from the group consisting of size, presence of a material, absence of a material, thickness, shape, conductance, non-conductance, dielectric constant, variances in same, or combinations thereof.
  • 20. An apparatus of claim 18, wherein said physical property measured for said layer of said articles is selected from the group consisting of thickness, anisotropy, uniformity, presence of a material, absence of a material, non-conductance, conductance, dielectric constant, variances in same, or combinations thereof.
  • 21. An apparatus of claim 18, wherein said physical property of said articles is a conductive property.
  • 22. An apparatus of claim 18, wherein said physical property of said articles is a non-conductive property.
  • 23. An apparatus of claim 18, wherein said physical property of said articles and/or a layer thereof is a defect selected from the group consisting of layer variations, concentricity variations, uniformity variations, spatial uniformity variations, cracks, flats, or combinations thereof.
  • 24. An apparatus of claim 9, wherein at least one of said one or more operations or modules is operable for measuring a physical property of said articles or a layer thereof.
  • 25. An apparatus of claim 9, wherein said one or more operations or modules includes an inspection operation or module.
  • 26. An apparatus of claim 9, wherein said one or more operations or modules includes a coating operation or module.
  • 27. An apparatus of claim 1, wherein said articles are of a size selected in the range from about 0.1 mm to about 5 mm, or from about 0.1 mm to about 3 mm, or from about 0.3 mm to about 1 mm.
  • 28. A process for separating single articles from a group of articles, comprising the steps: providing a containing means for containing one or more articles defining a group of articles, said containing means comprising: i. an inlet for introducing said articles into said containing means and one or more outlets; ii. a levitating means for levitating said one or more articles in said group of articles in a direction within said containing means whereby articles in said group of articles are introduced to said one or more outlets; iii. one or more conduits operatively coupled to said one or more outlets for transporting single articles away from said group of particles via differential pressure; and whereby single articles are separated from said group of articles.
  • 29. A process of claim 28, wherein said conduits are selected from the group consisting of induction tube, vacuum tube, pick-up tube, or combinations thereof.
  • 30. A process of claim 28, wherein said containing means is selected from the group consisting of hoppers, feeders, funnels, enclosures, containers, magnetic bottles, chambers, conduits, piping, or the like, or combinations thereof.
  • 31. A process of claim 28, wherein said levitating means is a fluidizer used in conjunction with a non-conducting fluid for levitating said articles within said containing means.
  • 32. A process of claim 28, wherein said conduits comprise a portal for introducing articles thereto, said conduits being positioned within a volume of said containing means traversed by said one or more articles levitated by said levitating means, whereby agitation of said articles proximate said portal within said volume minimizes clumping or aggregation of said articles thereat facilitating introduction of single articles thereto.
  • 33. A process of claim 32, wherein said portal is located on an introduction surface of said conduits, said surface having a shape selected from flat or round.
  • 34. A process of claim 32, wherein positioning of said conduits and/or said portal includes an angle of rotation selected with respect to a virtual axis projected along the length of said conduits and/or said portal in the range from about 0 degrees to about 90 degrees clockwise or counterclockwise relative to a direction of levitation by said levitating means.
  • 35. A process of claim 32, wherein positioning of said portal comprises a movement of said conduits within said volume of said containing means selected from horizontal, lateral, vertical, oblique, transverse, or the like, or combinations thereof.
  • 36. A process of claim 28, further comprising one or more unit operations or modules operatively coupled to said conduits for performing one or more operations on said one or more articles transported within said conduits.
  • 37. A process of claim 36, wherein said one or more operations or modules are selected from the group consisting of inspection, coating, quality assessment, or combinations thereof.
  • 38. A process of claim 37, wherein said operations or modules include an inspection operation or module comprising a sensor selected from the group consisting of inductive, capacitive, optical, acoustic, magnetic, infra-red, X-ray, tomographic, radiographic, coating, or combinations thereof.
  • 39. A process of claim 38, wherein said sensor is an inductive sensor having an inductive coil.
  • 40. A process of claim 39, wherein said coil of said sensor is disposed within a portal of said conduits coincident with or protruding from an introduction surface of said conduits thereby minimizing dead volume for articles introduced to said conduits.
  • 41. A process of claim 39, wherein said coil of said sensor is positioned at a displacement angle with respect to a virtual axis projected through the center of said coil selected in the range from about 0 degrees to about 90 degrees for operation of the same.
  • 42. A process of claim 39, wherein the vertical plane of said coil is positioned at an angle relative to the vertical plane of a levitating direction selected in the range from about 0 degrees to about 90 degrees for introducing articles to said conduits.
  • 43. A process of claim 37, wherein said operations or modules comprise an inductive sensor for measuring a conductive property of said articles.
  • 44. A process of claim 37, wherein said inspection operations or modules comprise a capacitive sensor for measuring a non-conductive property of said articles.
  • 45. A process of claim 37, wherein said inspection module is operable for measuring a physical property of said articles or a layer thereof.
  • 46. A process of claim 37, wherein at least one of said one or more operations or modules is operable for measuring a physical property of said articles or a layer thereof.
  • 47. A process of claim 46, wherein said physical property measured for said layer of said articles is selected from the group consisting of thickness, anisotropy, uniformity, presence of a material, absence of a material, non-conductance, conductance, dielectric constant, variances in same, or combinations thereof.
  • 48. A process of claim 46, wherein said physical property of said articles is a conductive property.
  • 49. A process of claim 46, wherein said physical property of said articles is a non-conductive property.
  • 50. A process of claim 46, wherein said physical property of said articles and/or a layer thereof is a defect selected from the group consisting of layer variations, concentricity variations, uniformity variations, spatial uniformity variations, cracks, flats, or combinations thereof.
  • 51. A process of claim 36, wherein said one or more operations or modules include an inspection operation or module.
  • 52. A process of claim 36, wherein said one or more operations or modules includes a coating operation or module.
  • 53. A process of claim 28, wherein said articles are of a size selected in the range from about 0.1 mm to about 5 mm, or from about 0.1 mm to about 3 mm, or from about 0.3 mm to about 1 mm.
Government Interests

This invention was made with Government support under Contract DE-AC05-76RLO1830 awarded by the U.S. Department of Energy. The Government has certain rights in the invention.