This invention concerns a method and apparatus for simultaneously cutting several articles into parallel slices, discarding the ends of the articles, gathering the intermediate slices from the several articles together in an accumulation of articles, and depositing the articles in an awaiting shipping tray. An example of the invention is a method and apparatus for the slicing of fruits and vegetables, such as ripe tomatoes, with such gentle care as to reduce the bruising and loss of gel and seed from the slices of tomatoes.
When a restaurant is to serve sliced food items, such as sliced tomatoes, a substantial amount of preparation time would be required at the restaurant to slice and otherwise prepare the sliced products. After the food products are purchased and delivered to the restaurant, typically they would have to be cleaned, sliced, and made available for placement on the salad, sandwich, or other menu item. It is somewhat difficult for the person slicing the food items to prepare slices of uniform width and consistency and there is a substantial amount of waste because of improper slicing, etc. and the potential for cross contamination in the restaurant.
In the instance of fast food restaurant chains, the owners of the restaurant chain usually desire to present a uniform food product, such as hamburgers of uniform size, appearance and taste, with sliced tomatoes applied to the hamburgers, and with the hamburgers and all of the ingredients being substantially identical from one restaurant to another. It has become important that tomatoes, in particular, be sliced to a desired thickness when placed on sandwiches, salads, etc. of a restaurant of a chain of fast food restaurants. This provides the customer with confidence that the food products will be uniform from one restaurant to the other within the chain of restaurants. Accordingly, restaurant managers now prefer to receive food items in proper condition for placement on a sandwich, salad, etc., for immediate service to the customer without preparation steps such as slicing the food products.
Some restaurant and fast food sandwich chains are sourcing pre-sliced tomatoes for their high volume sandwich businesses. Suppliers of pre-sliced tomatoes need to develop methods of slicing and packaging of the sliced tomatoes that will optimize quality of the product when delivered via the distribution systems to the individual stores. The volumes involved dictate that a degree of automation needs to be introduced to the slicing process. Slicing of tomatoes by machine improves production capacity over hand slicing. However, it can significantly affect the initial quality of the tomato slices as well as their ultimate quality when placed on the sandwich. Uneven slices might result from the use of certain slicers that cut individual slices off of a column of tomatoes fed from above to a rotating blade. Such slices become wedge-shaped from the pressure applied by the blade to the side of the tomatoes. These slices normally drop from the slicer onto a moving belt and are hand-collected and assembled into a package tray. It is established that uneven slices lead to loss of a high proportion of the seed and gel component of the slices, hereinafter referred to as the liquid portion. The quality of the slice at the end of shelf-life is demonstrably inferior to processes where the slices are uniform in thickness.
A commonly used slicer has a circular or S-shaped blade that rotates and cuts slices one at a time. These blades have a thickness in the non-cutting part of the blade that creates pressure on the tissue of the tomato as it forces its way to complete the slice. The thick S-shaped knives bend the slices as they cut them, causing a condition known as feathering that causes cracks and damage to the fragile slices and increases purge of the moisture from the tomato. Thin, serrated edge blades on the other hand, do less damage to the tomato while having the potential to cut even slices.
Manual handling of slices of tomatoes, such as outlined above, adds to potential public health issues from contamination and adds to bruising and liquid loss.
Dropping of slices of tomatoes, whether onto a moving belt as explained above or from a slicing process that slices a whole tomato vertically and drops it into a collection device, usually leads to bruising of the slices and can increase loss of the liquid portion of the slices. Bruising leads to the development of “translucency” in the slices, can accelerate deterioration in quality, and this may adversely affect the taste and texture of the slices.
It is therefore desirable that the design and operation of a tomato slicer take into consideration the delicate nature of the tomato and the importance of minimizing the impact of the slicer on the tomato slices.
Various prior art slicing machines have been developed for the purpose of slicing food products. It is desirable that slicers of articles such as tomatoes function rapidly, uniformly, efficiently, and with enough gentle care to not damage the food products, and with the ability to deliver the food products in a handy, attractive condition. For example, it is desirable that tomatoes be sliced and packaged with such gentle care that the liquid portions of the tomatoes are substantially maintained in the tomato slices, not exuded from the tomatoes, and that the circular shape of the perimeter of the tomatoes be maintained without any objectionable bruising or other damage.
By cutting tomatoes in slices of uniform thickness using a fixed blade slicer with all of the cutting blades at one time, a force is applied by the cutting blades to the tomatoes, tending to squeeze or otherwise collapse the tomatoes during the slicing function. In addition, there usually is a phase in the slicing and packaging operation where the sliced tomatoes are dropped from one operation toward another operation during which there is a hazard that the tomato slices will loose some of their liquid portions and that the slices will become tilted or otherwise misaligned with one another, creating non-uniformity of the product in the shipping tray or other package of sliced tomatoes.
For some food items to be sliced, there is a need to discard the end slices such as the opposite ends of tomatoes since the end slices usually are not acceptable for use in the sandwiches, salads, etc., but may be used for other purposes. Capturing the ends on a conveyor makes it easy to either discard them or convey them to a dicer or other alternative use.
The prior art includes U.K. Patent Specification 600,131 dated Sep. 28, 1945 that discloses a slicer that would push potatoes through parallel cutter wires to form the potatoes into a pair of end slices and a plurality of intermediate slices of uniform thickness. The end slices are to be collected separately from the intermediate slices.
U.S. Pat. No. 6,799,496 discloses a slicing device similar to the U.K. potato slicer that would simultaneously push a plurality of tomatoes through parallel reciprocating cutter blades.
These and other prior art slicers function to slice articles such as tomatoes and possibly other similar edible products into slices of uniform thickness as might be desired by most restaurants.
One of the problems with the known prior art slicers is that some tomatoes are so delicate that the slicing, delivery and packing of the tomatoes tends to damage the tomatoes by expelling the liquid portions of the tomatoes from the slices and bruise the tomatoes. Another problem is that the prior art slicers appear to be limited to cutting products of a small range of sizes that tends to limit the sizes of products that can be successfully processed by the slicer. Yet another problem of the prior art is that because the cutter blades of the slicer reciprocate during the cutting of the articles, a relatively long span of the cutter blades must be available for the cutting function and the supports for the blades are so far apart that the blades tend to bend or twist during the cutting function. Also, there is a hazard that the blades are so long that they tend to flex and the fins of the pusher that pass between the blades while pushing the tomatoes will inadvertently engage and damage the blades.
Another problem with the prior art slicers is maintaining the surfaces of the slicers that have intimate contact with the tomato, etc., free of the residue of the tomatoes.
This invention provides the steps of expediently cutting, gathering, and delivering slices of articles, including tomatoes, in such a way as to reduce the hazard of deterioration of the slices, such as reducing the amount of liquid loss from the slices and reducing the bruising of the slices, and is useful for performing these functions over a larger size range of articles. This invention addresses the problems described above.
Briefly described, the article slicing method and apparatus that is disclosed herein provides for improvements to the prior art in the various phases of article slicing, gathering and delivery of the sliced articles. The method and apparatus may be used for the gentle and expedient movement of tomatoes through cutter blades, separating the end slices from the intermediate slices, and then the movement of the intermediate slices from the slicing function to a transfer plate, then gathering the intermediate slices in edge standing attitudes on the transfer plate, and delivering the sliced tomatoes with the transfer plate to a shipping tray or other container, with the tomato slices received in the container in an edge standing, orderly, aligned relationship with one another.
Other aspects, collectively or independently, include a method of cutting articles of fruit and the like into an accumulation of multiple parallel slices by placing a plurality of the articles in position on parallel cutter blades with the axes of the articles transverse to the cutter blades, simultaneously pushing the plurality of articles through the cutter blades, and as the articles are pushed through the cutter blades, moving the cutter blades and cutting the articles into parallel slices with each article being sliced into opposed end slices and intermediate slices, separating the opposed end slices of each article from its intermediate slices, depositing the intermediate slices on a transfer plate with the slices oriented in an edge standing attitude, guiding the intermediate slices as they are being deposited on the transfer plate to avoid the intermediate slices of each article from separating and from tilting toward horizontal attitudes when deposited on the transfer plate, gathering the intermediate slices of the plurality of articles on the transfer plate into an accumulation of parallel intermediate slices on the transfer plate with the slices edge standing, moving the transfer plate and the gathered intermediate slices on the transfer plate into juxtaposition above a shipping tray, depositing the gathered slices from the transfer plate to the shipping tray with the slices gathered and oriented vertically, and indexing the shipping tray away from the transfer plate.
Another improvement in the art is the use of a positioning plate that is installed over the parallel cutter blades of the slicer. The positioning plate has a plurality of positioning openings therein for receiving tomatoes. The positioning openings are oval shaped and are larger in breadth than the tomatoes that are to be received therein but small enough to locate each tomato directly on the cutter blades below. The shape of the positioning openings tends to orient the tomatoes in the openings with the longitudinal axis of each tomato transverse to the planes of the cutter blades. Since the sizes of the positioning openings may be larger than the tomatoes, the pushers that urge the tomatoes down through the blades do not have to overcome the resistance of a support device that holds the tomatoes away from the blades. And squeezing or otherwise damaging the tomatoes as they pass through the positioning openings may be avoided.
Another improvement is the adjustability of the positioning plate with respect to the cutter blades of the slicer. When the tomatoes to be sliced have a larger stem and recess about the stem, it is desirable to move the first cutter blade with respect to the positioning plate so as to cut a larger end portion from the tomatoes. Accordingly, the positioning plate is laterally adjustable with respect to the cutter blades so as to reposition its openings so that the stems of the tomatoes are located to a position where more or less of the ends of the tomatoes are sliced away. Thus, the positioning plate includes lateral adjustment means that can be utilized during the operation of the machine to increase or decrease the end cuts of the tomatoes.
The apparatus includes a plurality of parallel cutter blades spaced from one another for cutting the articles into slices. The articles, such as tomatoes, are placed on and are supported by the blades. Alternate ones of the cutter blades move in opposite directions and the cutter blades may be oscillated in arcuate motions along their lengths during the cycle of cutting the articles to enhance the cutting function, and article pushers are used to push the tomatoes through the moving blades.
An article pusher is used for each article to be cut, and each article pusher may include a plurality of pusher fins sized and shaped to move between the cutter blades to assure that the slices are pushed through and beyond the cutter blades. Blade guides maintain the cutter blades in their proper orientation as the blades move.
To begin the cutting cycle, the article pushers are located in the loading position that is laterally spaced from over the article openings of the loading plate so that the articles may be easily placed in the openings of the loading plate. The articles such as tomatoes are placed in the article openings directly on the cutter blades and the article pushers move first from the loading position spaced laterally away from over the cutter blades to a position aligned over the articles on the cutter blades. Each pusher then moves downwardly into engagement with the articles resting on the cutter blades to push the articles gently through the cutter blades. The pushers may be configured to extend downwardly between the cutter blades, thereby pushing the articles on through the blades. This would result in positively moving all slices of the articles through and beyond the cutter blades. The article pushers are then retracted vertically back up through the cutter blades and are moved laterally back to the original positions where they are out of the way for loading the next batch of articles in the positioning plate.
This L-shaped movement of the pushers increases the time in which access can be made to the openings of the positioning plate so that a pick and placer or other loading device can have an early start of its movement of the uncut articles toward the openings of the positioning plate. During the time the pushers are being retracted laterally to move them to their loading position the pick and placer begins its loading cycle. The pick and placer can retract from over the article openings of the loading plate as the article pushers move from their laterally retracted position to the vertical position over the uncut articles now resting on the cutter blades. These coordinated movements significantly reduce the time in which the pick and placer is inactive, thereby increasing the volume of through-put of the slicer approximately fifteen percent (15%) over the time for vertical movement of the article pushers.
The faces of the fins of the article pushers may be contoured so as to present an array of fin ends that together form a concave pushing surface to the articles, tending to stabilize the positions of the articles as the articles are urged downwardly through the cutter blades.
If desired, the cutter blades can be arranged with their cutting edges also presenting an array of cutting edges that form concave recesses for the purpose of stabilizing the articles as the articles are being cut.
Another optional feature of the invention is the fluid delivery means that is positioned in the slicer to apply fluid to the fins of the article pusher and to the cutter blades and to the surrounding surfaces so as to reduce the accumulation of residue from the tomatoes on these parts of the slicer. The fluid delivery means may be utilized to apply gas or liquid to the surfaces of the slicer as the articles are processed along the path through the slicer. For example, the fluid being dispensed may be a gas or a liquid, or a combination gas and liquid, and may include an antimicrobial or other additive that tends to sanitize the surfaces of the slicer. Also, the fluid delivery means may apply fluid to the tomatoes as the tomatoes pass through the slicer, or to the surfaces of the sliced tomatoes after they have been sliced and gathered.
A transfer plate may be positioned beneath the cutter blades a short distance for receiving the sliced articles from the cutter blades substantially without allowing the slices to drop from the cutter blades. This provides for a gentle transfer of the slices, thereby helping to preserve the liquid matter in the tomato slices and tending to avoid bruising of the tomato slices.
Gathering members may be used to gather the intermediate slices of tomatoes. They are positioned at the ends of the transfer plate, and when the slices of the articles are received on the transfer plate the gathering members move toward the center of the transfer plate so as to gently slide the slices together on the transfer plate while still in their edge standing attitude. The gathering of tomatoes in this manner tends to maintain the tomatoes in their upright edge-standing attitudes even after the gathering members are retracted away from the now gathered tomato slices.
Another feature of the apparatus is the movement of the intermediate slices that have been gathered to a shipping tray. A transfer plate that is movable from a position where it receives the tomato slices from the cutter to a lower position juxtaposed the top of a shipping tray for receiving and transporting the intermediate slices of tomatoes. The movement of the transfer plate in this manner tends to reduce the distance of the drops of the tomatoes from the cutting function to the transfer plate and from the transfer plate into the shipping tray, further preserving the liquid in the tomato slices.
Another feature of the slicer is the removal of the ends of the tomatoes during the slicing operation. The tomatoes are placed on the cutter blades with the longitudinal axes of the tomatoes extending transversely with respect to the parallel cutter blades, so that the stem end and heel end of the tomatoes are cut away from the intermediate slices of the tomatoes. Receptacles are provided for the ends of the tomatoes, whereupon the ends of the tomatoes can be discarded or used for other purposes and the intermediate slices are retained. The receptacles of the end slices of the tomatoes are shaped and positioned to provide a guide surface against which the adjacent intermediate slices of the tomatoes can bear in the event of tilting or other lateral movement of the tomato slices as they are moved from the cutter blades to the awaiting transfer plate.
Some of the foregoing features are disclosed in our co-pending application Ser. No. 10/943,385, which is incorporated herein in its entirety by reference.
Accordingly, it is an object of this invention to provide an improved method and apparatus for slicing articles of food, such as tomatoes, into slices of predetermined thickness.
It is another object of this invention to provide an improved method and apparatus that delivers several sliced articles to one shipping tray or other container, preferably with the slices of all the articles arranged in parallel edge standing attitude and in face-to-face contact with one another.
It is another object of this invention to provide improved methods and apparatuses that expediently, accurately and gently cut food articles, such as tomatoes, while maintaining them in a sanitary condition, and gently delivering the articles to a shipping tray, preferably in an edge standing attitude.
Another object of this invention is to provide a system whereby tomatoes can be economically, rapidly, gently and reliably sliced and packaged for delivery to a food service organization, such as fast food restaurants for immediate use and usually without additional preparation.
Another object of the invention is to provide a sanitizing agent to the surfaces of the slicer, such as but not limited to the pushers and cutter blades.
Referring now in more detail to the drawings in which like numerals indicate like parts throughout the several views,
The ends of the cutter blades 20 are mounted on frames, with all of the blades in each frame positionable in the same plane, with first alternate blades mounted on one frame and the second alternate blades mounted on another frame. The ends of the blades are oscillated in arcuate paths, with one set of blades movable in directions opposite to the other set. The opposite directions of oscillation of the alternate blades results in one set of blades oscillating along their lengths in one direction with a rocking movement while the other set of blades oscillates along their lengths in the opposite direction also with a rocking movement, thereby enhancing the cutting function of the blades. This will be described in more detail hereinafter.
As shown in
In order to make sure that the tomatoes 11 are properly received and urged through the cutter blades 20, the lower end surfaces 30 of the pusher fins 26 are spaced from one another and face the tomatoes and are of varied lengths. The array of the lower ends of the fins are contoured so that together they form a generally concave surface 32. This surface is formed so as to approximately match the convex facing surface 34 of the adjacent tomato 11. Thus, when the article pushers 24 are moved downwardly into engagement with the tomatoes 11, the contoured, concave facing surface 32 of the pusher fins 26 bears against the rounded surface of the tomatoes, usually spreading its pushing force over a significant surface area of the facing surface of the tomatoes, thus avoiding damage to the tomatoes.
The shape of the pushing surface of the fins 26 also tends to initially align the tomatoes on the cutter blades and then push the tomatoes downwardly and to hold the tomatoes in their fixed attitudes on the cutter blades 20, without having the tomatoes slip, rotate or otherwise move transversely with respect to the cutter blades. The thusly stabilized tomatoes 11 tend to move vertically through and beyond the cutter blades 20, with the pushing surfaces of the fins passing between and beyond the blades so that the tomatoes 11 are cut into slices that include end slices 16 and 18 and intermediate slices 42. The end slice 16 is the stem slice and the end slice 18 is the heel slice.
As shown in
While
As shown in FIGS. 1 and 3-10, article positioning plate 44 is located over the cutter blades 20. A series of article positioning openings 46 are formed in the article positioning plate, one opening for each pusher 24 and its set of cutter blades 20. The article positioning plate and its openings 46 tend to maintain the tomatoes 11 in a proper alignment on the edges of the cutter blades 20 for slicing. The openings 46 may be formed of a size and shape that corresponds to the size and shape of the tomatoes, with the size of the openings 46 being larger than the anticipated sizes of the tomatoes so that the article positioning plate usually avoids frictionally engaging and avoids supporting the tomatoes. The article positioning plate is easily changeable so the size of the positioning openings may be selected to be of a breadth great enough for allowing the tomatoes to come into direct contact with the cutter blades under the influence of gravity. But the positioning openings are small enough to surround the tomatoes and confine the tomatoes in the correct location on the blades and in alignment with the pushers 24.
As shown in
Cutter blade guides 50 are mounted in pairs on opposite sides of and spaced below the article positioning openings 46, in alignment with article positioning openings 46. With this arrangement, when the cutter blades 20 oscillate, their non-longitudinal movements are constrained by the blade alignment slots 54 of the cutter blade guide 50 so that the blades tend to remain in their proper orientation without tilting, bowing, or otherwise deviating from their intended positions. The close placement of the blade alignment slots 54 with respect to the openings 46 of the article positioning plate 44 assures that the stability of the blades 20 is maintained at least at the edge of the openings 46. The fins 26 of the pusher 24 pass between the blades 20 and the spaces 28 between the fins allow the fins to straddle the blades when the pusher moves downwardly and partially through the blades 20.
As shown in
As shown in
Next, the vertical cylinder 70 moves the vertical positioning frame 66 and the article pushers 24 downwardly as indicated by vertical arrow 71 in
As shown in
As shown in
It can be seen from
Fluid sprayers may be positioned in the article slicer 10 in positions where nozzles apply fluid to the surfaces of the slicer that contact the tomatoes. The fluids applied to the slicer can be gas, liquid or a combination of or a sequence of gas and liquid. For example, an antimicrobial liquid may be sprayed onto the surfaces of the slicer as the tomatoes are processed through the slicer. The fluid may be directed toward the surfaces of the pusher head fins 26 and the surfaces of the cutter blades 20 (
While the drawings show the fluid being applied internally of the pusher fins, the nozzles may be placed elsewhere, such as beside the pushers and in alignment with the fins and cutter blades so that the fluid reaches these surfaces.
The ejectors 120 (
It will be noted that the intermediate slices 42 pass through the vertical passage 101 closely adjacent the exterior surfaces of the side walls 98A and 98B of the end collectors 96 so that the side walls 98A and 98B of the collector housings tend to contain the intermediate slices 42 together, keeping the intermediate slices from separating. It will be noted that, contrary to
In the meantime, in order that transfer plate 78 move only vertically, guides 108 and 109 that are supported in a stationary position on opposite sides of the transfer plate have their guide blocks 110 (only one shown) that are confined to vertical movement. The guide blocks are connected to the plate support bars 112, 113. The transfer plate 78 comprises two plate sections, 78A and 78B, that are movable apart, forming a center opening there between that allows the tomato slices to move downwardly from the transfer plate 78 under the influence of gravity. The ends of the two plate sections are supported by the plate support bars 112 and 113. Cylinders 115A-115D are connected to the plate support bars 112 and 113 for controlling the lateral movement of the plate sections 78A and 78B.
Gathering plates 100 are also supported by their cylinders to the plate support bars 112 and 113 so that the gathering plates are maintained in alignment with the slices of tomatoes when the slices are resting in edge standing attitude in the transfer plate before the slices are deposited from the transfer plate 78 into the awaiting shipping tray 80.
As shown in
Once the tomatoes 11 are placed in the article openings 46, the lateral positioning frame 64 is shifted by its cylinder 68 to the position where the article pushers 24 are vertically aligned over the positions of the tomatoes 11 (
Next, the vertical cylinder 70 moves the article pushers 24 downwardly through the positioning openings 46 of the positioning plates 44 and through the oscillating cutter blades 20 which cut the tomatoes into slices (
Once the pusher fins 26 of the article pushers 24 have projected between the cutter blades 20 and the tomatoes have been sliced and removed from the cutter blades, the motion of the vertical cylinder 70 reverses to lift the article pushers 24 away from the cutter blades and the article positioning plate 44 back to the vertically aligned position (
When the vertical positioning frame 66 has been moved to its down position as shown in
At any time during the movements described above, the sprayer nozzles 75 may be activated to apply a fluid to the pusher fins 26 of the article pushers and to the cutter blades 20 and to the surrounding surfaces. This tends to clean these surfaces.
Transfer plate 78 (
The transfer plate 78 is raised and lowered during the cutting cycle. The transfer plate 78 is raised toward the cutting station to reduce the distance of movement of the slices from the cutting station to the transfer plate, to avoid dropping the intermediate slices of the tomatoes to the transfer plate a distance that would tend to disturb the arrangement of the slices or bruise the tomato slices or to lose the liquid in the slices.
Once the transfer plate 78 has received its sliced tomatoes, it is lowered for bringing the intermediate slices of the tomatoes in a downward direction from the slicing function toward the open top containers 80 and then opened to deposit the sliced tomatoes in a container 80.
In the meantime, gathering plates 100 (
A nozzle of the type shown in
The left ends of frames 125 and 127 are mounted at opposite ends of an oscillating drive arm 124. Oscillating drive arm 124 is pivotal intermediate its ends at axle 126, with oscillating frame 125 connected to the lower end 128 of the arm 124, and the oscillating frame 127 connected at the upper end 130.
The other ends of the cutter blade frames 125 and 127 are mounted on levers 130 and 132, and the levers are pivotally mounted on axle 134. Tomatoes 11 are placed on the cutter blades of frames 125 and 127, with the longitudinal axes of the tomatoes oriented at a right angle with respect to the planes of the blades.
As the oscillating drive arm 124 oscillates as indicated by the double-headed arrow 136, the lower end 128 of the oscillating drive arm moves from dead center through an upward arc, while the upper end 130 moves from dead center through a downward arc. This causes the cutter blade frame 125 to move upwardly at one end while the cutter blade frame 127 moves downwardly at its same end. This changes the elevations of the blades as the blades oscillate, so that alternate ones of the blades rock upwardly through an arc while the other alternate blades rock downwardly through a different arc. These arcuate movements tend to cause every other blade to cut more aggressively through the tomatoes as they move upwardly than the other alternate blades that are moving downwardly while the tomatoes are being urged though all of the blades with a substantially constant force. This enhances the cutting function of the blades while applying less squeezing of the tomato slices through the cutter blades, allowing the tomatoes to be cut with the use of less pushing force applied to the tomatoes, thereby tending to preserve the tomatoes with less compression force as the cutting function proceeds.
Although a preferred embodiment of the invention has been disclosed in detail herein, it will be obvious to those skilled in the art that variations and modifications of the disclosed embodiment can be made without departing from the spirit and scope of the invention as set forth in the following claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/943,385 filed in the U.S. Patent and Trademark Office on Sep. 17, 2004 now U.S. Pat. No. 7,861,629.
Number | Name | Date | Kind |
---|---|---|---|
716454 | Martin | Dec 1902 | A |
1657213 | Jagenburg | Jan 1928 | A |
1806486 | Mirafuentes | May 1931 | A |
2236176 | Jagenburg | Mar 1941 | A |
2262882 | Bucklin | Nov 1941 | A |
2280059 | Brustowsky | Apr 1942 | A |
2525990 | Wurgaft | Oct 1950 | A |
2628648 | Jagenburg | Feb 1953 | A |
3057386 | Massaro | Oct 1962 | A |
3139128 | Urschel et al. | Jun 1964 | A |
3161215 | Werder et al. | Dec 1964 | A |
3245447 | Jones | Apr 1966 | A |
3258046 | Lackerman | Jun 1966 | A |
3351114 | Anderson | Nov 1967 | A |
RE26796 | Lamb | Feb 1970 | E |
3561511 | Kummer | Feb 1971 | A |
3605984 | Erekson et al. | Sep 1971 | A |
3696847 | Erekson et al. | Oct 1972 | A |
3722339 | Boyer | Mar 1973 | A |
3948132 | Camp | Apr 1976 | A |
4184397 | Jones | Jan 1980 | A |
4309943 | Larsen et al. | Jan 1982 | A |
4346634 | Jones | Aug 1982 | A |
4368657 | Pellaton | Jan 1983 | A |
4436011 | Jones | Mar 1984 | A |
4625364 | Adams | Dec 1986 | A |
4644838 | Samson et al. | Feb 1987 | A |
4709535 | Mahaffy et al. | Dec 1987 | A |
4856398 | Kruse et al. | Aug 1989 | A |
4982500 | Ramani | Jan 1991 | A |
4985268 | Bingham | Jan 1991 | A |
5161447 | Emsens | Nov 1992 | A |
5167178 | Cimperman et al. | Dec 1992 | A |
D333764 | Osvaldo | Mar 1993 | S |
5662033 | Yawman | Sep 1997 | A |
D388665 | So | Jan 1998 | S |
6526663 | Simmons et al. | Mar 2003 | B1 |
6799496 | Verhaeghe | Oct 2004 | B2 |
20050022642 | Verhaeghe | Feb 2005 | A1 |
20050126012 | Ferman | Jun 2005 | A1 |
20060021484 | Brander et al. | Feb 2006 | A1 |
Number | Date | Country |
---|---|---|
1 238 763 | Mar 2001 | EP |
1 365 897 | Mar 2002 | EP |
WP 1 570 961 | Mar 2004 | EP |
600131 | Apr 1948 | GB |
46-1583 | Jan 1971 | JP |
6-9894 | Feb 1994 | JP |
7-17093 | Mar 1995 | JP |
8-257982 | Oct 1996 | JP |
2001-38681 | Feb 2001 | JP |
1020132 | Mar 2002 | NL |
WO 02072321 | Sep 2002 | WO |
Entry |
---|
English translation of Japanese Office Action of Oct. 14, 2008 in Japanese Patent Application 2005-134151 filed May 2, 2005, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20060225547 A1 | Oct 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10943385 | Sep 2004 | US |
Child | 11377469 | US |