The present teachings generally include an article with a cushioning assembly, and a method of manufacturing an article.
Footwear typically includes a sole configured to be located under a wearer's foot to space the foot away from the ground or floor surface. Footwear sometimes utilizes polyurethane foam or other resilient materials in the sole to provide cushioning. A fluid-filled bladder element is sometimes included in the sole to provide desired cushioning.
An article comprises a cushioning assembly that comprises a first bladder element forming a first fluid chamber. The cushioning assembly further comprises a second bladder element within the first bladder element. The second bladder element forms a second fluid chamber sealed from and within the first fluid chamber. At least one reinforcement element is operatively connected to and in contact with at least one of the first bladder element and the second bladder element. The at least one reinforcement element is configured to reinforce the cushioning assembly under a load applied to the first bladder element.
The article may further comprise a sole layer. The first bladder element may be secured to the sole layer, and the at least one reinforcement element may be secured to the sole layer and pivotable about a first pivot axis as a fulcrum. The at least one reinforcement element may comprise a first reaction surface that contacts a first portion of an outer surface of the first bladder element when the at least one reinforcement element is pivoted about the first pivot axis. In an embodiment in which the article is an article of footwear, the pivot axis may extend generally from a lateral side of the article of footwear to a medial side of the article of footwear and the first reaction surface may be forward of the second bladder element.
In an embodiment, the at least one reinforcement element may comprise a first reinforcement element forward of the second bladder element and a second reinforcement element rearward of the second bladder element. The second reinforcement element may be pivotable about a second pivot axis, and may comprise an additional first reaction surface that contacts a second portion of the outer surface of the first bladder element when the second reinforcement element is pivoted about the second pivot axis.
In an embodiment, the cushioning assembly may further comprise a third bladder element forming a third fluid chamber, and a fourth bladder element within the third bladder element and forming a fourth fluid chamber sealed from and within the third fluid chamber. The third bladder element may be rearward of the second reinforcement element. The second reinforcement element may comprise a second reaction surface that contacts a portion of the outer surface of the third bladder element when the second reinforcement element is pivoted about the second axis. The portion of the outer surface of the third bladder element is rearward of the second reaction surface and adjacent the fourth bladder element.
In an embodiment, the second bladder element comprises a flange forming a peripheral seam that surrounds the second bladder element and seals the second fluid chamber. The at least one reinforcement element may comprise a first collar that is secured to the flange and at least partially surrounds the second bladder element at the flange to reinforce the peripheral seam and limit deformation of the second bladder element at the peripheral seam. In an embodiment in which the article is an article of footwear, the peripheral seam and the first reinforcement element may incline within the first bladder element in a laterally outward direction of the article of footwear.
In an embodiment, the at least one reinforcement element may comprise a second reinforcement element, and the cushioning assembly further comprises a third bladder element forming a third fluid chamber within the first fluid chamber. The third bladder element may comprise a flange forming a peripheral seam that surrounds the third bladder element and seals the third fluid chamber. The at least one reinforcement element may comprise a second collar that is secured to the flange of the third bladder element and at least partially surrounds the third bladder element at the flange of the third bladder element to reinforce the peripheral seam of the third bladder element and limit deformation of the third bladder element at the peripheral seam of the third bladder element. In an embodiment in which the article is an article of footwear, the peripheral seam of the third bladder element and the second reinforcement element may incline within the first bladder element in a laterally outward direction of the article of footwear.
In an embodiment, the at least one reinforcement element comprises a frame disposed within the first bladder element and forming a first opening. The second bladder element may extend through the first opening and may be narrowed at and retained by the frame at the first opening.
In an embodiment, the frame may comprise a first side with a first surface and a second side with a second surface. The second bladder element may comprise a first portion that rests against the first surface, a second portion that rests against the second surface, and a necked portion that extends through the opening in the frame and connects the first portion to the second portion. The first portion may be in fluid communication with the second portion through the necked portion so that a load applied to the second bladder element is reacted by both the first surface and the second surface of the frame.
In an embodiment in which the article is an article of footwear, the first side of the frame is disposed generally upward and the second side of the frame is disposed generally downward when the article of footwear is in an upright position and the cushioning assembly is secured in the article of footwear so that the first portion is generally above the second portion. The article of footwear may comprise a forefoot portion, a midfoot portion, and a heel portion, and the frame may extend lengthwise in the article of footwear from the forefoot portion to the heel portion.
In an embodiment, the frame may form an additional opening, and the cushioning assembly may further comprise a third bladder element forming a third fluid chamber within the first fluid chamber and extending through the additional opening. The third bladder element may comprise a first portion that rests against the first surface, a second portion that rests against the second surface, and a necked portion that extends through the additional opening in the frame and connects the first portion of the third bladder element to the second portion of the third bladder element; and wherein the first portion of the third bladder element is in fluid communication with the second portion of the third bladder element through the necked portion.
In an embodiment, at least one of the first fluid chamber and the second fluid chamber is pressurized above an ambient pressure surrounding the first fluid chamber when said at least one of the first fluid chamber and the second fluid chamber is in an unloaded state. In an embodiment, the article may be an article of footwear that comprises a forefoot portion, a midfoot portion, and a heel portion, and the first bladder element may extend from the forefoot portion to the heel portion.
A method of manufacturing an article may comprise operatively connecting at least one reinforcing element to at least one of a first bladder element or a second bladder element of a cushioning assembly. The first bladder element may form a first fluid chamber and the second bladder element may be within the first bladder element and form a second fluid chamber sealed from and within the first fluid chamber. The at least one reinforcement element may comprise a reaction surface and may be configured to reinforce the cushioning assembly when at least one of the first bladder element and the second bladder element is in contact with the reaction surface under a load applied to the first bladder element.
The method may further comprise inserting the second bladder element through an opening in the at least one reinforcement element so that the second bladder element extends through the opening and is retained by the at least one reinforcement element at the opening.
In an embodiment, the method may further comprise securing the reinforcement element to a flange forming a peripheral seam of the second bladder element so that the reinforcement element at least partially surrounds the second bladder element at the flange to reinforce the peripheral seam.
In an embodiment, the method may further comprise pressurizing at least one of the first fluid chamber and the second fluid chamber above an ambient pressure surrounding the first fluid chamber when the at least one of the first fluid chamber and the second fluid chamber is in an unloaded state. In an embodiment in which the article is an article of footwear, a map of magnitudes of pressures applied during wear testing of an article of footwear can be determined. The first fluid chamber and the second fluid chamber can then be inflated to pressurize the first fluid chamber and the second fluid chamber to respective pressures that correlate with the map.
The above features and advantages and other features and advantages of the present teachings are readily apparent from the following detailed description of the modes for carrying out the present teachings when taken in connection with the accompanying drawings.
“A,” “an,” “the,” “at least one,” and “one or more” are used interchangeably to indicate that at least one of the items is present. A plurality of such items may be present unless the context clearly indicates otherwise. All numerical values of parameters (e.g., of quantities or conditions) in this specification, unless otherwise indicated expressly or clearly in view of the context, including the appended claims, are to be understood as being modified in all instances by the term “about” whether or not “about” actually appears before the numerical value. “About” indicates that the stated numerical value allows some slight imprecision (with some approach to exactness in the value; approximately or reasonably close to the value; nearly). If the imprecision provided by “about” is not otherwise understood in the art with this ordinary meaning, then “about” as used herein indicates at least variations that may arise from ordinary methods of measuring and using such parameters. In addition, a disclosure of a range is to be understood as specifically disclosing all values and further divided ranges within the range. All references referred to are incorporated herein in their entirety.
The terms “comprising,” “including,” and “having” are inclusive and therefore specify the presence of stated features, steps, operations, elements, or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, or components. Orders of steps, processes, and operations may be altered when possible, and additional or alternative steps may be employed. As used in this specification, the term “or” includes any one and all combinations of the associated listed items. The term “any of” is understood to include any possible combination of referenced items, including “any one of” the referenced items. The term “any of” is understood to include any possible combination of referenced claims of the appended claims, including “any one of” the referenced claims.
Those having ordinary skill in the art will recognize that terms such as “above,” “below,” “upward,” “downward,” “top,” “bottom,” etc., are used descriptively relative to the figures, and do not represent limitations on the scope of the invention, as defined by the claims.
Referring to the drawings, wherein like reference numbers refer to like features throughout the views,
More specifically, the cushioning assembly 12 has multiple bladder elements, including a first bladder element 14 forming a first fluid chamber 16, and a second bladder element 18A within the first bladder element 14. The second bladder element 18A forms a second fluid chamber 20A that is sealed from and within the first fluid chamber 16. Due to this arrangement, the first bladder element 14 is also referred to as an outer bladder element, and the second bladder element 18A is also referred to as an inner bladder element. The article of footwear 10 comprises a forefoot portion 13, a midfoot portion 15, and a heel portion 17. The forefoot portion 13 is generally the forward-most third of the article of footwear 10 when worn on a foot, the midfoot portion 15 is generally the middle third, and the heel portion 17 is generally the rearmost third. The first bladder element 14 of the cushioning assembly 12 is referred to as a full length bladder element 14 as it extends from the forefoot portion 13, over the midfoot portion 15 to the heel portion 17. Heel portion 17 generally includes portions of the article of footwear 10 and cushioning assembly 12 corresponding with rear portions of a human foot of a size corresponding with the article of footwear 10, including the calcaneus bone. Forefoot portion 13 generally includes portions of the article of footwear 10 and cushioning assembly 12 corresponding with the toes and the joints connecting the metatarsals with the phalanges of the human foot of the size corresponding with the article of footwear 10. Midfoot portion 15 generally includes portions of the article of footwear 10 and cushioning assembly 12 corresponding with an arch area of the human foot of the size corresponding with the article of footwear 10. As used herein, a lateral side of a component for an article of footwear 10, such as a lateral side 23 of the cushioning assembly 12 indicated in
As further discussed herein, the cushioning assembly 12 also includes multiple additional inner bladder elements 18B, 18C, 18D, 18E, 18F, 18G, 18H, 18I, 18J, 18K, 18L, each of which is also within the first bladder element 14. Each additional inner bladder element 18B, 18C, 18D, 18E, 18F, 18G, 18H, 18I, 18J, 18K, 18L forms a separate fluid chamber 20B, 20C, 20D, 20E, 20F, 20G, 20H, 20I, 20J, 20K, 20L that is sealed from and within the first fluid filled chamber 16. For purposes of discussion, the bladder element 18L is referred to as the third bladder element, and the fluid chamber 20L is referred to as the third fluid chamber. As is apparent from
As used herein, a “fluid” includes a gas, including air, an inert gas such as nitrogen, or another gas. Accordingly, “fluid-filled” includes “gas-filled”. The various materials used for the bladder elements 14, 18A, 18B, 18C, 18D, 18E, 18F, 18E, 18G, 18H, 18I, 18J, 18K, 18L, and other embodiments of bladder elements discussed herein, may be substantially transparent. The various materials used for the bladder element 14, and other embodiments of bladder elements discussed herein, may be substantially transparent. Additionally, in some embodiments, the bladder element 14 may have a tinted color.
The fluid-filled bladder elements 14, 18A, 18B, 18C, 18D, 18E, 18F, 18E, 18G, 18H, 18I, 18J, 18K, 18L and other embodiments of bladder elements described herein can be formed from a variety of polymeric materials. For example, the bladder elements 14, 18A, 18B, 18C, 18D, 18E, 18F, 18E, 18G, 18H, 18I, 18J, 18K, 18L can be formed from any of various polymeric materials that can retain a fluid at a predetermined pressure, including a fluid that is a gas, such as air, nitrogen, or another gas. For example, the bladder elements 14, 18A, 18B, 18C, 18D, 18E, 18F, 18E, 18G, 18H, 18I, 18J, 18K, 18L can be a thermoplastic polymeric material. The bladder elements 14, 18A, 18B, 18C, 18D, 18E, 18F, 18E, 18G, 18H, 18I, 18J, 18K, 18L can be a urethane, polyurethane, polyester, polyester polyurethane, and/or polyether polyurethane.
Moreover, the bladder elements 14, 18A, 18B, 18C, 18D, 18E, 18F, 18E, 18G, 18H, 18I, 18J, 18K, 18L can be formed of one or more sheets having layers of different materials. In
The cushioning assembly 12 also includes at least one reinforcement element 22 operatively connected to and in contact with the first bladder element 14, the second bladder element 18A, and the additional bladder elements 18B, 18C, 18D, 18E, 18F, 18G, 18H, 18I, 18J, 18K, and 18L. In the embodiment of
The retainer frame 22 is configured to reinforce the cushioning assembly 12 under a load applied to the first bladder element 14 as discussed herein. The retainer frame 22 can be a variety of materials such as but not limited to thermoplastic polyurethane, thermoplastic elastomer, an EVA foam, a carbon fiber, or a composite of foam and carbon fiber, and can have a stiffness and thickness selected to provide a desired amount of stability and flexibility for the cushioning assembly 12.
The retainer frame 22 is disposed within the first bladder element 14 and forms multiple openings 24A, 24B, 24C, 24D, 24E, 24F, 24G, 24H, 24I, 24J, 24K, and 24L. The opening 24A is referred to as a first opening 24A. As best shown in
The openings 24A, 24B, 24C, 24D, 24E, 24F, 24G, 24H, 24I, 24J, 24K, and 24L extend completely through the retainer frame 22 from the first side 25 to the second side 28. The openings 24A, 24B, 24C, 24D, 24E, 24F, 24G, 24H, 24I, 24J, 24K, and 24L enable the bladder elements 18A, 18B, 18C, 18D, 18E, 18F, 18G, 18H, 18I, 18J, 18K, and 18L to extend through the retainer frame 22. For example, the second bladder element 18A comprises the first portion 34 that rests against the first surface 26, and the second portion 36 that rests against the second surface 30. The necked portion 32A connects the first portion 34 to the second portion 36 so that the first portion 34 is in fluid communication with the second portion 36 through the necked portion 32A. Stated differently, the second fluid chamber 20A extends from the first portion 34 to the second portion 36 through the necked portion 32A. This enables a load F1 on the second bladder element 18A to be reacted by both the first surface 26 and the second surface 30 of the retainer frame 22. The load F1 is applied to the second bladder element 18A indirectly through the first bladder element 14. The retainer frame 22 surrounding the necked portion 32A prevents lateral expansion of the bladder element 14 at the necked portion 32A under loading. This, in turn, limits outward deformation at a side surface 37 of the first fluid-filled bladder element 14.
The cushioning dynamics and energy absorption of the cushioning assembly 12 is at least in part due to the selected steady state fluid pressure in the first fluid chamber 16 and the selected steady state fluid pressure in the second fluid chamber 20A. The steady state fluid pressure is the fluid pressure when the cushioning assembly 12 is unloaded, such as when the article of footwear 10 is not in use. The steady state fluid pressure is the respective inflation pressures of the fluid used to fill the fluid chambers 16, 20A. The relative pressures in the fluid chambers 16 and 20A affect dampening of the load F1 and can be selected (i.e., “tuned”) to provide a desired cushioning response. For example, at least one of the first fluid chamber 16 and the second fluid chamber 20A can be pressurized above an ambient pressure when in an unloaded state. The ambient pressure is the pressure surrounding the first fluid chamber 16, external to the article of footwear 10. In one embodiment, the first fluid chamber 16 is at ambient pressure, and the second fluid chamber 20A is pressurized above ambient pressure. When a load is applied to the cushioning assembly 12, the fluid-pressure in the first fluid-filled bladder element 14 may provide an initial, relatively soft cushioning feel, with the higher pressure and therefore stiffer second bladder element 18A then providing an increased rate of dampening as one or more of the inner bladder elements 18A, 18B, 18C, 18D, 18E, 18F, 18G, 18H, 18I, 18J, 18K, and 18L, depending on the location of the load, is compressed. Additionally, the fluid chambers 20A, 20B, 20C, 20D, 20E, 20F, 20G, 20H, 20I, 20J, 20K, and 20L of the various inner bladder elements 18A, 18B, 18C, 18D, 18E, 18F, 18G, 18H, 18I, 18J, 18K, and 18L can be pressurized at different pressures to affect the cushioning profile of the article of footwear 10. For example, fluid chambers 20A, 20B, 20C, and 20D of the bladder elements 18A, 18B, 18C, and 18D in the forefoot portion 13 can be at higher pressures than the fluid chambers 20J, 20I, 20H in the heel portion 17. Additionally, fluid chambers 20A, 20L of bladder elements 18A, 18L on the medial side 27 can be at higher pressures than fluid chambers 20D, 20E of bladder elements 18D, 18E on the lateral side 23. In one embodiment, a pressure map of pressures applied to a forefoot portion, a midfoot portion, and a heel portion during wear of a test article of footwear can be determined. The bladder elements 18A, 18B, 18C, 18D, 18E, 18F, 18G, 18H, 18I, 18J, 18K, and 18L can then be inflated to pressurize the fluid chambers 20A, 20B, 20C, 20D, 20E, 20F, 20G, 20H, 20I, 20J, 20K, and 20L to respective pressures that correlate with the pressure map.
The retainer frame 22 provides reaction surfaces 26, 30 that the bladder elements 18A, 18B, 18C, 18D, 18E, 18F, 18G, 18H, 18I, 18J, 18K, and 18L contact and react against when a load is applied to the cushioning assembly 12. The retainer frame 22 also helps prevent lateral twisting of the cushioning assembly 12. Moreover, when the article of footwear 10 is flexed, such as when the forefoot portion 13 is flexed upward relative to the midfoot portion 15, the retainer frame 22 will be biased back to its unflexed position shown in
The bladder element 18L may be referred to as the third bladder element, and forms a third fluid chamber 20L within the first fluid chamber 16 as best indicated in
A method of manufacturing the article of footwear 10 may begin with forming the inner bladder elements 18A, 18B, 18C, 18D, 18E, 18F, 18G, 18H, 18I, 18J, 18K, and 18L, such as by any of blow-molding, thermoforming, or vacuum forming in mold assemblies. An inflation point, such as a fill tube, can be formed in each bladder element 18A, 18B, 18C, 18D, 18E, 18F, 18G, 18H, 18I, 18J, 18K, and 18L as is understood by those skilled in the art. Prior to inflation, the bladder elements 18A, 18B, 18C, 18D, 18E, 18F, 18G, 18H, 18I, 18J, 18K, and 18L can be inserted through the corresponding openings 24A, 24B, 24C, 24D, 24E, 24F, 24G, 24H, 24I, 24J, 24K, and 24L so that the retainer frame 22 is operatively connected to the bladder elements 18A, 18B, 18C, 18D, 18E, 18F, 18G, 18H, 18I, 18J, 18K, and 18L. The bladder elements 18A, 18B, 18C, 18D, 18E, 18F, 18G, 18H, 18I, 18J, 18K, and 18L can then be inflated with fluid to establish the fluid chambers 20A, 20B, 20C, 20D, 20E, 20F, 20G, 20H, 20I, 20J, 20K, and 20L at selected pressures.
Under the method, a pressure map of pressures applied during wear testing of a test article of footwear can be determined. For example, the pressures applied in a corresponding forefoot portion 13, midfoot portion 15, and heel portion 17 during wear of a test pair of the article of footwear 10 can be monitored and determined. A pressure map 50 is shown in
Next, the first and second polymeric sheets 19A, 19B used to form the first bladder element 14 can be inserted into mold halves of a mold assembly. The reinforcement frame 22 with inserted bladder elements 18A, 18B, 18C, 18D, 18E, 18F, 18G, 18H, 18I, 18J, 18K, and 18L can then be inserted into the mold assembly between the first and second polymeric sheets 19A, 19B. The first bladder element 14 can then be formed by thermoforming and vacuum forming, causing the first and second polymeric sheets 19A, 19B to conform to mold surfaces of the mold assembly. The perimeter seam 21 can be formed by compression of the mold assembly during thermoforming, or by radio frequency welding, to seal the first fluid chamber 16, with an inflation point such as a fill tube allowing fluid communication with the chamber 16. The elevated temperature of the sheets 19A, 19B during thermoforming causes them to bond to the bladder elements 18A, 18B, 18C, 18D, 18E, 18F, 18G, 18H, 18I, 18J, 18K, and 18L at certain locations of the outer surfaces of the bladder elements 18A, 18B, 18C, 18D, 18E, 18F, 18G, 18H, 18I, 18J, 18K, and 18L. The first fluid chamber 16 can then be inflated, or left at ambient pressure, and then any fill tubes are plugged.
Next, the cushioning assembly 12 can be secured to an upper 56, either directly, as shown in
An outsole 58 may then be secured to the cushioning assembly 12. The outsole 58 can be a single, continuous, integral component that covers the entire ground-facing surface of the cushioning assembly 12. Alternatively, discrete outsole elements can be secured at different areas of the ground-facing surface of the cushioning assembly 12. The outsole 58 can be a high wear material, such as a durable rubber.
The bladder element 118A is referred to as a second bladder element. The fluid chamber 120A is referred to as a second fluid chamber and is sealed from the first fluid chamber 116 and within the first bladder element 114. Due to this arrangement, the first bladder element 114 is referred to as the outer bladder element, and the second bladder element 118A as well as bladder elements 118B, 118C, 118D, 118E, and 118F are referred to as inner bladder elements. The bladder element 114 is referred to as a full length bladder element as it extends from the forefoot portion 113 over the midfoot portion 115 to the heel portion 117. The cushioning assembly 112 includes a midsole layer 131 that may be an EVA foam or other material. The first bladder element 114 is secured to an underside of the midsole layer 131 such as by adhesive, thermal bonding, radio frequency welding or other methods. A footwear upper 156 is secured to the cushioning assembly 112 by adhesive, thermal bonding, radio frequency welding, stitching or other methods.
The second bladder element 118A is formed from a first polymeric sheet 119A and a second polymeric sheet 119B each having a peripheral flange 121A, 121B. The peripheral flanges 121A, 121B are secured to one another by adhesive, thermal bonding such as during thermoforming, compression bonding such as during thermoforming, radio frequency welding or other methods so that the joined peripheral flanges 121A, 121B form a peripheral seam that surrounds the second bladder element 118A and seals the second fluid chamber 120A.
A reinforcement element 122A, also referred to as a first collar 122A, is operatively connected to and in contact with the second bladder element 118A. The first collar 122A is configured to reinforce the cushioning assembly 112 under a load applied to the first bladder element 114. More specifically, the first collar 122A is secured to the peripheral flanges 121A, 121B and surrounds the second bladder element 118A at the flanges 121A, 121B to reinforce a peripheral seam 121C and limit deformation of the second bladder element 118A at the peripheral seam 121C. The first collar 122A limits deformation of the second bladder element 118A at the peripheral seam 121C so that the peripheral seam 121C will deform less than the remaining area of the second bladder element 118A. Shear forces along the peripheral seam 121C are reacted by the first collar 122A at a contact surface 121D of the first collar 122A in contact with the bladder element 118A. Each of the additional inner bladder elements 118B, 118C, 118D, 118E, 118F have a similar collar 122B, 122C, 122D, 122E and 122F at a respective peripheral flange and seam.
The peripheral seam 121C and the first collar 122A incline within the first bladder element 114 in a laterally outward direction of the article of footwear 110, as shown in
As indicated in
As described with respect to the cushioning assembly 12, the respective pressures of the fluid chambers 120A, 120B, 120C, 120D, 120E, 120F in an unloaded state can be selected to provide a desired cushioning profile during loading. The pressure of the first fluid chamber 116 can be at a different pressure in an unloaded state than the fluid chambers 120A, 120B, 120C, 120D, 120E, and 120F. For example, at least one of the fluid chambers 116, 120A, 120B, 120C, 120D, 120E, and 120F can be pressurized above an ambient pressure surrounding the first fluid chamber 116 when the cushioning assembly 112 is in an unloaded state. The fluid chamber 116 can be at ambient pressure or above ambient pressure. The fluid chambers 120A, 120B, 120C, 120D, 120E, and 120F can be inflated to respective pressures that correlate with the pressure map 50.
A method of manufacturing the article of footwear 110 may begin with forming the inner bladder elements 118A, 118B, 118C, 118D, 118E, 18F, such as by any of blow-molding, thermoforming, or vacuum forming in mold assemblies. As shown in
Under the method, the pressure map 50 can be determined as described with respect to
Next, the first and second polymeric sheets 119A, 119B used to form the first bladder element 114 can be inserted into mold halves of a mold assembly. The inflated bladder elements 118A, 118B, 118C, 118D, 118E, and 118F with collars 122A. 122B, 122C, 122D, 122E, and 122F can then be inserted into the mold assembly between the first and second polymeric sheets 119A, 119B. The first bladder element 114 can then be formed by thermoforming and vacuum forming, causing the first and second polymeric sheets 119A, 119B to conform to mold surfaces of the mold assembly. A perimeter flange 121E of the first bladder element 114 can be formed by compression of the mold assembly during thermoforming, or by radio frequency welding, to seal the first fluid chamber 116, with an inflation point such as a fill tube allowing fluid communication with the chamber 116. The elevated temperature of the sheets 119A, 119B during thermoforming causes them to bond to the bladder elements 118A, 118B, 118C, 118D, 118E, and 118F at certain locations of the outer surfaces of the bladder elements 118A, 118B, 118C, 118D, 118E, and 118F, such as the top and bottom surfaces 151B, 151C of bladder element 118A indicated in
Each bladder element 218A, 218B has a peripheral flange with a respective peripheral seam, similar to bladder element 118A of
Bladder element 214C also has a plurality of additional inner bladder elements 218C, 218D, 218E, only some of which are visible on the side view of
The bladder element 218A is referred to as a second bladder element. The fluid chamber 220A is referred to as a second fluid chamber and is sealed from the first fluid chamber 216A and within the first bladder element 214A, 214B, and 214C. Due to this arrangement, the first bladder element 214A is referred to as the outer bladder element, and the second bladder element 218A as well as bladder elements 218C, 218D, and 218E are referred to as inner bladder elements. None of the bladder elements 214A, 214B, 214C are full length bladder elements as none extends from the forefoot portion 213 over the midfoot portion 215 to the heel portion 217.
The cushioning assembly 212 includes a midsole layer 231, also referred to herein as a sole layer, shown best in
A first reinforcement element 233A is secured to the midsole layer 231. For example, the first reinforcement element 233A may be partially hollow, with an opening 235 at one end. The midsole layer 231 can be a foam material that is filled into the opening 235 to fill the hollow portion of the first reinforcement element 233A, thereby securing the first reinforcement element 233A to the midsole layer 231. The opening 235 is an elongated slot as shown in phantom in
The first reinforcement element 233A is secured to the midsole layer 231 to be pivotable at a first pivot axis P1 as a fulcrum. For example, in a neutral position, the entire outsole element 258 secured to the bottom of the reinforcement element 233A would be in contact with a ground plane G. The first reinforcement element 233A has a first reaction surface 241 that contacts a first portion of an outer surface 243 of the first bladder element 214A when the midsole layer 231 is pivoted about the first pivot axis P1, as shown in
A second reinforcement element 233B is secured to the midsole layer 231 in the same manner as the first reinforcement element 233A. The second reinforcement element 233B is rearward of the first bladder element 214A and the second bladder element 218A. The second reinforcement element 233B is pivotable at a second pivot axis P2, and has a first reaction surface 245, indicated in
As shown in
The second reinforcement element 233B comprises a second reaction surface 249 that contacts a portion 251 of the outer surface of the third bladder element 214C when the second reinforcement element 233B is pivoted about the second axis P2, as shown in
A method of manufacturing the article of footwear 210 may begin with forming the inner bladder elements 218A, 218B, 218C, 218D, 218E, such as by any of blow-molding, thermoforming, or vacuum forming in mold assemblies. An inflation point, such as a fill tube, can be formed in each bladder element 218A, 218B, 218C, 218D, 218E as is understood by those skilled in the art. Prior to inflation, the bladder elements 218A, 218B, 218C, 218D, 218E can be inserted in the center of the respective optional collars 222A, 222B, 222C, 222D, 222E. The flanges of the bladder elements 218A, 218B, 218C, 218D, 218E can then be inserted into the slotted openings of the collars 222A, 222B, 222C, 222D, and 222E, and pressure can be applied to the collars 222A, 222B, 222C, 222D, and 222E to clamp the collars 222A, 222B, 222C, 222D, and 222E against the flanges as the collars 222A, 222B, 222C, 222D, and 222E are secured to the flanges by adhesive, thermal bonding, or other methods, and as explained with respect to similar flanges 121A, 121B of
Next, first and second polymeric sheets used to form the first bladder element 214 can be inserted into mold halves of a mold assembly, as described with respect to bladder element 114. The inflated bladder elements 218A, 218B, with collars 222A, 222B can then be inserted into the mold assembly between the first and second polymeric sheets. The first bladder element 214A can then be formed such as by thermoforming and vacuum forming, causing the first and second polymeric sheets to conform to mold surfaces of the mold assembly. As described with respect to bladder element 114, a perimeter flange of the first bladder element 214A can be formed by compression of the mold assembly during thermoforming, or by radio frequency welding, to seal the first fluid chamber 216A, with an inflation point such as a fill tube allowing fluid communication with the chamber 216A. The elevated temperature of the sheets during thermoforming causes them to bond to the bladder elements 218A, 218B at certain locations of the outer surfaces of the bladder elements 218A, 218B where the sheets contact the bladder elements 218A, 218B, such as the top and bottom surfaces of bladder elements 218A, 218B. The first fluid chamber 216 can then be inflated, or left at ambient pressure, and then any fill tubes are plugged. The bladder elements 214B, 214C, 218C, 218D, 218E are similarly formed.
The reinforcement elements 233A, 233B are then secured to the midsole layer 231, such as by forming the midsole layer 231 in a mold assembly, and filling foam of the midsole layer 231 into the openings 235 in the reinforcement elements 233A, 233B, with are also positioned in the mold assembly. The bladder elements 214A, 214B, and 214C can be secured to the midsole 231 by a variety of methods, such as thermal bonding, adhesives of radio frequency welding.
Next, the cushioning assembly 212 can be secured to the upper 256, either directly or indirectly, such as via the midsole layer 231. The upper 256 can be secured to the cushioning assembly 212 by various methods, such as adhesives, stitching, a combination of these methods, or otherwise. The upper 256 can include a strobel unit that can overlay and be adhered to the upper surface of the midsole layer 231. An outsole 258 may then be secured to the cushioning assembly 112. The outsole 258 can be as described with respect to outsole 58 of
While several modes for carrying out the many aspects of the present teachings have been described in detail, those familiar with the art to which these teachings relate will recognize various alternative aspects for practicing the present teachings that are within the scope of the appended claims. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not as limiting.
This application is a divisional of U.S. application Ser. No. 15/093,116 filed Apr. 7, 2016, which claims the benefit of U.S. Provisional Application No. 62/144589 filed Apr. 8, 2015, and both of which are incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62144589 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15093116 | Apr 2016 | US |
Child | 17015686 | US |